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Abstract
In this paper, we introduce two iterative algorithms for finding common solutions of a
finite family of variational inclusions for maximal monotone and inverse-strongly
monotone mappings with the constraints of two problems: a generalized mixed
equilibrium problem and a common fixed point problem of an infinite family of
nonexpansive mappings and an asymptotically strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove some strong and weak
convergence theorems for the proposed iterative algorithms under suitable
conditions.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, C be a nonempty
closed convex subset of H and PC be the metric projection of H onto C. Let S : C → H
be a nonlinear mapping on C. We denote by Fix(S) the set of fixed points of S and by R
the set of all real numbers. A mapping V is called strongly positive on H if there exists a
constant γ̄ ∈ (, ] such that

〈Vx,x〉 ≥ γ̄ ‖x‖, ∀x ∈H .

Amapping S : C →H is called L-Lipschitz-continuous if there exists a constant L >  such
that

‖Sx – Sy‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then S is called a nonexpansive mapping; if L ∈ (, ) then A is called
a contraction.
Let ϕ : C → R be a real-valued function,A :H →H be a nonlinearmapping andΘ : C×

C → R be a bifunction. We consider the generalized mixed equilibrium problem (GMEP)
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[] of finding x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

We denote the set of solutions of GMEP (.) by GMEP(Θ ,ϕ,A). The GMEP (.) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. The GMEP is further considered and studied in, e.g., [–].
Throughout this paper, it is assumed as in [] that Θ : C × C → R is a bifunction satis-

fying conditions (H)-(H) and ϕ : C → R is a lower semicontinuous and convex function
with restriction (H), where
(H) Θ(x,x) =  for all x ∈ C;
(H) Θ is monotone, i.e., Θ(x, y) +Θ(y,x) ≤  for any x, y ∈ C;
(H) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

) ≤ Θ(x, y);

(H) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
(H) for each x ∈H and r > , there exist a bounded subset Dx ⊂ C and yx ∈ C such

that for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < .

Let Θ,Θ : C × C → R be two bifunctions, and B,B : C → H be two nonlinear map-
pings. Consider the system of generalized equilibrium problems (SGEP): find (x∗, y∗) ∈
C ×C such that

{
Θ(x∗,x) + 〈By∗,x – x∗〉 + 

μ
〈x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

Θ(y∗, y) + 〈Bx∗, y – y∗〉 + 
μ

〈y∗ – x∗, y – y∗〉 ≥ , ∀y ∈ C,
(.)

where μ and μ are two positive constants.
Let {Tn}∞n= be an infinite family of nonexpansive self-mappings on C and {λn}∞n= be a

sequence of nonnegative numbers in [, ]. For any n ≥ , define a self-mappingWn on H
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,
Un,n = λnTnUn,n+ + ( – λn)I,
Un,n– = λn–Tn–Un,n + ( – λn–)I,
...
Un,k = λkTkUn,k+ + ( – λk)I,
Un,k– = λk–Tk–Un,k + ( – λk–)I,
...
Un, = λTUn, + ( – λ)I,
Wn =Un, = λTUn, + ( – λ)I.

(.)

Such a mapping Wn is called the W -mapping generated by Tn,Tn–, . . . ,T and λn,λn–,
. . . ,λ.
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Let f : H → H be a contraction and V be a strongly positive bounded linear oper-
ator on H . Assume that ϕ : H → R is a lower semicontinuous and convex functional,
that Θ ,Θ,Θ : H × H → R satisfy conditions (H)-(H), and that A,B,B : H → H are
inverse-strongly monotone. Very recently, motivated by Yao et al. [], Cai and Bu [] in-
troduced the following hybrid extragradient-like iterative algorithm:

⎧⎪⎨
⎪⎩
zn = S(Θ ,ϕ)

rn (xn – rnAxn),
yn = TΘ

μ (I –μB)TΘ
μ (I –μB)zn,

xn+ = αn(u + γ f (xn)) + βnxn + (( – βn)I – αn(I +μV ))Wnyn, ∀n≥ ,
(.)

for finding a common solution of GMEP (.), SGEP (.), and the fixed point problem of
an infinite family of nonexpansivemappings {Ti}∞i= onH , where {rn} ⊂ (,∞), {αn}, {βn} ⊂
(, ), and x,u ∈ H are given. The authors proved the strong convergence of the se-
quence generated by the hybrid iterative algorithm (.) to a point x∗ ∈ (

⋂∞
i= Fix(Ti)) ∩

GMEP(Θ ,ϕ,A) ∩ SGEP(G) under some suitable conditions, where SGEP(G) is the fixed
point set of the mapping G := TΘ

μ (I – μB)TΘ
μ (I – μB). This point x∗ also solves the

following optimization problem:

min
x∈(⋂∞

n= Fix(Tn))∩GMEP(Θ ,ϕ,A)∩SGEP(G)
μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

where h :H → R is the potential function of γ f .
Let B be a single-valued mapping of C into H and R be a set-valued mapping with

D(R) = C. Consider the following variational inclusion: find a point x ∈ C such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion (.). In particular, if
B = R = , then I(B,R) = C. If B = , then problem (.) becomes the inclusion problem
introduced by Rockafellar []. It is known that problem (.) provides a convenient frame-
work for the unified study of optimal solutions in many optimization related areas includ-
ing mathematical programming, complementarity problems, variational inequalities, op-
timal control, mathematical economics, equilibria and game theory, etc. Let a set-valued
mapping R : D(R) ⊂ H → H be maximal monotone. We define the resolvent operator
JR,λ :H → D(R) associated with R and λ as follows:

JR,λ = (I + λR)–, ∀x ∈H ,

where λ is a positive number.
In , Huang [] studied problem (.) in the case where R is maximal monotone and

B is strongly monotone and Lipschitz-continuous with D(R) = C =H . Subsequently, Zeng
et al. [] further studied problem (.) in the case which ismore general thanHuang’s [].
Moreover, the authors [] obtained the same strong convergence conclusion as inHuang’s
result []. In addition, the authors also gave the geometric convergence rate estimate for
approximate solutions. Also, various types of iterative algorithms for solving variational
inclusions have been further studied and developed; for more details, refer to [, –]
and the references therein.
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In , for the case where C = H , Yao et al. [] introduced and analyzed an iterative
algorithms for finding a common element of the set of solutions of the GMEP (.), the set
of solutions of the variational inclusion (.) for maximal monotone and inverse-strongly
monotone mappings and the set of fixed points of a countable family of nonexpansive
mappings on H .
Recently, Kim andXu [] introduced the concept of asymptotically κ-strict pseudocon-

tractive mappings in a Hilbert space.

Definition . Let C be a nonempty subset of a Hilbert space H . A mapping S : C → C
is said to be an asymptotically κ-strict pseudocontractive mapping with sequence {γn} if
there exist a constant κ ∈ [, ) and a sequence {γn} in [,∞) with limn→∞ γn =  such that

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖ + κ

∥∥x – Snx –
(
y – Sny

)∥∥, ∀n≥ ,∀x, y ∈ C.

Subsequently, Sahu et al. [] considered the concept of asymptotically κ-strict pseudo-
contractive mappings in the intermediate sense, which are not necessarily Lipschitzian.

Definition . Let C be a nonempty subset of a Hilbert space H . A mapping S : C → C is
said to be an asymptotically κ-strict pseudocontractivemapping in the intermediate sense
with sequence {γn} if there exist a constant κ ∈ [, ) and a sequence {γn} in [,∞) with
limn→∞ γn =  such that

lim sup
n→∞

sup
x,y∈C

(∥∥Snx – Sny
∥∥ – ( + γn)‖x – y‖ – κ

∥∥x – Snx –
(
y – Sny

)∥∥) ≤ . (.)

Put cn :=max{, supx,y∈C(‖Snx– Sny‖ – ( + γn)‖x– y‖ – κ‖x– Snx– (y– Sny)‖)}. Then
cn ≥  (∀n≥ ), cn →  (n→ ∞), and (.) reduce to the relation

∥∥Snx – Sny
∥∥ ≤ ( + γn)‖x – y‖ + κ

∥∥x – Snx –
(
y – Sny

)∥∥ + cn, ∀n≥ ,∀x, y ∈ C.

(.)

Whenever cn =  for all n ≥  in (.), then S is an asymptotically κ-strict pseudocon-
tractive mapping with sequence {γn}. The authors [] derived the weak and strong con-
vergence of the modified Mann iteration processes for an asymptotically κ-strict pseudo-
contractive mapping in the intermediate sense with sequence {γn}. More precisely, they
first established one weak convergence theorem for the following iterative scheme:{

x = x ∈ C chosen arbitrarily,
xn+ = ( – αn)xn + αnSnxn, ∀n≥ ,

where  < δ ≤ αn ≤ – κ – δ,
∑∞

n= αncn < ∞, and
∑∞

n= γn < ∞; and then obtained another
strong convergence theorem for the following iterative scheme:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrary,
yn = ( – αn)xn + αnSnxn,
Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, ∀n≥ ,

where  < δ ≤ αn ≤  – κ , θn = cn + γnΔn, and Δn = sup{‖xn – z‖ : z ∈ Fix(S)} <∞.
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Inspired by the above facts, we in this paper introduce two iterative algorithms for find-
ing common solutions of a finite family of variational inclusions for maximal monotone
and inverse-strongly monotone mappings with the constraints of two problems: a gener-
alizedmixed equilibrium problem and a common fixed point problem of an infinite family
of nonexpansive mappings and an asymptotically strict pseudocontractive mapping in the
intermediate sense in a real Hilbert space. We prove some strong and weak convergence
theorems for the proposed iterative algorithms under suitable conditions. The results pre-
sented in this paper are the supplement, extension, improvement, and generalization of
the previously known results in this area.

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

Definition . A mapping A : C →H is called
(i) monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η >  such that

〈Ax –Ay,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(iii) ζ -inverse-strongly monotone if there exists a constant ζ >  such that

〈Ax –Ay,x – y〉 ≥ ζ‖Ax –Ay‖, ∀x, y ∈ C.

It is easy to see that the projection PC is -inverse-strongly monotone (in short, -ism).
Inverse-strongly monotone (also referred to as co-coercive) operators have been applied
widely in solving practical problems in various fields.

Definition . A differentiable function K :H → R is called:
(i) convex, if

K (y) –K (x)≥ 〈
K ′(x), y – x

〉
, ∀x, y ∈H ,

where K ′(x) is the Frechet derivative of K at x;
(ii) strongly convex, if there exists a constant σ >  such that

K (y) –K (x) –
〈
K ′(x), y – x

〉 ≥ σ


‖x – y‖, ∀x, y ∈ H .

It is easy to see that if K :H → R is a differentiable strongly convex function with con-
stant σ >  then K ′ :H →H is strongly monotone with constant σ > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Some important properties of projections are gathered in the following proposition.

Proposition . For given x ∈H and z ∈ C:
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈H . (This implies that PC is nonexpansive

and monotone.)

By using the technique of [], we can readily obtain the following elementary result.

Proposition . (see [, Lemma  and Proposition ]) Let C be a nonempty closed convex
subset of a real Hilbert space H and let ϕ : C → R be a lower semicontinuous and convex
function. Let Θ : C × C → R be a bifunction satisfying the conditions (H)-(H). Assume
that

(i) K :H → R is strongly convex with constant σ >  and the function x �→ 〈y– x,K ′(x)〉
is weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H and r > , there exist a bounded subset Dx ⊂ C and yx ∈ C such that
for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈
K ′(z) –K ′(x), yx – z

〉
< .

Then the following hold:
(a) for each x ∈H , S(Θ ,ϕ)

r (x) �= ∅;
(b) S(Θ ,ϕ)

r is single-valued;
(c) S(Θ ,ϕ)

r is nonexpansive if K ′ is Lipschitz-continuous with constant ν >  and

〈
K ′(x) –K ′(x),u – u

〉 ≥ 〈
K ′(u) –K ′(u),u – u

〉
, ∀(x,x) ∈H ×H ,

where ui = S(Θ ,ϕ)
r (xi) for i = , ;

(d) for all s, t >  and x ∈H

〈
K ′(S(Θ ,ϕ)

s x
)
–K ′(S(Θ ,ϕ)

t x
)
,S(Θ ,ϕ)

s x – S(Θ ,ϕ)
t x

〉
≤ s – t

s
〈
K ′(S(Θ ,ϕ)

s x
)
–K ′(x),S(Θ ,ϕ)

s x – S(Θ ,ϕ)
t x

〉
;

(e) Fix(S(Θ ,ϕ)
r ) =MEP(Θ ,ϕ);

(f ) MEP(Θ ,ϕ) is closed and convex.
In particular, whenever Θ : C ×C → R is a bifunction satisfying the conditions (H)-(H)
and K(x) = 

‖x‖, ∀x ∈H , then, for any x, y ∈H ,

∥∥S(Θ ,ϕ)
r x – S(Θ ,ϕ)

r y
∥∥ ≤ 〈

S(Θ ,ϕ)
r x – S(Θ ,ϕ)

r y,x – y
〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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(S(Θ ,ϕ)
r is firmly nonexpansive) and

∥∥S(Θ ,ϕ)
s x – S(Θ ,ϕ)

t x
∥∥ ≤ |s – t|

s
∥∥S(Θ ,ϕ)

s x – x
∥∥, ∀s, t > ,x ∈H .

In this case, S(Θ ,ϕ)
r is rewritten as T (Θ ,ϕ)

r . If, in addition, ϕ ≡ , then T (Θ ,ϕ)
r is rewritten as

TΘ
r (see [, Lemma .] for more details).

We need some facts and tools in a real Hilbert spaceH which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖ for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

Lemma . ([, Lemma .]) Let H be a real Hilbert space. Given a nonempty closed
convex subset of H and points x, y, z ∈H and given also a real number a ∈ R, the set

{
v ∈ C : ‖y – v‖ ≤ ‖x – v‖ + 〈z, v〉 + a

}
is convex (and closed).

Lemma . ([, Lemma .]) Let C be a nonempty subset of a Hilbert space H and S :
C → C be an asymptotically κ-strict pseudocontractive mapping in the intermediate sense
with sequence {γn}. Then

∥∥Snx – Sny
∥∥ ≤ 

 – κ

(
κ‖x – y‖ +

√(
 + ( – κ)γn

)‖x – y‖ + ( – κ)cn
)

for all x, y ∈ C and n≥ .

Lemma . ([, Lemma .]) Let C be a nonempty subset of a Hilbert space H and S :
C → C be a uniformly continuous asymptotically κ-strict pseudocontractive mapping in
the intermediate sense with sequence {γn}. Let {xn} be a sequence in C such that ‖xn –
xn+‖ →  and ‖xn – Snxn‖ →  as n → ∞. Then ‖xn – Sxn‖ →  as n→ ∞.

Lemma . (Demiclosedness principle [, Proposition .]) Let C be a nonempty closed
convex subset of a Hilbert space H and S : C → C be a continuous asymptotically κ-strict
pseudocontractive mapping in the intermediate sense with sequence {γn}. Then I – S is
demiclosed at zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C and
lim supm→∞ lim supn→∞ ‖xn – Smxn‖ = , then (I – S)x = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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Lemma . ([, Proposition .]) Let C be a nonempty closed convex subset of a Hilbert
space H and S : C → C be a continuous asymptotically κ-strict pseudocontractivemapping
in the intermediate sense with sequence {γn} such that Fix(S) �= ∅. Then Fix(S) is closed and
convex.

Remark . Lemmas . and . give some basic properties of an asymptotically κ-
strict pseudocontractivemapping in the intermediate sensewith sequence {γn}.Moreover,
Lemma . extends the demiclosedness principles studied for certain classes of nonlinear
mappings; see [] for more details.

Lemma . ([, p.]) Let {an}∞n=, {bn}∞n=, and {δn}∞n= be sequences of nonnegative real
numbers satisfying the inequality

an+ ≤ ( + δn)an + bn, ∀n≥ .

If
∑∞

n= δn < ∞ and
∑∞

n= bn < ∞, then limn→∞ an exists. If, in addition, {an}∞n= has a sub-
sequence which converges to zero, then limn→∞ an = .

Recall that a Banach space X is said to satisfy the Opial condition [] if, for any given
sequence {xn} ⊂ X which converges weakly to an element x ∈ X, we have the inequality

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ X, y �= x.

It is well known in [] that every Hilbert space H satisfies the Opial condition.

Lemma . (see [, Proposition .]) Let C be a nonempty closed convex subset of a real
Hilbert space H and let {xn} be a sequence in H . Suppose that

‖xn+ – p‖ ≤ ( + λn)‖xn – p‖ + δn, ∀p ∈ C,n≥ ,

where {λn} and {δn} are sequences of nonnegative real numbers such that
∑∞

n= λn < ∞ and∑∞
n= δn < ∞. Then {PCxn} converges strongly in C.

Lemma . (see []) Let C be a closed convex subset of a real Hilbert space H . Let {xn}
be a sequence in H and u ∈H . Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies the
condition

‖xn – u‖ ≤ ‖u – q‖, for all n,

then xn → q as n → ∞.

Lemma . (see [, Lemma .]) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that⋂∞

n= Fix(Tn) �= ∅ and let {λn} be a sequence in (,b] for some b ∈ (, ).Then, for every x ∈ C
and k ≥  the limit limn→∞ Un,kx exists.

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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Remark . (see [, Remark .]) It can be known from Lemma . that if D is a
nonempty bounded subset of C, then for ε >  there exists n ≥ k such that for all n > n

sup
x∈D

‖Un,kx –Ukx‖ ≤ ε.

Remark . (see [, Remark .]) Utilizing Lemma ., we define amappingW : C → C
as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C.

Such aW is called theW -mapping generated by T,T, . . . and λ,λ, . . . . SinceWn is non-
expansive,W : C → C is also nonexpansive. Indeed, observe that for each x, y ∈ C

‖Wx –Wy‖ = lim
n→∞‖Wnx –Wny‖ ≤ ‖x – y‖.

If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ }. Hence, it is clear from
Remark . that for an arbitrary ε >  there exists N ≥  such that for all n >N

‖Wnxn –Wxn‖ = ‖Un,xn –Uxn‖ ≤ sup
x∈D

‖Un,x –Ux‖ ≤ ε.

This implies that

lim
n→∞‖Wnxn –Wxn‖ = .

Lemma . (see [, Lemma .]) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such that⋂∞

n= Fix(Tn) �= ∅, and let {λn} be a sequence in (,b] for some b ∈ (, ). Then Fix(W ) =⋂∞
n= Fix(Tn).

Lemma . (see [, Theorem . (Demiclosedness Principle)]) Let C be a nonempty
closed convex subset of a real Hilbert space H . Let T : C → C be nonexpansive. Then I –T
is demiclosed on C. That is, whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I –T)xn} strongly converges to some y, it follows that (I –T)x = y.
Here I is the identity operator of H .

Recall that a set-valued mapping R :D(R) ⊂ H → H is called monotone if, for all x, y ∈
D(R), f ∈ R(x), and g ∈ R(y) imply

〈f – g,x – y〉 ≥ .

A set-valued mapping R is called maximal monotone if R is monotone and (I + λR)D(R) =
H for each λ > , where I is the identity mapping of H . We denote by G(R) the graph
of R. It is known that a monotone mapping R is maximal if and only if, for (x, f ) ∈ H ×H ,
〈f – g,x – y〉 ≥  for every (y, g) ∈ G(R), we have f ∈ R(x). We illustrate the concept of
maximal monotone mapping with the following example.

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the
normal cone to C at v ∈ C, i.e.,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
.

Define

Tv =

{
Av +NCv if v ∈ C,
∅ if v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if 〈Av, y– v〉 ≥  for all y ∈ C (see []).
Assume that R : D(R) ⊂ H → H is a maximal monotone mapping. Let λ > . In terms

of Huang [] (see also []), we have the following property for the resolvent operator
JR,λ :H → D(R).

Lemma . JR,λ is single-valued and firmly nonexpansive, i.e.,

〈JR,λx – JR,λy,x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈H .

Consequently, JR,λ is nonexpansive and monotone.

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C. Then for
any given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C and let
B : C → H be a strongly monotone, continuous, and single-valued mapping. Then for each
z ∈H , the equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma. (see []) Let R be amaximalmonotonemapping with D(R) = C and B : C →
H be amonotone, continuous and single-valuedmapping.Then (I+λ(R+B))C =H for each
λ > . In this case, R + B is maximal monotone.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and g : C → R∪+∞ be a proper lower semicontinuous differentiable convex function. If x∗

is a solution the minimization problem

g
(
x∗) = inf

x∈C g(x),

then

〈
g ′(x),x – x∗〉 ≥ , ∀x ∈ C.

In particular, if x∗ solves (OP), then

〈
u +

(
γ f – (I +μV )

)
x∗,x – x∗〉 ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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3 Strong convergence theorems
In this section, we introduce and analyze an iterative algorithm for finding common so-
lutions of a finite family of variational inclusions for maximal monotone and inverse-
strongly monotone mappings with the constraints of two problems: a generalized mixed
equilibriumproblem and a commonfixed point problemof an infinite family of nonexpan-
sive mappings and an asymptotically strict pseudocontractive mapping in the intermedi-
ate sense in a real Hilbert space. Under appropriate conditions imposed on the parameter
sequences we will prove strong convergence of the proposed algorithm.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let N
be an integer. Let Θ be a bifunction from C × C to R satisfying (H)-(H) and ϕ : C → R
be a lower semicontinuous and convex functional. Let Ri : C → H be a maximal mono-
tone mapping and let A : H → H and Bi : C → H be ζ -inverse-strongly monotone and ηi-
inverse-stronglymonotone, respectively,where i ∈ {, , . . . ,N}.Let S : C → C be a uniformly
continuous asymptotically κ-strict pseudocontractive mapping in the intermediate sense
for some  ≤ κ <  with sequence {γn} ⊂ [,∞) such that limn→∞ γn =  and {cn} ⊂ [,∞)
such that limn→∞ cn = . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C and
{λn} be a sequence in (,b] for some b ∈ (, ). Let V be a γ̄ -strongly positive bounded lin-
ear operator and f :H →H be an l-Lipschitzian mapping with γ l < ( +μ)γ̄ . Assume that
Ω := (

⋂∞
n= Fix(Tn))∩GMEP(Θ ,ϕ,A)∩ (

⋂N
i= I(Bi,Ri))∩ Fix(S) is nonempty and bounded.

Let Wn be the W-mapping defined by (.) and {αn}, {βn} and {δn} be three sequences in
(, ) such that limn→∞ αn =  and κ ≤ δn ≤ d < . Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {λi,n} ⊂ [ai,bi] ⊂ (, ηi), ∀i ∈ {, , . . . ,N}, and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and set C = C, x = PCx. Let {xn} be a sequence generated by the following
algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = S(Θ ,ϕ)
rn (I – rnA)xn,

zn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
kn = δnzn + ( – δn)Snzn,
yn = αn(u + γ f (xn)) + βnkn + (( – βn)I – αn(I +μV ))Wnzn,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+x, ∀n≥ ,

(.)

where θn = (αn + γn)Δn� + cn�, Δn = sup{‖xn – p‖ + ‖u + (γ f – I – μV )p‖ : p ∈ Ω} < ∞,
and � = 

–supn≥ αn
< ∞. If S(Θ ,ϕ)

r is firmly nonexpansive, then the following statements hold:

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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(I) {xn} converges strongly to PΩx;
(II) {xn} converges strongly to PΩx, which solves the optimization problem

min
x∈Ω

μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

provided γn + cn + ‖xn – yn‖ = o(αn) additionally, where h :H → R is the potential
function of γ f .

Proof Since limn→∞ αn =  and  < lim infn→∞ βn ≤ lim supn→∞ βn < , we may assume,
without loss of generality, that αn ≤ ( – βn)( +μ‖V‖)–. Since V is a γ̄ -strongly positive
bounded linear operator on H , we know that

‖V‖ = sup
{〈Vu,u〉 : u ∈H ,‖u‖ = 

}
.

Observe that

〈(
( – βn)I – αn(I +μV )

)
u,u

〉
=  – βn – αn – αnμ〈Vu,u〉
≥  – βn – αn – αnμ‖V‖
≥ ,

that is, ( – βn)I – αn(I +μV ) is positive. It follows that

∥∥( – βn)I – αn(I +μV )
∥∥ = sup

{〈(
( – βn)I – αn(I +μV )

)
u,u

〉
: u ∈H ,‖u‖ = 

}
= sup

{
 – βn – αn – αnμ〈Vu,u〉 : u ∈H ,‖u‖ = 

}
≤  – βn – αn – αnμγ̄ .

Put

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N} and n ≥ , and Λ
n = I , where I is the identity mapping on H . Then

we have that zn =ΛN
n un. We divide the rest of the proof into several steps.

Step . We show that {xn} is well defined. It is obvious that Cn is closed and convex. As
the defining inequality in Cn is equivalent to the inequality

〈
(xn – zn), z

〉 ≤ ‖xn‖ – ‖zn‖ + θn,

by Lemma . we know that Cn is convex and closed for every n≥ .
First of all, we show that Ω ⊂ Cn for all n ≥ . Suppose that Ω ⊂ Cn for some n ≥ .

Take p ∈ Ω arbitrarily. Since p = S(Θ ,ϕ)
rn (p – rnAp), A is ζ -inverse strongly monotone and

 ≤ rn ≤ ζ , we have

‖un – p‖ = ∥∥S(Θ ,ϕ)
rn (I – rnA)xn – S(Θ ,ϕ)

rn (I – rnA)p
∥∥

≤ ∥∥(I – rnA)xn – (I – rnA)p
∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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=
∥∥(xn – p) – rn(Axn –Ap)

∥∥

= ‖xn – p‖ – rn〈xn – p,Axn –Ap〉 + rn‖Axn –Ap‖

≤ ‖xn – p‖ – rnζ‖Axn –Ap‖ + rn‖Axn –Ap‖

= ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖

≤ ‖xn – p‖. (.)

Since p = JRi ,λi,n (I – λi,nBi)p, Λi
np = p, and Bi is ηi-inverse-strongly monotone, where ηi ∈

(, ηi), i ∈ {, , . . . ,N}, by Lemma . we deduce that

‖zn – p‖ = ∥∥JRN ,λN ,n (I – λN ,nBN )ΛN–
n un – JRN ,λN ,n (I – λN ,nBN )ΛN–

n p
∥∥

≤ ∥∥(I – λN ,nBN )ΛN–
n un – (I – λN ,nBN )ΛN–

n p
∥∥

=
∥∥(

ΛN–
n un –ΛN–

n p
)
– λN ,n

(
BNΛN–

n un – BNΛN–
n p

)∥∥

≤ ∥∥ΛN–
n un –ΛN–

n p
∥∥ + λN ,n(λN ,n – ηN )

∥∥BNΛN–
n un – BNΛN–

n p
∥∥

≤ ∥∥ΛN–
n un –ΛN–

n p
∥∥

...

≤ ∥∥Λ
nun –Λ

np
∥∥

= ‖un – p‖. (.)

Combining (.) and (.), we have

‖zn – p‖ ≤ ‖xn – p‖. (.)

By Lemma .(b), we deduce from (.) and (.) that

‖kn – p‖ = ∥∥δn(zn – p) + ( – δn)
(
Snzn – p

)∥∥

= δn‖zn – p‖ + ( – δn)
∥∥Snzn – p

∥∥ – δn( – δn)
∥∥zn – Snzn

∥∥

≤ δn‖zn – p‖ + ( – δn)
[
( + γn)‖zn – p‖

+ κ
∥∥zn – Snzn

∥∥ + cn
]
– δn( – δn)

∥∥zn – Snzn
∥∥

=
[
 + γn( – δn)

]‖zn – p‖ + ( – δn)(κ – δn)
∥∥zn – Snzn

∥∥ + ( – δn)cn

≤ ( + γn)‖zn – p‖ + ( – δn)(κ – δn)
∥∥zn – Snzn

∥∥ + cn

≤ ( + γn)‖zn – p‖ + cn. (.)

Set V̄ = I + μV . Then, for γ l ≤ ( + μ)γ̄ , by Lemma . we obtain from (.), (.), and
(.)

‖yn – p‖

=
∥∥αn

(
u + γ f (xn)

)
+ βnkn +

(
( – βn)I – αnV̄

)
Wnzn – p

∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/462
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=
∥∥αn

(
u + γ f (xn) – V̄p

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

=
∥∥αn

(
u + γ f (p) – V̄p

)
+ αnγ

(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

≤ ∥∥αnγ
(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

+ αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ [

αnγ
∥∥f (xn) – f (p)

∥∥ + βn‖kn – p‖ + ∥∥(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥]
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ [

αnγ l‖xn – p‖ + βn‖kn – p‖ + ( – βn – αn – αnμγ̄ )‖Wnzn – p‖]
+ αn

∥∥u + γ f (p) – V̄p
∥∥‖yn – p‖

≤ [
αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖zn – p‖]

+ αn
(∥∥u + γ f (p) – V̄p

∥∥ + ‖yn – p‖)
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖zn – p‖

+ αn
(∥∥u + γ f (p) – V̄p

∥∥ + ‖yn – p‖)
≤ αn( +μ)γ̄ ‖xn – p‖ + βn

(
( + γn)‖zn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)‖zn – p‖ + αn
(∥∥u + γ f (p) – V̄p

∥∥ + ‖yn – p‖)
≤ αn( +μ)γ̄ ‖xn – p‖ + βn

(
( + γn)‖zn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)(
( + γn)‖zn – p‖ + cn

)
+ αn

(∥∥u + γ f (p) – V̄p
∥∥ + ‖yn – p‖)

= αn( +μ)γ̄ ‖xn – p‖ + (
 – αn( +μ)γ̄

)(
( + γn)‖zn – p‖ + cn

)
+ αn

(∥∥u + γ f (p) – V̄p
∥∥ + ‖yn – p‖)

≤ αn( +μ)γ̄
(
( + γn)‖xn – p‖ + cn

)
+

(
 – αn( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
+ αn

(∥∥u + γ f (p) – V̄p
∥∥ + ‖yn – p‖)

= ( + γn)‖xn – p‖ + cn + αn
(∥∥u + γ f (p) – V̄p

∥∥ + ‖yn – p‖),
which hence yields

‖yn – p‖ ≤  + γn

 – αn
‖xn – p‖ + αn

 – αn

∥∥u + γ f (p) – V̄p
∥∥ +


 – αn

cn

=
(
 +

αn + γn

 – αn

)
‖xn – p‖ + αn

 – αn

∥∥u + γ f (p) – V̄p
∥∥ +


 – αn

cn

≤
(
 +

αn + γn

 – αn

)
‖xn – p‖ + αn + γn

 – αn

∥∥u + γ f (p) – V̄p
∥∥ +


 – αn

cn

= ‖xn – p‖ + αn + γn

 – αn

(‖xn – p‖ + ∥∥u + γ f (p) – V̄p
∥∥) + 

 – αn
cn
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≤ ‖xn – p‖ + (αn + γn)�
(‖xn – p‖ + ∥∥u + γ f (p) – V̄p

∥∥) + �cn

≤ ‖xn – p‖ + (αn + γn)Δn� + cn�

= ‖xn – p‖ + θn, (.)

where θn = (αn + γn)Δn� + cn�, Δn = sup{‖xn – p‖ + ‖u + γ f (p) – V̄p‖ : p ∈ Ω} < ∞, and
� = 

–supn≥ αn
< ∞ (due to {αn} ⊂ (, ) and limn→∞ αn = ). Hence p ∈ Cn+. This implies

that Ω ⊂ Cn for all n≥ . Therefore, {xn} is well defined.
Step . We prove that ‖xn – kn‖ →  as n→ ∞.
Indeed, let v = PΩx. From xn = PCnx and v ∈ Ω ⊂ Cn, we obtain

‖xn – x‖ ≤ ‖v – x‖. (.)

This implies that {xn} is bounded and hence {un}, {zn}, {kn}, and {yn} are also bounded.
Since xn+ ∈ Cn+ ⊂ Cn and xn = PCnx, we have

‖xn – x‖ ≤ ‖xn+ – x‖, ∀n≥ .

Therefore limn→∞ ‖xn – x‖ exists. From xn = PCnx, xn+ ∈ Cn+ ⊂ Cn, by Proposi-
tion .(ii) we obtain

‖xn+ – xn‖ ≤ ‖x – xn+‖ – ‖x – xn‖,

which implies

lim
n→∞‖xn+ – xn‖ = . (.)

It follows from xn+ ∈ Cn+ that ‖yn – xn+‖ ≤ ‖xn – xn+‖ + θn and hence

‖xn – yn‖ ≤ 
(‖xn – xn+‖ + ‖xn+ – yn‖

)
≤ 

(‖xn – xn+‖ + ‖xn – xn+‖ + θn
)

= 
(
‖xn – xn+‖ + θn

)
.

From (.) and limn→∞ θn = , we have

lim
n→∞‖xn – yn‖ = . (.)

Also, utilizing Lemmas . and .(b) we obtain from (.), (.), and (.)

‖yn – p‖

=
∥∥αn

(
u + γ f (xn) – V̄Wnzn

)
+ βn(kn – p) + ( – βn)(Wnzn – p)

∥∥

≤ ∥∥βn(kn – p) + ( – βn)(Wnzn – p)
∥∥ + αn

〈
u + γ f (xn) – V̄Wnzn, yn – p

〉
= βn‖kn – p‖ + ( – βn)‖Wnzn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖
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≤ βn‖kn – p‖ + ( – βn)‖zn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖
≤ βn

(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)‖zn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖
≤ βn

(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)

(
( + γn)‖zn – p‖ + cn

)
– βn( – βn)‖kn –Wnzn‖ + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖yn – p‖

= ( + γn)‖zn – p‖ + cn – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖
≤ ( + γn)‖xn – p‖ + cn – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖,

which leads to

βn( – βn)‖kn –Wnzn‖

≤ ‖xn – p‖ – ‖yn – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖yn – p‖.

Since limn→∞ αn = , limn→∞ γn = , and limn→∞ cn = , it follows from (.) and condition
(iii) that

lim
n→∞‖kn –Wnzn‖ = . (.)

Note that

yn – kn = αn
(
u + γ f (xn) – V̄Wnzn

)
+ ( – βn)(Wnzn – kn),

which yields

‖xn – kn‖ ≤ ‖xn – yn‖ + ‖yn – kn‖
≤ ‖xn – yn‖ +

∥∥αn
(
u + γ f (xn) – V̄Wnzn

)
+ ( – βn)(Wnzn – kn)

∥∥
≤ ‖xn – yn‖ + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥ + ( – βn)‖Wnzn – kn‖

≤ ‖xn – yn‖ + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥ + ‖Wnzn – kn‖.

So, from (.), (.), and limn→∞ αn = , we get

lim
n→∞‖xn – kn‖ = . (.)
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Step .We prove that ‖xn –un‖ → , ‖un – zn‖ → , ‖zn –Wzn‖ → , and ‖zn –Snzn‖ →
 as n→ ∞.
Indeed, taking into consideration that  < lim infn→∞ rn ≤ lim supn→∞ rn < ζ , we may

assume,without loss of generality, that {rn} ⊂ [c,d] ⊂ (, ζ ). From (.) and (.) it follows
that

‖kn – p‖ ≤ [
 + γn( – δn)

]‖zn – p‖ + ( – δn)(k – δn)
∥∥zn – Snzn

∥∥ + ( – δn)cn

≤ ‖zn – p‖ + γn‖zn – p‖ + cn

≤ ‖zn – p‖ + γn‖xn – p‖ + cn. (.)

Next we prove that

lim
n→∞‖xn – un‖ = . (.)

For p ∈ Ω , we find that

‖un – p‖ = ∥∥S(Θ ,ϕ)
rn (I – rnA)xn – S(Θ ,ϕ)

rn (I – rnA)p
∥∥

≤ ∥∥(I – rnA)xn – (I – rnA)p
∥∥

=
∥∥xn – p – rn(Axn –Ap)

∥∥

≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖. (.)

By (.), (.), and (.), we obtain

‖kn – p‖ ≤ ‖zn – p‖ + γn‖xn – p‖ + cn

≤ ‖un – p‖ + γn‖xn – p‖ + cn

≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖ + γn‖xn – p‖ + cn,

which implies that

c(ζ – d)‖Axn –Ap‖ ≤ rn(ζ – rn)‖Axn –Ap‖

≤ ‖xn – p‖ – ‖kn – p‖ + γn‖xn – p‖ + cn

≤ ‖xn – kn‖
(‖xn – p‖ + ‖kn – p‖) + γn‖xn – p‖ + cn.

From limn→∞ γn = , limn→∞ cn = , and (.), we have

lim
n→∞‖Axn –Ap‖ = . (.)

By the firm nonexpansivity of S(�,ϕ)
rn and Lemma .(a), we have

‖un – p‖

=
∥∥S(Θ ,ϕ)

rn (I – rnA)xn – S(Θ ,ϕ)
rn (I – rnA)p

∥∥
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≤ 〈
(I – rnA)xn – (I – rnA)p,un – p

〉
=


[∥∥(I – rnA)xn – (I – rnA)p

∥∥ + ‖un – p‖

–
∥∥(I – rnA)xn – (I – rnA)p – (un – p)

∥∥]
≤ 


[‖xn – p‖ + ‖un – p‖ – ∥∥xn – un – rn(Axn –Ap)

∥∥]
=


[‖xn – p‖ + ‖un – p‖ – ‖xn – un‖ + rn〈Axn –Ap,xn – un〉

– rn‖Axn –Ap‖],
which implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖. (.)

Combining (.) and (.), we have

‖kn – p‖ ≤ ‖zn – p‖ + γn‖xn – p‖ + cn

≤ ‖un – p‖ + γn‖xn – p‖ + cn

≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖ + γn‖xn – p‖ + cn,

which implies

‖xn – un‖

≤ ‖xn – p‖ – ‖kn – p‖ + rn‖Axn –Ap‖‖xn – un‖ + γn‖xn – p‖ + cn

≤ ‖xn – kn‖
(‖xn – p‖ + ‖kn – p‖) + rn‖Axn –Ap‖‖xn – un‖

+ γn‖xn – p‖ + cn.

From limn→∞ γn = , limn→∞ cn = , (.), and (.), we know that (.) holds.
Nextwe show that limn→∞ ‖BiΛ

i
nun–Bip‖ = , i = , , . . . ,N . It follows fromLemma.

that

∥∥Λi
nun – p

∥∥ =
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ ∥∥(I – λi,nBi)Λi–
n un – (I – λi,nBi)p

∥∥

≤ ∥∥Λi–
n un – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖un – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖xn – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥. (.)

Combining (.) and (.), we have

‖kn – p‖ ≤ ‖zn – p‖ + γn‖xn – p‖ + cn

≤ ∥∥Λi
nun – p

∥∥ + γn‖xn – p‖ + cn
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≤ ‖xn – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

+ γn‖xn – p‖ + cn,

together with {λi,n} ⊂ [ai,bi] ⊂ (, ηi), i ∈ {, , . . . ,N}, implies

ai(ηi – bi)
∥∥BiΛ

i–
n un – Bip

∥∥ ≤ λi,n(ηi – λi,n)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖xn – p‖ – ‖kn – p‖ + γn‖xn – p‖ + cn

≤ ‖xn – kn‖
(‖xn – p‖ + ‖kn – p‖)

+ γn‖xn – p‖ + cn.

From limn→∞ γn = , limn→∞ cn = , and (.), we obtain

lim
n→∞

∥∥BiΛ
i–
n un – Bip

∥∥ = , i = , , . . . ,N . (.)

By Lemma . and Lemma .(a), we obtain

∥∥Λi
nun – p

∥∥ =
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ 〈
(I – λi,nBi)Λi–

n un – (I – λi,nBi)p,Λi
nun – p

〉
=


(∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥ +

∥∥Λi
nun – p

∥∥

–
∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p –
(
Λi

nun – p
)∥∥)

≤ 

(∥∥Λi–

n un – p
∥∥ +

∥∥Λi
nun – p

∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖un – p‖ + ∥∥Λi

nun – p
∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖xn – p‖ + ∥∥Λi

nun – p
∥∥

–
∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥),
which implies

∥∥Λi
nun – p

∥∥

≤ ‖xn – p‖ – ∥∥Λi–
n un –Λi

nun – λi,n
(
BiΛ

i–
n un – Bip

)∥∥

= ‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥ – λ

i,n
∥∥BiΛ

i–
n un – Bip

∥∥

+ λi,n
〈
Λi–

n un –Λi
nun,BiΛ

i–
n un – Bip

〉
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥. (.)
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Combining (.) and (.) we get

‖kn – p‖ ≤ ‖zn – p‖ + γn‖xn – p‖ + cn

≤ ∥∥Λi
nun – p

∥∥ + γn‖xn – p‖ + cn

≤ ‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn,

which implies

∥∥Λi–
n un –Λi

nun
∥∥

≤ ‖xn – p‖ – ‖kn – p‖ + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn

≤ ‖xn – kn‖
(‖xn – p‖ + ‖kn – p‖) + λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn.

From (.), (.), limn→∞ γn = , and limn→∞ cn = , we have

lim
n→∞

∥∥Λi–
n un –Λi

nun
∥∥ = , i = , , . . . ,N . (.)

From (.) we get

‖un – zn‖ =
∥∥Λ

nun –ΛN
n un

∥∥
≤ ∥∥Λ

nun –Λ
nun

∥∥ +
∥∥Λ

nun –Λ
nun

∥∥ + · · · + ∥∥ΛN–
n un –ΛN

n un
∥∥

→  as n→ ∞. (.)

By (.) and (.), we have

‖xn – zn‖ ≤ ‖xn – un‖ + ‖un – zn‖
→  as n→ ∞. (.)

From (.) and (.), we have

‖zn+ – zn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn‖
→  as n→ ∞. (.)

By (.), (.), and (.), we get

‖kn – zn‖ ≤ ‖kn – xn‖ + ‖xn – un‖ + ‖un – zn‖
→  as n→ ∞. (.)
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We observe that

kn – zn = ( – δn)
(
Snzn – zn

)
.

From δn ≤ d <  and (.), we have

lim
n→∞

∥∥Snzn – zn
∥∥ = . (.)

We note that

∥∥Snzn – Sn+zn
∥∥ ≤ ∥∥Snzn – zn

∥∥ + ‖zn – zn+‖ +
∥∥zn+ – Sn+zn+

∥∥
+

∥∥Sn+zn+ – Sn+zn
∥∥.

From (.), (.), and Lemma ., we obtain

lim
n→∞

∥∥Snzn – Sn+zn
∥∥ = . (.)

On the other hand, we note that

‖zn – Szn‖ ≤ ∥∥zn – Snzn
∥∥ +

∥∥Snzn – Sn+zn
∥∥ +

∥∥Sn+zn – Szn
∥∥.

From (.), (.), and the uniform continuity of S, we have

lim
n→∞‖zn – Szn‖ = . (.)

In addition, note that

‖zn –Wzn‖ ≤ ‖zn – kn‖ + ‖kn –Wnzn‖ + ‖Wnzn –Wzn‖.

So, from (.), (.), and Remark . it follows that

lim
n→∞‖zn –Wzn‖ = . (.)

Step . we prove that xn → v = PΩx as n→ ∞.
Indeed, since {xn} is bounded, there exists a subsequence {xni} which converges weakly

to some w. From (.) and (.)-(.), we see that uni ⇀ w, Λm
niuni ⇀ w, and zni ⇀ w,

where m ∈ {, , . . . ,N}. Since S is uniformly continuous, by (.) we get limn→∞ ‖zn –
Smzn‖ =  for any m ≥ . Hence from Lemma ., we obtain w ∈ Fix(S). In the meantime,
utilizing Lemma ., we deduce from (.) and zni ⇀ w that w ∈ Fix(W ) =

⋂∞
n= Fix(Tn)

(due to Lemma .). Next, we prove thatw ∈ ⋂N
m= I(Bm,Rm). As amatter of fact, since Bm

is ηm-inverse-stronglymonotone,Bm is amonotone and Lipschitz-continuousmapping. It
follows from Lemma . that Rm +Bm is maximal monotone. Let (v, g) ∈G(Rm +Bm), i.e.,
g – Bmv ∈ Rmv. Again, since Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un, n ≥ , m ∈ {, , . . . ,N},

we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,
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that is,


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
) ∈ RmΛm

n un.

In terms of the monotonicity of Rm, we get

〈
v –Λm

n un, g – Bmv –


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉 ≥ 

and hence

〈
v –Λm

n un, g
〉

≥
〈
v –Λm

n un,Bmv +


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉

=
〈
v –Λm

n un,Bmv – BmΛm
n un + BmΛm

n un – BmΛm–
n un +


λm,n

(
Λm–

n un –Λm
n un

)〉

≥ 〈
v –Λm

n un,BmΛm
n un – Bm�m–

n un
〉
+

〈
v –Λm

n un,


λm,n

(
Λm–

n un –Λm
n un

)〉
.

In particular,

〈
v –Λm

niuni , g
〉 ≥ 〈

v –Λm
niuni ,BmΛm

niuni – BmΛm–
ni uni

〉
+

〈
v –Λm

niuni ,


λm,ni

(
Λm–

ni uni –Λm
niuni

)〉
.

Since ‖Λm
n un –Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un –BmΛm–

n un‖ →  (due to the
Lipschitz-continuity of Bm), we conclude from Λm

niuni ⇀ w and {λi,n} ⊂ [ai,bi] ⊂ (, ηi),
i ∈ {, , . . . ,N} that

lim
i→∞

〈
v –Λm

niuni , g
〉
= 〈v –w, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, i.e., w ∈
I(Bm,Rm). Therefore, w ∈ ⋂N

m= I(Bm,Rm).
Next, we show that w ∈ GMEP(Θ ,ϕ,A). In fact, from zn = S(Θ ,ϕ)

rn (I – rnA)xn, we know
that

Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 
rn

〈
K ′(un) –K ′(xn), y – un

〉 ≥ , ∀y ∈ C.

From (H) it follows that

ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 
rn

〈
K ′(un) –K ′(xn), y – un

〉 ≥ Θ(y,un), ∀y ∈ C.

Replacing n by ni, we have

ϕ(y) – ϕ(uni ) + 〈Axni , y – uni〉 +
〈
K ′(uni ) –K ′(xni )

rni
, y – uni

〉
≥ Θ(y,uni ),

∀y ∈ C. (.)
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Put ut = ty + ( – t)w for all t ∈ (, ] and y ∈ C. Then, from (.), we have

〈ut – uni ,Aut〉
≥ 〈ut – uni ,Aut〉 – ϕ(ut) + ϕ(uni ) – 〈ut – uni ,Axni〉

–
〈
K ′(uni ) –K ′(xni )

rni
,ut – uni

〉
+Θ(ut ,uni )

≥ 〈ut – uni ,Aut –Auni〉 + 〈ut – uni ,Auni –Axni〉 – ϕ(ut) + ϕ(uni )

–
〈
K ′(uni ) –K ′(xni )

rni
,ut – uni

〉
+Θ(ut ,uni ).

Since ‖uni – xni‖ →  as i → ∞, we deduce from the Lipschitz-continuity of A and K ′

that ‖Auni – Axni‖ →  and ‖K ′(uni ) – K ′(xni )‖ →  as i → ∞. Further, from the mono-
tonicity of A, we have 〈ut – uni ,Aut –Auni〉 ≥ . So, from (H), we have the weakly lower
semicontinuity of ϕ, K

′(uni )–K ′(xni )
rni

→  and uni ⇀ w, then we have

〈ut –w,Aut〉 ≥ –ϕ(ut) + ϕ(w) +Θ(ut ,w), as i→ ∞. (.)

From (H), (H), and (.) we also have

 = Θ(ut ,ut) + ϕ(ut) – ϕ(ut)

≤ tΘ(ut , y) + ( – t)Θ(ut ,w) + tϕ(y) + ( – t)ϕ(w) – ϕ(ut)

= t
[
Θ(ut , y) + ϕ(y) – ϕ(ut)

]
+ ( – t)

[
Θ(ut ,w) + ϕ(w) – ϕ(w) – ϕ(ut)

]
≤ t

[
Θ(ut , y) + ϕ(y) – ϕ(ut)

]
+ ( – t)〈ut –w,Aut〉

= t
[
Θ(ut , y) + ϕ(y) – ϕ(ut)

]
+ ( – t)t〈y –w,Aut〉,

and hence

 ≤ Θ(ut , y) + ϕ(y) – ϕ(ut) + ( – t)〈y –w,Aut〉.

Letting t → , we have, for each y ∈ C,

 ≤ Θ(w, y) + ϕ(y) – ϕ(w) + 〈Aw, y –w〉.

This implies that w ∈GMEP(Θ ,ϕ,A). Therefore,

w ∈
∞⋂
n=

Fix(Tn)∩GMEP(Θ ,ϕ,A)∩
( N⋂

i=

I(Bi,Ri)

)
∩ Fix(S) := Ω .

This shows that ωw(xn) ⊂ Ω . From (.) and Lemma . we infer that xn → v = PΩx as
n→ ∞.
Finally, assume additionally that γn + cn + ‖xn – yn‖ = o(αn). Note that V is a γ̄ -strongly

positive bounded linear operator and f : H → H is an l-Lipschitzian mapping with γ l <
( +μ)γ̄ . It is clear that

〈(
V̄ x–

(
u + γ f (x)

))
–

(
V̄ y–

(
u + γ f (y)

))
,x– y

〉 ≥ (
( +μ)γ̄ – γ l

)‖x– y‖, ∀x, y ∈H .
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Hence we deduce that V̄ x – (u + γ f (x)) is (( + μ)γ̄ – γ l)-strongly monotone. In the
meantime, it is easy to see that V̄ x – (u + γ f (x)) is (‖V̄‖ + γ l)-Lipschitzian with constant
‖V̄‖ + γ l > . Thus, there exists a unique solution p in Ω to the VIP

〈
V̄p –

(
u + γ f (p)

)
,u – p

〉 ≥ , ∀u ∈ Ω .

Equivalently, p ∈ Ω solves (OP) (due to Lemma .). Consequently, we deduce from
(.) and xn → v = PΩx (n→ ∞) that

lim sup
n→∞

〈(
u + γ f (p)

)
– V̄p, yn – p

〉
= lim sup

n→∞

(〈(
u + γ f (p)

)
– V̄p,xn – p

〉
+

〈(
u + γ f (p)

)
– V̄p, yn – xn

〉)
= lim sup

n→∞

〈(
u + γ f (p)

)
– V̄p,xn – p

〉
=

〈(
u + γ f (p)

)
– V̄p, v – p

〉 ≤ . (.)

Furthermore, by Lemma . we conclude from (.), (.), and (.) that

‖yn – p‖

=
∥∥αn

(
u + γ f (p) – V̄p

)
+ αnγ

(
f (xn) – f (p)

)
+ βn(kn – p)

+
(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

≤ ∥∥αnγ
(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

+ αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ [

αnγ
∥∥f (xn) – f (p)

∥∥ + βn‖kn – p‖ + ∥∥(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥]
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ [

αnγ l‖xn – p‖ + βn‖kn – p‖ + ( – βn – αn – αnμγ̄ )‖Wnzn – p‖]
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ [

αnγ l‖xn – p‖ + βn‖kn – p‖ + (
 – βn – αn( +μ)γ̄

)‖zn – p‖]
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
=

[
αn( +μ)γ̄ · γ l

( +μ)γ̄
‖xn – p‖ + βn‖kn – p‖

+
(
 – βn – αn( +μ)γ̄

)‖zn – p‖
]

+ αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ αn( +μ)γ̄ · (γ l)

( +μ)γ̄  ‖xn – p‖ + βn‖kn – p‖

+
(
 – βn – αn( +μ)γ̄

)‖zn – p‖ + αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ αn( +μ)γ̄ · (γ l)

( +μ)γ̄  ‖xn – p‖ + βn
(
( + γn)‖zn – p‖ + cn

)
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+
(
 – βn – αn( +μ)γ̄

)‖zn – p‖ + αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ αn

(γ l)

( +μ)γ̄
‖xn – p‖ + βn

(
( + γn)‖zn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)(
( + γn)‖zn – p‖ + cn

)
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
= αn

(γ l)

( +μ)γ̄
‖xn – p‖ + (

 – αn( +μ)γ̄
)(
( + γn)‖zn – p‖ + cn

)
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤ αn

(γ l)

( +μ)γ̄
(
( + γn)‖xn – p‖ + cn

)
+

(
 – αn( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
=

(
 – αn

( +μ)γ̄  – (γ l)

( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
+ αn

〈(
u + γ f (p) – V̄p

)
, yn – p

〉
≤

(
 – αn

( +μ)γ̄  – (γ l)

( +μ)γ̄

)
‖xn – p‖ + γn‖xn – p‖ + cn

+ αn
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
,

which hence yields

( +μ)γ̄  – (γ l)

( +μ)γ̄
‖xn – p‖

≤ ‖xn – p‖ – ‖yn – p‖
αn

+
γn‖xn – p‖ + cn

αn
+ 

〈(
u + γ f (p) – V̄p

)
, yn – p

〉

≤ ‖xn – yn‖
αn

(‖xn – p‖ + ‖yn – p‖) + γn + cn
αn

(‖xn – p‖ + 
)

+ 
〈(
u + γ f (p) – V̄p

)
, yn – p

〉
.

Since γn + cn = o(αn), ‖xn – yn‖ = o(αn), and xn → v = PΩx, we infer from (.) and  ≤
γ l < ( +μ)γ̄ that as n→ ∞

( +μ)γ̄  – (γ l)

( +μ)γ̄
‖v – p‖ ≤ .

That is, p = v = PΩx. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
Θ be a bifunction from C × C to R satisfying (H)-(H) and ϕ : C → R be a lower
semicontinuous and convex functional. Let Ri : C → H be a maximal monotone map-
ping and let A : H → H and Bi : C → H be ζ -inverse strongly monotone and ηi-inverse-
strongly monotone, respectively, for i = , . Let S : C → C be a uniformly continuous
asymptotically κ-strict pseudocontractive mapping in the intermediate sense for some
 ≤ κ <  with sequence {γn} ⊂ [,∞) such that limn→∞ γn =  and {cn} ⊂ [,∞) such
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that limn→∞ cn = . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C and
{λn} be a sequence in (,b] for some b ∈ (, ). Let V be a γ̄ -strongly positive bounded lin-
ear operator and f : H → H be an l-Lipschitzian mapping with γ l < ( + μ)γ̄ . Assume
that Ω := (

⋂∞
n= Fix(Tn))∩GMEP(Θ ,ϕ,A)∩ I(B,R)∩ I(B,R)∩ Fix(S) is nonempty and

bounded. Let Wn be the W-mapping defined by (.) and {αn}, {βn}, and {δn} be three se-
quences in (, ) such that limn→∞ αn =  and κ ≤ δn ≤ d < . Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {λi,n} ⊂ [ai,bi] ⊂ (, ηi) for i = , , and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and set C = C, x = PCx. Let {xn} be a sequence generated by the following
algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = S(Θ ,ϕ)
rn (I – rnA)xn,

zn = JR,λ,n (I – λ,nB)JR,λ,n (I – λ,nB)un,
kn = δnzn + ( – δn)Snzn,
yn = αn(u + γ f (xn)) + βnkn + (( – βn)I – αn(I +μV ))Wnzn,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+x, ∀n≥ ,

(.)

where θn = (αn + γn)Δn� + cn�, Δn = sup{‖xn – p‖ + ‖u + (γ f – I – μV )p‖ : p ∈ Ω} < ∞,
and � = 

–supn≥ αn
< ∞. If S(Θ ,ϕ)

r is firmly nonexpansive, then the following statements hold:
(I) {xn} converges strongly to PΩx;
(II) {xn} converges strongly to PΩx, which solves the optimization problem

min
x∈Ω

μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

provided γn + cn + ‖xn – yn‖ = o(αn) additionally, where h :H → R is the potential
function of γ f .

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . LetΘ be
a bifunction fromC×C toR satisfying (H)-(H) and ϕ : C → R be a lower semicontinuous
and convex functional.Let R : C → H be amaximalmonotonemapping and let A :H →H
and B : C → H be ζ -inverse strongly monotone and ξ -inverse-strongly monotone, respec-
tively. Let S : C → C be a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense for some  ≤ κ < with sequence {γn} ⊂ [,∞) such that

http://www.journalofinequalitiesandapplications.com/content/2014/1/462


Ceng et al. Journal of Inequalities and Applications 2014, 2014:462 Page 27 of 38
http://www.journalofinequalitiesandapplications.com/content/2014/1/462

limn→∞ γn =  and {cn} ⊂ [,∞) such that limn→∞ cn = . Let {Tn}∞n= be a sequence of non-
expansive self-mappings on C and {λn} be a sequence in (,b] for some b ∈ (, ). Let V be a
γ̄ -strongly positive bounded linear operator and f : H → H be an l-Lipschitzian mapping
with γ l < ( +μ)γ̄ . Assume that Ω := (

⋂∞
n= Fix(Tn))∩GMEP(Θ ,ϕ,A)∩ I(B,R)∩ Fix(S) is

nonempty and bounded. Let Wn be the W-mapping defined by (.) and {αn}, {βn}, and
{δn} be three sequences in (, ) such that limn→∞ αn =  and κ ≤ δn ≤ d < . Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {ρn} ⊂ [a,b]⊂ (, ξ ), and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and set C = C, x = PCx. Let {xn} be a sequence generated by the following
algorithm:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un = S(Θ ,ϕ)
rn (I – rnA)xn,

kn = δnJR,ρn (I – ρnB)un + ( – δn)SnJR,ρn (I – ρnB)un,
yn = αn(u + γ f (xn)) + βnkn + (( – βn)I – αn(I +μV ))WnJR,ρn (I – ρnB)un,
Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖ + θn},
xn+ = PCn+x, ∀n≥ ,

(.)

where θn = (αn + γn)Δn� + cn�, Δn = sup{‖xn – p‖ + ‖u + (γ f – I – μV )p‖ : p ∈ Ω} < ∞,
and � = 

–supn≥ αn
< ∞. If S(Θ ,ϕ)

r is firmly nonexpansive, then the following statements hold:
(I) {xn} converges strongly to PΩx;
(II) {xn} converges strongly to PΩx, which solves the optimization problem

min
x∈Ω

μ


〈Vx,x〉 + 


‖x – u‖ – h(x), (OP)

provided γn + cn + ‖xn – yn‖ = o(αn) additionally, where h :H → R is the potential
function of γ f .

4 Weak convergence theorems
In this section, we introduce and analyze another iterative algorithm for finding common
solutions of a finite family of variational inclusions for maximal monotone and inverse-
strongly monotone mappings with the constraints of two problems: a generalized mixed
equilibrium problem and a common fixed point problem of an infinite family of nonex-
pansive mappings and an asymptotically strict pseudocontractive mapping in the inter-
mediate sense in a real Hilbert space. Under mild conditions imposed on the parameter
sequences we will prove weak convergence of the proposed algorithm.
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let N
be an integer. Let Θ be a bifunction from C × C to R satisfying (H)-(H) and ϕ : C → R
be a lower semicontinuous and convex functional. Let Ri : C → H be a maximal mono-
tone mapping and let A : H → H and Bi : C → H be ζ -inverse-strongly monotone and
ηi-inverse-strongly monotone, respectively, where i ∈ {, , . . . ,N}. Let S : C → C be a uni-
formly continuous asymptotically κ-strict pseudocontractive mapping in the intermedi-
ate sense for some  ≤ κ <  with sequences {γn} ⊂ [,∞) and {cn} ⊂ [,∞). Let {Tn}∞n=
be a sequence of nonexpansive self-mappings on C and {λn} be a sequence in (,b] for
some b ∈ (, ). Let V be a γ̄ -strongly positive bounded linear operator and f : H → H
be an l-Lipschitzian mapping with γ l < ( + μ)γ̄ . Assume that Ω := (

⋂∞
n= Fix(Tn)) ∩

GMEP(Θ ,ϕ,A) ∩ (
⋂N

i= I(Bi,Ri)) ∩ Fix(S) is nonempty. Let Wn be the W-mapping defined
by (.) and {αn}, {βn} and {δn} be three sequences in (, ) such that  < κ + ε ≤ δn ≤ d < .
Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)
∑∞

n=(αn + γn + cn) < ∞ and  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {λi,n} ⊂ [ai,bi] ⊂ (, ηi), ∀i ∈ {, , . . . ,N}, and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and let {xn} be a sequence generated by the following algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
un = S(Θ ,ϕ)

rn (I – rnA)xn,
zn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
kn = δnzn + ( – δn)Snzn,
xn+ = αn(u + γ f (xn)) + βnkn + (( – βn)I – αn(I +μV ))Wnzn, ∀n≥ .

(.)

Then {xn} converges weakly to w = limn→∞ PΩxn provided S(Θ ,ϕ)
r is firmly nonexpansive.

Proof First, let us show that limn→∞ ‖xn – p‖ exists for any p ∈ Ω . Put

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N}, n≥ , andΛ
n = I , where I is the identitymapping onH . Thenwe see

that zn =ΛN
n un. Take p ∈ Ω arbitrarily. Similarly to the proof of Theorem ., we obtain

‖un – p‖ ≤ ‖xn – p‖, (.)

‖zn – p‖ ≤ ‖un – p‖, (.)

‖un – p‖ ≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖, (.)
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‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖, (.)∥∥Λi
nun – p

∥∥ ≤ ‖xn – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥,

i ∈ {, , . . . ,N}, (.)∥∥Λi
nun – p

∥∥ ≤ ‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥,
i ∈ {, , . . . ,N}. (.)

By Lemma .(b) we get

‖kn – p‖

=
∥∥δn(zn – p) + ( – δn)

(
Snzn – p

)∥∥

= δn‖zn – p‖ + ( – δn)
∥∥Snzn – p

∥∥ – δn( – δn)
∥∥zn – Snzn

∥∥

≤ δn‖zn – p‖ + ( – δn)
[
( + γn)‖zn – p‖ + κ

∥∥zn – Snzn
∥∥ + cn

]
– δn( – δn)

∥∥zn – Snzn
∥∥

=
[
 + γn( – δn)

]‖zn – p‖ + ( – δn)(κ – δn)
∥∥zn – Snzn

∥∥

+ ( – δn)cn

≤ ( + γn)‖zn – p‖ + ( – δn)(κ – δn)
∥∥zn – Snzn

∥∥ + cn

≤ ( + γn)‖zn – p‖ + cn. (.)

Repeating the same arguments as in the proof of Theorem . we have

∥∥( – βn)I – αn(I +μV )
∥∥ ≤  – βn – αn – αnμγ̄ .

Then by Lemma . we deduce from (.), (.), (.), and  ≤ γ l ≤ ( +μ)γ̄ that

‖xn+ – p‖

=
∥∥αn

(
u + γ f (p) – V̄p

)
+ αnγ

(
f (xn) – f (p)

)
+ βn(kn – p)

+
(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

≤ ∥∥αnγ
(
f (xn) – f (p)

)
+ βn(kn – p) +

(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥

+ αn
〈(
u + γ f (p) – V̄p

)
,xn+ – p

〉
≤ [

αnγ
∥∥f (xn) – f (p)

∥∥ + βn‖kn – p‖ + ∥∥(
( – βn)I – αnV̄

)
(Wnzn – p)

∥∥]
+ αn

∥∥u + γ f (p) – V̄p
∥∥‖xn+ – p‖

≤ [
αnγ l‖xn – p‖ + βn‖kn – p‖ + ( – βn – αn – αnμγ̄ )‖Wnzn – p‖]
+ αn

∥∥u + γ f (p) – V̄p
∥∥‖xn+ – p‖

≤ [
αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖zn – p‖]
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+ αn
∥∥u + γ f (p) – V̄p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn‖kn – p‖ + (

 – βn – αn( +μ)γ̄
)‖zn – p‖

+ αn
∥∥u + γ f (p) – V̄p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn

(
( + γn)‖zn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)‖zn – p‖ + αn
∥∥u + γ f (p) – V̄p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄ ‖xn – p‖ + βn

(
( + γn)‖xn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)‖xn – p‖ + αn
∥∥u + γ f (p) – V̄p

∥∥‖xn+ – p‖
≤ αn( +μ)γ̄

(
( + γn)‖xn – p‖ + cn

)
+ βn

(
( + γn)‖xn – p‖ + cn

)
+

(
 – βn – αn( +μ)γ̄

)(
( + γn)‖xn – p‖ + cn

)
+ αn

∥∥u + γ f (p) – V̄p
∥∥‖xn+ – p‖

= ( + γn)‖xn – p‖ + cn + αn
∥∥u + γ f (p) – V̄p

∥∥‖xn+ – p‖
≤ ( + γn)‖xn – p‖ + cn + αn

(∥∥u + γ f (p) – V̄p
∥∥ + ‖xn+ – p‖),

which hence yields

‖xn+ – p‖

≤  + γn

 – αn
‖xn – p‖ + αn

 – αn

∥∥u + γ f (p) – V̄p
∥∥ +


 – αn

cn

=
(
 +

αn + γn

 – αn

)
‖xn – p‖ + αn

 – αn

∥∥u + γ f (p) – V̄p
∥∥ +


 – αn

cn

≤ [
 + (αn + γn)�

]‖xn – p‖ + αn�
∥∥u + γ f (p) – V̄p

∥∥ + �cn, (.)

where � = 
–supn≥ αn

< ∞ (due to {αn} ⊂ (, ) and limn→∞ αn = ). By Lemma ., we see
from

∑∞
n=(αn + γn + cn) < ∞ that limn→∞ ‖xn – p‖ exists. Thus {xn} is bounded and so are

the sequences {un}, {zn}, and {kn}.
Also, utilizing Lemmas . and .(b) we obtain from (.), (.), and (.)

‖xn+ – p‖

=
∥∥αn

(
u + γ f (xn) – V̄Wnzn

)
+ βn(kn – p) + ( – βn)(Wnzn – p)

∥∥

≤ ∥∥βn(kn – p) + ( – βn)(Wnzn – p)
∥∥

+ αn
〈
u + γ f (xn) – V̄Wnzn,xn+ – p

〉
= βn‖kn – p‖ + ( – βn)‖Wnzn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn‖kn – p‖ + ( – βn)‖zn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn

(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)‖zn – p‖

– βn( – βn)‖kn –Wnzn‖
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+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn

(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)

(
( + γn)‖zn – p‖ + cn

)
– βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ( + γn)‖zn – p‖ + cn – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ( + γn)‖xn – p‖ + cn – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖, (.)

which leads to

βn( – βn)‖kn –Wnzn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖.

Since limn→∞ αn = , limn→∞ γn = , and limn→∞ cn = , it follows from the existence of
limn→∞ ‖xn – p‖ and condition (iii) that

lim
n→∞‖kn –Wnzn‖ = . (.)

Note that

xn+ – kn = αn
(
u + γ f (xn) – V̄Wnzn

)
+ ( – βn)(Wnzn – kn),

which yields

‖xn+ – kn‖ ≤ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥ + ( – βn)‖Wnzn – kn‖
≤ αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥ + ‖Wnzn – kn‖.

So, from (.) and limn→∞ αn = , we get

lim
n→∞‖xn+ – kn‖ = . (.)

In the meantime, we conclude from (.), (.), (.), and (.) that

‖xn+ – p‖

≤ βn‖kn – p‖ + ( – βn)‖zn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn‖kn – p‖ + ( – βn)‖zn – p‖ + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

≤ βn
[
( + γn)‖zn – p‖ + ( – δn)(κ – δn)

∥∥zn – Snzn
∥∥ + cn

]
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+ ( – βn)‖zn – p‖ + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn

[
( + γn)‖zn – p‖ + ( – δn)(κ – δn)

∥∥zn – Snzn
∥∥ + cn

]
+ ( – βn)

(
( + γn)‖zn – p‖ + cn

)
+ αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

≤ ( + γn)‖zn – p‖ + βn( – δn)(κ – δn)
∥∥zn – Snzn

∥∥ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ( + γn)‖xn – p‖ + βn( – δn)(κ – δn)

∥∥zn – Snzn
∥∥ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖,

which, together with  < κ + ε ≤ δn ≤ d < , implies that

( – d)εβn
∥∥zn – Snzn

∥∥ ≤ βn( – δn)(δn – κ)
∥∥zn – Snzn

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖.

Consequently, from limn→∞ αn = , limn→∞ γn = , limn→∞ cn = , condition (iii), and the
existence of limn→∞ ‖xn – p‖, we get

lim
n→∞

∥∥zn – Snzn
∥∥ = . (.)

Since kn – zn = ( – δn)(Snzn – zn), from (.) we have

lim
n→∞‖kn – zn‖ = . (.)

Combining (.), (.), and (.), we have

‖xn+ – p‖ ≤ βn
(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)‖zn – p‖ – βn( – βn)‖kn –Wnzn‖

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ βn

(
( + γn)‖zn – p‖ + cn

)
+ ( – βn)

(
( + γn)‖zn – p‖ + cn

)
+ αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

= ( + γn)‖zn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ‖un – p‖ + γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

≤ ‖xn – p‖ + rn(rn – ζ )‖Axn –Ap‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖,

which implies

rn(ζ – rn)‖Axn –Ap‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖.
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From condition (iv), limn→∞ αn = , limn→∞ γn = , limn→∞ cn = , and the existence of
limn→∞ ‖xn – p‖, we get

lim
n→∞‖Axn –Ap‖ = . (.)

Combining (.), (.), and (.), we have

‖xn+ – p‖ ≤ ‖zn – p‖ + γn‖zn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ‖un – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ‖xn – p‖ – ‖xn – un‖ + rn‖Axn –Ap‖‖xn – un‖

+ γn‖xn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖,

which implies

‖xn – un‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + rn‖Axn –Ap‖‖xn – un‖
+ γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖.

From (.), limn→∞ αn = , limn→∞ γn = , limn→∞ cn = , and the existence of
limn→∞ ‖xn – p‖, we obtain

lim
n→∞‖xn – un‖ = . (.)

Combining (.), (.), and (.), we have

‖xn+ – p‖

≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ∥∥Λi

nun – p
∥∥ + γn‖zn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

≤ ‖xn – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖,

which implies

λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + γn‖xn – p‖ + cn

+ αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖.

From {λi,n} ⊂ [ai,bi]⊂ (, ηi), i ∈ {, , . . . ,N}, limn→∞ αn = , limn→∞ γn = , limn→∞ cn =
, and the existence of limn→∞ ‖xn – p‖, we obtain

lim
n→∞

∥∥BiΛ
i–
n un – Bip

∥∥ = , i ∈ {, , . . . ,N}. (.)
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Combining (.), (.), and (.), we get

‖xn+ – p‖

≤ ‖zn – p‖ + γn‖zn – p‖ + cn + αn
∥∥u + γ f (xn) – V̄Wnzn

∥∥‖xn+ – p‖
≤ ∥∥Λi

nun – p
∥∥ + γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖

≤ ‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥ + λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖,

which implies

∥∥Λi–
n un –Λi

nun
∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ γn‖xn – p‖ + cn + αn

∥∥u + γ f (xn) – V̄Wnzn
∥∥‖xn+ – p‖.

From (.), limn→∞ αn = , limn→∞ γn = , limn→∞ cn = , and the existence of
limn→∞ ‖xn – p‖, we obtain

lim
n→∞

∥∥Λi–
n un –Λi

nun
∥∥ = , i ∈ {, , . . . ,N}. (.)

By (.), we have

‖un – zn‖ =
∥∥Λ

nun –ΛN
n un

∥∥
≤ ∥∥Λ

nun –Λ
nun

∥∥ +
∥∥Λ

nun –Λ
nun

∥∥ + · · · + ∥∥ΛN–
n un –ΛN

n un
∥∥

→  as n→ ∞. (.)

From (.) and (.), we have

‖xn – zn‖ ≤ ‖xn – un‖ + ‖un – zn‖
→  as n→ ∞. (.)

By (.) and (.), we obtain

‖kn – xn‖ ≤ ‖kn – zn‖ + ‖zn – xn‖
→  as n→ ∞, (.)

which, together with (.) and (.), implies that

‖xn+ – xn‖ ≤ ‖xn+ – kn‖ + ‖kn – xn‖
→  as n→ ∞. (.)

On the other hand, we observe that

‖zn+ – zn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖ + ‖xn – zn‖.
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By (.) and (.), we have

lim
n→∞‖zn+ – zn‖ = . (.)

We note that

‖zn – Szn‖ ≤ ‖zn – zn+‖ +
∥∥zn+ – Sn+zn+

∥∥ +
∥∥Sn+zn+ – Sn+zn

∥∥
+

∥∥Sn+zn – Szn
∥∥.

From (.), (.), Lemma ., and the uniform continuity of S, we obtain

lim
n→∞‖zn – Szn‖ = . (.)

In addition, note that

‖zn –Wzn‖ ≤ ‖zn – kn‖ + ‖kn –Wnzn‖ + ‖Wnzn –Wzn‖

So, from (.), (.), and Remark . it follows that

lim
n→∞‖zn –Wzn‖ = . (.)

Since {xn} is bounded, there exists a subsequence {xni} of {xn}which convergesweakly tow.
From (.) and (.), we have zni ⇀ w and kni ⇀ w. From (.) and the uniform con-
tinuity of S, we have limn→∞ ‖zn – Smzn‖ =  for anym ≥ . So, from Lemma ., we have
w ∈ Fix(S). In themeantime, by (.) and Lemma ., we get w ∈ Fix(W ) =

⋂∞
n= Fix(Tn)

(due to Lemma .). Utilizing similar arguments to those in the proof of Theorem ., we
can derive w ∈ GMEP(Θ ,ϕ,A) ∩ (

⋂N
i= I(Bi,Ri)). Consequently, w ∈ Ω . This shows that

ωw(xn) ⊂ Ω .
Next let us show that ωw(xn) is a single-point set. As a matter of fact, let {xnj} be another

subsequence of {xn} such that xnj ⇀ w′. Then we get w′ ∈ Ω . If w �= w′, from the Opial
condition, we have

lim
n→∞‖xn –w‖ = lim

i→∞‖xni –w‖

< lim
i→∞

∥∥xni –w′∥∥
= lim

n→∞
∥∥xn –w′∥∥

= lim
j→∞

∥∥xnj –w′∥∥
< lim

j→∞‖xnj –w‖

= lim
n→∞‖xn –w‖.

This attains a contradiction. So we have w = w′. Put vn = PΩxn. Since w ∈ Ω , we have
〈xn – vn, vn –w〉 ≥ . By Lemma ., we see that {vn} converges strongly to some w ∈ Ω .
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Since {xn} converges weakly to w, we have

〈w –w,w –w〉 ≥ .

Therefore we obtain w = w = limn→∞ PΩxn. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let Θ

be a bifunction from C × C to R satisfying (H)-(H) and ϕ : C → R be a lower semicon-
tinuous and convex functional. Let Ri : C → H be a maximal monotone mapping and
let A : H → H and Bi : C → H be ζ -inverse-strongly monotone and ηi-inverse-strongly
monotone, respectively, for i = , . Let S : C → C be a uniformly continuous asymptoti-
cally κ-strict pseudocontractive mapping in the intermediate sense for some  ≤ κ <  with
sequences {γn} ⊂ [,∞) and {cn} ⊂ [,∞). Let {Tn}∞n= be a sequence of nonexpansive self-
mappings on C and {λn} be a sequence in (,b] for some b ∈ (, ). Let V be a γ̄ -strongly
positive bounded linear operator and f : H → H be an l-Lipschitzian mapping with γ l <
( +μ)γ̄ . Assume that Ω := (

⋂∞
n= Fix(Tn))∩GMEP(Θ ,ϕ,A)∩ I(B,R)∩ I(B,R)∩ Fix(S)

is nonempty. Let Wn be the W-mapping defined by (.) and {αn}, {βn}, and {δn} be three
sequences in (, ) such that  < κ + ε ≤ δn ≤ d < . Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)
∑∞

n=(αn + γn + cn) < ∞ and  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {λi,n} ⊂ [ai,bi] ⊂ (, ηi) for i = , , and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and let {xn} be a sequence generated by the following algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
un = S(Θ ,ϕ)

rn (I – rnA)xn,
zn = JR,λ,n (I – λ,nB)JR,λ,n (I – λ,nB)un,
kn = δnzn + ( – δn)Snzn,
xn+ = αn(u + γ f (xn)) + βnkn + (( – βn)I – αn(I +μV ))Wnzn, ∀n≥ .

(.)

Then {xn} converges weakly to w = limn→∞ PΩxn provided S(Θ ,ϕ)
r is firmly nonexpansive.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . LetΘ be
a bifunction fromC×C toR satisfying (H)-(H) and ϕ : C → R be a lower semicontinuous
and convex functional.Let R : C → H be amaximalmonotonemapping and let A :H →H
and B : C → H be ζ -inverse-strongly monotone and ξ -inverse-strongly monotone, respec-
tively. Let S : C → C be a uniformly continuous asymptotically κ-strict pseudocontractive
mapping in the intermediate sense for some  ≤ κ <  with sequences {γn} ⊂ [,∞) and
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{cn} ⊂ [,∞). Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C and {λn}
be a sequence in (,b] for some b ∈ (, ). Let V be a γ̄ -strongly positive bounded linear
operator and f : H → H be an l-Lipschitzian mapping with γ l < ( + μ)γ̄ . Assume that
Ω := (

⋂∞
n= Fix(Tn)) ∩ GMEP(Θ ,ϕ,A) ∩ I(B,R) ∩ Fix(S) is nonempty. Let Wn be the W-

mapping defined by (.) and {αn}, {βn}, and {δn} be three sequences in (, ) such that
 < κ + ε ≤ δn ≤ d < . Assume that:

(i) K :H → R is strongly convex with constant σ >  and its derivative K ′ is
Lipschitz-continuous with constant ν >  such that the function x �→ 〈y – x,K ′(x)〉 is
weakly upper semicontinuous for each y ∈H ;

(ii) for each x ∈H , there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y /∈ Dx,

Θ(y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x), zx – y

〉
< ;

(iii)
∑∞

n=(αn + γn + cn) < ∞ and  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(iv) {ρn} ⊂ [a,b]⊂ (, ξ ), and {rn} ⊂ [, ζ ] satisfies

 < lim inf
n→∞ rn ≤ lim sup

n→∞
rn < ζ .

Pick any x ∈H and let {xn} be a sequence generated by the following algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
un = S(Θ ,ϕ)

rn (I – rnA)xn,
kn = δnJR,ρn (I – ρnB)un + ( – δn)SnJR,ρn (I – ρnB)un,
xn+ = αn(u + γ f (xn)) + βnkn + (( – βn)I

– αn(I +μV ))WnJR,ρn (I – ρnB)un, ∀n≥ .

(.)

Then {xn} converges weakly to w = limn→∞ PΩxn provided S(Θ ,ϕ)
r is firmly nonexpansive.
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