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Abstract
We establish a new fixed point theorem in the setting of Branciari metric spaces. The
obtained result is an extension of the recent fixed point theorem established in Jleli
and Samet (J. Inequal. Appl. 2014:38, 2014).
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1 Introduction
The fixed point theorem, generally known as the Banach contraction principle, appeared
in an explicit form in Banach’s thesis in  [], where it was used to establish the exis-
tence of a solution to an integral equation. Since then, because of its simplicity and use-
fulness, it has become a very popular tool in solving existence problems in many branches
of mathematical analysis. This principle states that if (X,d) is a complete metric space and
T : X → X is a contraction map (i.e., d(Tx,Ty) ≤ λd(x, y) for all x, y ∈ X, where λ ∈ (, ) is
a constant), then T has a unique fixed point.
The Banach contraction principle has been generalized in many ways over the years.

In some generalizations, the contractive nature of the map is weakened; see [–] and
others. In other generalizations, the topology is weakened; see [–] and others. In [],
Nadler extended the Banach fixed point theorem from single-valued maps to set-valued
contractive maps. Other fixed point results for set-valued maps can be found in [–]
and the references therein.
In , Branciari [] introduced the concept of generalized metric spaces, where the

triangle inequality is replaced by the inequality d(x, y) ≤ d(x,u) + d(u, v) + d(v, y) for all
pairwise distinct points x, y,u, v ∈ X. Various fixed point results were established on such
spaces; see [, , –, , –] and the references therein.
We recall the following definitions introduced in [].

Definition . Let X be a non-empty set and d : X ×X → [,∞) be a mapping such that
for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different from x and y, one
has

(i) d(x, y) =  ⇐⇒ x = y;
(ii) d(x, y) = d(y,x);
(iii) d(x, y)≤ d(x,u) + d(u, v) + d(v, y).

Then (X,d) is called a generalized metric space (or for short g.m.s).
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Definition . Let (X,d) be a g.m.s, {xn} be a sequence in X and x ∈ X. We say that {xn}
is convergent to x if and only if d(xn,x) →  as n→ ∞. We denote this by xn → x.

Definition . Let (X,d) be a g.m.s and {xn} be a sequence inX.We say that {xn} is Cauchy
if and only if d(xn,xm) →  as n,m → ∞.

Definition . Let (X,d) be a g.m.s. We say that (X,d) is complete if and only if every
Cauchy sequence in X converges to some element in X.

The following result was established in [] (see also []).

Lemma . Let (X,d) be a g.m.s and {xn} be a Cauchy sequence in (X,d) such that
d(xn,x) →  as n → ∞ for some x ∈ X. Then d(xn, y) → d(x, y) as n → ∞ for all y ∈ X.
In particular, {xn} does not converge to y if y �= x.

We denote by � the set of functions θ : (,∞) → (,∞) satisfying the following condi-
tions:

(�) θ is non-decreasing;
(�) for each sequence {tn} ⊂ (,∞), limn→∞ θ (tn) =  if and only if limn→∞ tn = +;
(�) there exist r ∈ (, ) and � ∈ (,∞] such that limt→+

θ (t)–
tr = �;

(�) θ is continuous.

Recently, Jleli and Samet [] established the following generalization of the Banach
fixed point theorem in the setting of Branciari metric spaces.

Theorem . (Jleli and Samet []) Let (X,d) be a complete g.m.s and T : X → X be a
given map. Suppose that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx,Ty) �=  
⇒ θ
(
d(Tx,Ty)

) ≤ [
θ
(
d(x, y)

)]k .
Then T has a unique fixed point.

Note that the condition (�) is not supposed in Theorem ..
The aim of this paper is to extend the result given by Theorem ..

2 Result and proof
Now, we are ready to state and prove our main result.

Theorem . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx,Ty) �=  
⇒ θ
(
d(Tx,Ty)

) ≤ [
θ
(
M(x, y)

)]k , ()

where

M(x, y) =max
{
d(x, y),d(x,Tx),d(y,Ty)

}
. ()

Then T has a unique fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/439


Jleli et al. Journal of Inequalities and Applications 2014, 2014:439 Page 3 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/439

Proof Let x ∈ X be an arbitrary point in X. If for some p ∈ N we have Tpx = Tp+x, then
Tpx will be a fixed point of T . So, without restriction of the generality, we can suppose
that d(Tnx,Tn+x) >  for all n ∈ N. Now, from (), for all n ∈N, we have

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
M

(
Tn–x,Tnx

))]k , ()

where from ()

M
(
Tn–x,Tnx

)
=max

{
d
(
Tn–x,Tnx

)
,d

(
Tn–x,TTn–x

)
,d

(
Tnx,TTnx

)}
=max

{
d
(
Tn–x,Tnx

)
,d

(
Tn–x,Tnx

)
,d

(
Tnx,Tn+x

)}
=max

{
d
(
Tn–x,Tnx

)
,d

(
Tnx,Tn+x

)}
. ()

IfM(Tn–x,Tnx) = d(Tnx,Tn+x), then inequality () turns into

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d
(
Tnx,Tn+x

))]k ,
which implies that

ln
[
θ
(
d
(
Tnx,Tn+x

))] ≤ k ln
[
θ
(
d
(
Tnx,Tn+x

))]
,

that is a contradiction with k ∈ (, ). Hence, from () we have M(Tn–x,Tnx) = d(Tn–x,
Tnx), and inequality () yields

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d
(
Tn–x,Tnx

))]k
≤ [

θ
(
d
(
Tn–x,Tn–x

))]k ≤ · · · ≤ [
θ
(
d(x,Tx)

)]kn .
Thus we have

 ≤ θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d(x,Tx)

)]kn for all n ∈N. ()

Letting n → ∞ in (), we obtain

θ
(
d
(
Tnx,Tn+x

)) →  as n→ ∞, ()

which implies from (�) that

lim
n→∞d

(
Tnx,Tn+x

)
= .

From condition (�), there exist r ∈ (, ) and � ∈ (,∞] such that

lim
n→∞

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

= �.

Suppose that � < ∞. In this case, let B = �/ > . From the definition of the limit, there
exists n ∈ N such that

∣∣∣∣θ (d(T
nx,Tn+x)) – 

[d(Tnx,Tn+x)]r
– �

∣∣∣∣ ≤ B for all n≥ n.
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This implies that

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

≥ � – B = B for all n≥ n.

Then

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
for all n≥ n,

where A = /B.
Suppose now that � = ∞. Let B >  be an arbitrary positive number. From the definition

of the limit, there exists n ∈ N such that

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

≥ B for all n≥ n.

This implies that

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
for all n≥ n,

where A = /B.
Thus, in all cases, there exist A >  and n ∈N such that

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
for all n≥ n.

Using (), we obtain

n
[
d
(
Tnx,Tn+x

)]r ≤ An
([

θ
(
d(x,Tx)

)]kn – 
)

for all n≥ n.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞n

[
d
(
Tnx,Tn+x

)]r = .

Thus, there exists n ∈N such that

d
(
Tnx,Tn+x

) ≤ 
n/r

for all n≥ n. ()

Now, we shall prove that T has a periodic point. Suppose that it is not the case, then
Tnx �= Tmx for every n,m ∈ N such that n �=m. Using (), we obtain

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
M

(
Tn–x,Tn+x

))]k , ()

where from ()

M
(
Tn–x,Tn+x

)
=max

{
d
(
Tn–x,Tn+x

)
,d

(
Tn–x,Tnx

)
,d

(
Tn+x,Tn+x

)}
. ()
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Since θ is non-decreasing, we obtain from () and ()

θ
(
d
(
Tnx,Tn+x

)) ≤ [
max

{
θ
(
d
(
Tn–x,Tn+x

))
, θ

(
d
(
Tn–x,Tnx

))
,

θ
(
d
(
Tn+x,Tn+x

))}]k . ()

Let I be the set of n ∈ N such that

un :=max
{
θ
(
d
(
Tn–x,Tn+x

))
, θ

(
d
(
Tn–x,Tnx

))
, θ

(
d
(
Tn+x,Tn+x

))}
= θ

(
d
(
Tn–x,Tn+x

))
.

If |I| < ∞, then there exists N ∈N such that for every n≥ N ,

max
{
θ
(
d
(
Tn–x,Tn+x

))
, θ

(
d
(
Tn–x,Tnx

))
, θ

(
d
(
Tn+x,Tn+x

))}
=max

{
θ
(
d
(
Tn–x,Tnx

))
, θ

(
d
(
Tn+x,Tn+x

))}
.

In this case, we obtain from ()

 ≤ θ
(
d
(
Tnx,Tn+x

)) ≤ [
max

{
θ
(
d
(
Tn–x,Tnx

))
, θ

(
d
(
Tn+x,Tn+x

))}]k

for all n ≥ N . Letting n→ ∞ in the above inequality and using (), we get

θ
(
d
(
Tnx,Tn+x

)) →  as n → ∞.

If |I| = ∞, we can find a subsequence of {un}, that we denote also by {un}, such that

un = θ
(
d
(
Tn–x,Tn+x

))
for n large enough.

In this case, we obtain from ()

 ≤ θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d
(
Tn–x,Tn+x

))]k
≤ [

θ
(
d
(
Tn–x,Tnx

))]k ≤ · · · ≤ [
θ
(
d
(
x,Tx

))]kn

for n large enough. Letting n→ ∞ in the above inequality, we obtain

θ
(
d
(
Tnx,Tn+x

)) →  as n → ∞. ()

Then in all cases, () holds. Using () and the property (�), we obtain

lim
n→∞d

(
Tnx,Tn+x

)
= .

Similarly, from condition (�), there exists n ∈N such that

d
(
Tnx,Tn+x

) ≤ 
n/r

for all n≥ n. ()

LetN =max{n,n}. We consider two cases.
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Case . Ifm >  is odd, then writingm = L+ , L ≥ , using (), for all n≥N , we obtain

d
(
Tnx,Tn+mx

) ≤ d
(
Tnx,Tn+x

)
+ d

(
Tn+x,Tn+x

)
+ · · · + d

(
Tn+Lx,Tn+L+x

)

≤ 
n/r

+


(n + )/r
+ · · · + 

(n + L)/r

≤
∞∑
i=n


i/r

.

Case . Ifm >  is even, then writingm = L, L ≥ , using () and (), for all n ≥N , we
obtain

d
(
Tnx,Tn+mx

) ≤ d
(
Tnx,Tn+x

)
+ d

(
Tn+x,Tn+x

)
+ · · · + d

(
Tn+L–x,Tn+Lx

)

≤ 
n/r

+


(n + )/r
+ · · · + 

(n + L – )/r

≤
∞∑
i=n


i/r

.

Thus, combining all the cases, we have

d
(
Tnx,Tn+mx

) ≤
∞∑
i=n


i/r

for all n≥N ,m ∈ N.

From the convergence of the series
∑

i

i/r (since /r > ), we deduce that {Tnx} is a Cauchy

sequence. Since (X,d) is complete, there is z ∈ X such that Tnx → z as n → ∞. Without
restriction of the generality, we can suppose that Tnx �= z for all n (or for n large enough).
Suppose that d(z,Tz) > , using (), we get

θ
(
d
(
Tn+x,Tz

)) ≤ [
θ
(
M

(
Tnx, z

))]k for all n ∈ N,

where

M
(
Tnx, z

)
=max

{
d
(
Tnx, z

)
,d

(
Tnx,Tn+x

)
,d(z,Tz)

}
.

Letting n → ∞ in the above inequality, using (�) and Lemma ., we obtain

θ
(
d(z,Tz)

) ≤ [
θ
(
d(z,Tz)

)]k < θ
(
d(z,Tz)

)
,

which is a contradiction. Thus we have z = Tz, which is also a contradiction with the as-
sumption:T does not have a periodic point. ThusT has a periodic point, say z, of period q.
Suppose that the set of fixed points of T is empty. Then we have

q >  and d(z,Tz) > .

Using (), we obtain

θ
(
d(z,Tz)

)
= θ

(
d
(
Tqz,Tq+z

)) ≤ [
θ (z,Tz)

]kq < θ
(
d(z,Tz)

)
,
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which is a contradiction. Thus, the set of fixed points of T is non-empty, that is, T has
at least one fixed point. Now, suppose that z,u ∈ X are two fixed points of T such that
d(z,u) = d(Tz,Tu) > . Using (), we obtain

θ
(
d(z,u)

)
= θ

(
d(Tz,Tu)

) ≤ [
θ
(
d(z,u)

)]k < θ
(
d(z,u)

)
,

which is a contradiction. Then we have one and only one fixed point. �

3 Some consequences
We start by deducing the following fixed point result.

Corollary . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exists λ ∈ (, ) such that

d(Tx,Ty) ≤ λmax
{
d(x, y),d(x,Tx),d(y,Ty)

}
for all x, y ∈ X. ()

Then T has a unique fixed point.

Proof From (), we have

e
√

d(Tx,Ty) ≤ [
e
√

max{d(x,y),d(x,Tx),d(y,Ty)}]√
λ for all x, y ∈ X.

Clearly the function θ : (,∞) → (,∞) defined by θ (t) := e
√
t belongs to �. So, the exis-

tence and uniqueness of the fixed point follows from Theorem .. �

The following fixed point result established in [] is an immediate consequence of
Corollary ..

Corollary . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exists λ ∈ (, ) such that

d(Tx,Ty) ≤ λd(x, y) for all x, y ∈ X.

Then T has a unique fixed point.

The following fixed point result established in [] is an immediate consequence of
Corollary ..

Corollary . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exist λ,μ ≥  with λ +μ <  such that

d(Tx,Ty) ≤ λd(x,Tx) +μd(y,Ty) for all x, y ∈ X.

Then T has a unique fixed point.

The following fixed point result is also an immediate consequence of Corollary ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/439
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Corollary . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exist λ,μ,ν ≥  with λ +μ + ν <  such that

d(Tx,Ty) ≤ λd(x, y) +μd(x,Tx) + νd(y,Ty) for all x, y ∈ X.

Then T has a unique fixed point.

We note that � contains a large class of functions. For example, for

θ (t) :=  –

π
arctan

(

tα

)
,  < α < , t > ,

we obtain from Theorem . the following result.

Corollary . Let (X,d) be a complete g.m.s and T : X → X be a given map. Suppose that
there exist α,k ∈ (, ) such that

–

π
arctan

(


[d(Tx,Ty)]α

)
≤

[
–


π
arctan

(


[M(x, y)]α

)]k

for all x, y ∈ X,Tx �= Ty,

where M(x, y) is given by (). Then T has a unique fixed point.

Finally, since a metric space is a g.m.s, from Theorem . we deduce immediately the
following result.

Corollary . Let (X,d) be a complete metric space and T : X → X be a given map. Sup-
pose that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx,Ty) �=  
⇒ θ
(
d(Tx,Ty)

) ≤ [
θ
(
M(x, y)

)]k ,
where M(x, y) is given by (). Then T has a unique fixed point.
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