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Abstract
The multiple-sets split equality problem (MSSEP) requires finding a point x ∈ ⋂N

i=1 Ci ,
y ∈ ⋂M

j=1Qj , such that Ax = By, where N andM are positive integers, {C1,C2, . . . ,CN} and
{Q1,Q2, . . . ,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and
A : H1 → H3, B : H2 → H3 are two bounded linear operators. When N =M = 1, the
MSSEP is called the split equality problem (SEP). If let B = I, then the MSSEP and SEP
reduce to the well-known multiple-sets split feasibility problem (MSSFP) and split
feasibility problem (SFP), respectively. Recently, some authors proposed many
algorithms to solve the SEP and MSSEP. However, to implement these algorithms, one
has to find the projection on the closed convex sets, which is not possible except in
simple cases. One of the purposes of this paper is to study the SEP and MSSEP for a
family of quasi-nonexpansive multi-valued mappings in the framework of
infinite-dimensional Hilbert spaces, and propose an algorithm to solve the SEP and
MSSEP without the need to compute the projection on the closed convex sets.
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1 Introduction and preliminaries
Throughout this paper, we assume thatH is a real Hilbert space,C is a subset ofH . Denote
by CB(H) the collection of all nonempty closed and bounded subsets of H and by Fix(T)
the set of the fixed points of amapping T . TheHausdorff metric H̃ onCB(H) is defined by

H̃(C,D) :=max
{
sup
x∈C

d(x,D), sup
y∈D

d(y,C)
}
, ∀C,D ∈ CB(H),

where d(x,K ) := infy∈K d(x, y).

Definition . Let R :H → CB(H) be a multi-valued mapping. An element p ∈ H is said
to be a fixed point of R, if p ∈ Rp. The set of fixed points of R will be denoted by Fix(R).
R is said to be

(i) nonexpansive, if H̃(Rx,Ry)≤ ‖x – y‖, ∀x, y ∈H ;
(ii) quasi-nonexpansive, if Fix(R) �= ∅ and H̃(Rx,Ry)≤ ‖x – y‖, ∀x ∈H , y ∈ Fix(R).

Let {C,C, . . . ,CN } and {Q,Q, . . . ,QM} be nonempty closed convex subsets of real
Hilbert spaces H and H, respectively, and let A :H →H be a bounded linear operator.
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Recall that themultiple-sets split feasibility problem (MSSFP) is to find a point x satisfying
the property:

x ∈
N⋂
i=

Ci, Ax ∈
M⋂
j=

Qj,

if such a point exists. If N =M = , then the MSSFP reduce to the well-known split feasi-
bility problem (SFP).
The SFP and MSSFP was first introduced by Censor and Elfving [], and Censor et al.

[], respectively, which attracted many authors’ attention due to the applications in sig-
nal processing [] and intensity-modulated radiation therapy []. Various algorithms have
been invented to solve it (see [–], etc.).
Recently,Moudafi [] proposed a new split equality problem (SEP): LetH,H,H be real

Hilbert spaces, C ⊆H,Q ⊆H be two nonempty closed convex sets, and let A :H →H,
B :H →H be two bounded linear operators. Find x ∈ C, y ∈Q satisfying

Ax = By. (.)

When B = I , SEP reduces to the well-known SFP.
Naturally, we propose the following multiple-sets split equality problem (MSSEP) re-

quiring to find a point x ∈ ⋂N
i=Ci, y ∈ ⋂M

j=Qj, such that

Ax = By, (.)

whereN andM are positive integers, {C,C, . . . ,CN } and {Q,Q, . . . ,QM} are closed con-
vex subsets of Hilbert spaces H, H, respectively, and A :H → H, B :H → H are two
bounded linear operators.
In the paper [], Moudafi give the alternating CQ-algorithm and relaxed alternating

CQ-algorithm iterative algorithm for solving the split equality problem.
Let S = C×Q inH =H ×H, defineG :H → H byG = [A, –B], thenG∗G :H →H has

the matrix form

G∗G =

[
A∗A –A∗B
–B∗A B∗B

]
.

The original problem can now be reformulated as finding w = (x, y) ∈ S with Gw = , or,
more generally, minimizing the function ‖Gw‖ over w ∈ S. Therefore solving SEP (.) is
equivalent to solving the following minimization problem:

min
w∈S f (w) =



‖Gw‖.

In the paper [], we use the well-known Tychonov regularization to get some algorithms
that converge strongly to the minimum-norm solution of the SEP.
Note that to implement these algorithms, one has to find the projection on the closed

convex sets, which is not possible except in simple cases.
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The purpose of this paper is to introduce and study the following split equality problem
for quasi-nonexpansive multi-valued mappings in infinitely dimensional Hilbert spaces,
i.e., to find w = (x, y) ∈ C such that

Ax = By, (.)

where H, H, H are real Hilbert spaces, A : H → H, B : H → H are two bounded
linear operators, Ri :Hi → CB(Hi), i = ,  are two quasi-nonexpansive multi-valued map-
pings, C = Fix(R), Q = Fix(R). In the rest of this paper, we still use � to denote the set
of solutions of SEP (.), and assume consistency of SEP so that � is closed, convex, and
nonempty, i.e., � = {(x, y) ∈ H × H,Ax = By,x ∈ C, y ∈ Q} �= ∅. The multiple-sets split
equality problem (MSSEP) for a family quasi-nonexpansive multi-valued mappings in in-
finitely dimensional Hilbert spaces, i.e., to find w = (x, y) ∈ C such that

Ax = By, (.)

where Rj
i : Hi → CB(Hi), i = , , j = , , . . . ,N is a family of quasi-nonexpansive multi-

valued mappings, C =
⋂N

j= Fix(R
j
), Q =

⋂N
j= Fix(R

j
). In the rest of this paper, we use �̄ to

denote the set of solutions of MSSEP (.), and assume consistency of MSSEP so that �̄ is
closed, convex, and nonempty, i.e., �̄ = {(x, y) ∈H ×H,Ax = By,x ∈ C, y ∈Q} �= ∅.
In this paper, we study the SEP and MSSEP for a family of quasi-nonexpansive multi-

valued mappings in the framework of infinite-dimensional Hilbert spaces, and propose
an algorithm to solve the SEP andMSSEP not requiring to compute the projection on the
closed convex sets.
We now collect some definitions and elementary facts which will be used in the proofs

of our main results.

Definition . Let H be a Banach space.
() A multi-valued mapping R :H → CB(H) is said to be demi-closed at the origin if, for

any sequence {xn} ⊆H with xn converges weakly to x and d(xn,Rxn) → , we have
x ∈ Rx.

() A multi-valued mapping R :H → CB(H) is said to be semi-compact if, for any
bounded sequence {xn} ⊆H with d(xn,Rxn) → , there exists a subsequence {xnk }
such that {xnk } converges strongly to a point x ∈H .

Lemma . [, ] Let X be a Banach space, C a closed convex subset of X, and T : C → C
a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence in C weakly converging to x
and if {(I – T)xn} converges strongly to y, then (I – T)x = y.

Lemma . [] Let H be a Hilbert space and {wn} a sequence in H such that there exists
a nonempty set S ⊆ H satisfying the following:

(i) for every w ∈ S, limn→∞ ‖wn –w‖ exists;
(ii) any weak-cluster point of the sequence {wn} belongs to S.
Then there exists w̃ ∈ s such that {wn} weakly converges to w̃.

Lemma . [] Let T = I – γG∗G, where  < γ < λ = /ρ(G∗G) with ρ(G∗G) being the
spectral radius of the self-adjoint operator G∗G on H , S = C ×Q. Then we have the follow-
ing:
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() ‖T‖ ≤  (i.e., T is nonexpansive) and averaged;
() Fix(T) = {(x, y) ∈ H ,Ax = By}, Fix(PST) = Fix(PS)∩ Fix(T) = �.

2 Iterative algorithm for SEP
In this section, we establish an iterative algorithm that converges strongly to a solution of
SEP (.).

Algorithm . For an arbitrary initial point w = (x, y), the sequence {wn = (xn, yn)} is
generated by the iteration:

wn+ = αn
(
I – γG∗G

)
wn + ( – αn)vn, vn ∈ R

(
wn – γG∗Gwn

)
, (.)

where αn >  is a sequence in (, ) and  < γ < λ = /ρ(G∗G) with ρ(G∗G) being the spec-
tral radius of the self-adjoint operator G∗G on H , R :H ×H →H ×H by

R =

[
R 
 R

]
,

and R, R are quasi-nonexpansive multi-valued mappings on H, H, respectively.

To prove its convergence we need the following lemma.

Lemma. Any sequence {wn} generated byAlgorithm (.) is Féjer-monotonewith respect
to �, namely for every w ∈ �,

‖wn+ –w‖ ≤ ‖wn –w‖, ∀n≥ ,

provided that αn >  is a sequence in (, ) and  < γ < λ = /ρ(G∗G).

Proof Let un = (I–γG∗G)wn and takingw ∈ �, by Lemma .,w ∈ Fix(PS)∩Fix(I–γG∗G),
Gw =  and we have

‖wn+ –w‖ =
∥∥αnun + ( – αn)vn –w

∥∥

≤ αn‖un –w‖ + ( – αn)‖vn –w‖ – αn( – αn)‖un – vn‖

≤ ( – αn)‖un –w‖ + αnH̃(Run – Rw) – αn( – αn)‖un – vn‖

≤ ( – αn)‖un –w‖ + αn‖un –w‖ – αn( – αn)‖un – vn‖

= ‖un –w‖ – αn( – αn)‖un – vn‖.

On the other hand, we have

‖un –w‖ = ∥∥(
I – γG∗G

)
wn –w

∥∥

= ‖wn –w‖ + ∥∥γG∗Gwn
∥∥ – 

〈
wn –w,γG∗Gwn

〉
= ‖wn –w‖ + γ 〈Gwn,GG∗Gwn

〉
– γ 〈Gwn –Gw,Gwn〉

≤ ‖wn –w‖ + γ λ‖Gwn‖ – γ 〈Gwn – ,Gwn〉
= ‖wn –w‖ – γ ( – λγ )‖Gwn‖.
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Hence, we have

‖wn+ –w‖ ≤ ‖wn –w‖ – αn( – αn)‖un – vn‖ – γ ( – λγ )‖Gwn‖. (.)

It follows that ‖wn+ –w‖ ≤ ‖wn –w‖, ∀w ∈ �, n≥ . �

Theorem . If  < lim infn→∞ αn ≤ lim supn→∞ αn <  and R, R are demi-closed at the
origin, then the sequence {wn} generated by Algorithm (.) converges weakly to a solution of
SEP (.). In addition, if R, R are semi-compact, then {wn} converges strongly to a solution
of SEP (.).

Proof For any solution of SEP w, according to Lemma ., we see that the sequence
‖wn – w‖ is monotonically decreasing and thus converges to some positive real. Since
 < lim infn→∞ αn ≤ lim supn→∞ αn <  and  < γ < λ, by (.), we can obtain

‖un – vn‖ → , ‖Gwn‖ → , when n→ ∞.

Since vn ∈ Run, we can get d(un,Run) ≤ ‖un – vn‖ → .
From the Féjer-monotonicity of {wn} it follows that the sequence is bounded. Denoting

by w̃ a weak-cluster point of {wn} let v = , , , . . . be the sequence of indices, such that
wnv converges weakly to w̃. Then, by Lemma ., we obtain Gw̃ = , and it follows that
w̃ ∈ Fix(I – γG∗G).
Since R, R are demi-closed at the origin, it is easy to check that R is demi-closed at

the origin. Now, by setting un = (I – γG∗G)wn, it follows that unv converges weakly to w̃.
Since d(un,Run)→ , and R is demi-closed at the origin, we obtain w̃ ∈ FixR = C×Q, i.e.,
PS(w̃) = w̃. That is to say, w̃ ∈ Fix(PS).
Hence w̃ ∈ Fix(PS) ∩ Fix(I – γG∗G). By Lemma ., we find that w̃ is a solution of SEP

(.).
The weak convergence of the whole sequence {wn} holds true since all conditions of the

well-known Opial lemma (Lemma .) are fulfilled with S = �.
Moreover, if R, R are semi-compact, it is easy to prove that R is semi-compact, and

since d(un,Run)→ , we get the result that there exists a subsequence of {uni} ⊆ {un} such
that uni converges strongly to w∗. Since unv converges weakly to w̃, we have w∗ = w̃ and so
uni converges strongly to w̃ ∈ �. From the Féjer-monotonicity of {wn} and ‖wn+ – un‖ =
( – αn)‖un – vn‖ → , we can find that ‖wn – w̃‖ → , i.e., {wn} converges strongly to a
solution of the SEP (.). �

3 Iterative algorithm for MSSEP
In this section, we establish an iterative algorithm that converges strongly to a solution
of the following MSSEP (.) for a family quasi-nonexpansive multi-valued mappings in
infinitely dimensional Hilbert spaces.
Let Cj = FixRj

,Qj = FixRj
 and Sj = Cj ×Qj, j = , , . . . ,N , S =

⋂N
j= Sj. The original prob-

lem can now be reformulated as finding w = (x, y) ∈ S with Gw = , or, more generally,
minimizing the function ‖Gw‖ over w ∈ S.

Algorithm . For an arbitrary initial point w = (x, y), sequence {wn = (xn, yn)} is gen-
erated by the iteration:

wn+ = αn
(
I – γG∗G

)
wn + ( – αn)vn, vn ∈ Ri(n)

(
wn – γG∗Gwn

)
, (.)
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where i(n) = n(modN) + , αn >  is a sequence in (, ) and  < γ < λ = /ρ(G∗G), Ri(n) :
H ×H →H ×H by

Ri(n) =

[
Ri(n)
 
 Ri(n)



]
,

and Ri(n)
 , Ri(n)

 are a family of quasi-nonexpansive multi-valued mappings on H, H, re-
spectively.

The proof of the following lemma is similar to Lemma ., and we omit its proof.

Lemma . Let T = I – γG∗G, where  < γ < λ = /ρ(G∗G). Then we have Fix(T) =
{(x, y) ∈H ,Ax = By}, Fix(P⋂

SjT) = Fix(P⋂
Sj )∩Fix(T) = �̄ and

⋂
Fix(PSjT) =

⋂
[Fix(PSj )∩

Fix(T)] = �̄.

To prove its convergence we also need the following lemma.

Lemma . Any sequence {wn} generated by Algorithm (.) is the Féjer-monotone with
respect to �̄, namely for every w ∈ �̄,

‖wn+ –w‖ ≤ ‖wn –w‖, ∀n≥ ,

provided that αn >  is a sequence in (, ) and  < γ < λ = /ρ(G∗G).

Proof Let un = (I – γG∗G)wn and taking w ∈ �̄, by Lemma ., w ∈ Fix(PSj ) ∩ Fix(I –
γG∗G), ∀N ≥ i≥ , Gw =  and we have

‖wn+ –w‖ =
∥∥αnun + ( – αn)vn –w

∥∥

≤ αn‖un –w‖ + ( – αn)‖vn –w‖ – αn( – αn)‖un – vn‖

≤ αn‖un –w‖ + ( – αn)H̃(Ri(n)un – Ri(n)w) – αn( – αn)‖un – vn‖

≤ αn‖un –w‖ + ( – αn)‖un –w‖ – αn( – αn)‖un – vn‖

= ‖un –w‖ – αn( – αn)‖un – vn‖.

On the other hand, in the same way as in the proof of Lemma ., we have

‖un –w‖ ≤ ‖wn –w‖ – γ ( – λγ )‖Gwn‖.

Hence, we have

‖wn+ –w‖ ≤ ‖wn –w‖ – αn( – αn)‖un – vn‖ – γ ( – λγ )‖Gwn‖. (.)

It follows that ‖wn+ –w‖ ≤ ‖wn –w‖, ∀w ∈ �̄, n≥ . �

Theorem . If  < lim infn→∞ αn ≤ lim supn→∞ αn < , then the sequence {wn} generated
by Algorithm (.) converges weakly to a solution of MSSEP (.). In addition, if there exists
 ≤ j ≤ N such that Rj

, R
j
 are semi-compact, then {wn} converges strongly to a solution of

MSSEP (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/428
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Proof From (.), and the fact that  < lim infn→∞ αn ≤ lim supn→∞ αn <  and  < γ < λ =
/ρ(G∗G), we obtain

∞∑
n=

‖un – vn‖ < ∞ and
∞∑
n=

‖Gwn‖ < ∞.

Therefore,

lim
n→∞‖un – vn‖ =  and lim

n→∞‖Gwn‖ = .

Since vn ∈ Ri(n)un, we get d(un,Ri(n)un) ≤ ‖un – vn‖ → .
It follows from the Féjer-monotonicity of {wn} that the sequence is bounded. Let w̃ be

a weak-cluster point of {wn}. Take a subsequence {wnk } of {wn} such that wnk converges
weakly to w̃. Then, by Lemma ., we obtainGw̃ = , and it follows that w̃ ∈ Fix(I –γG∗G).
Now, by setting un = (I – γG∗G)wn, it follows that unk converges weakly to w̃.
Since

‖wn+ –wn‖ =
∥∥αnun + ( – αn)vn –wn

∥∥

=
∥∥( – αn)(vn – un) + un –wn

∥∥

≤ ( – αn)
∥∥(vn – un)

∥∥ + 
∥∥γG∗Gwn

∥∥

= ( – αn)
∥∥(vn – un)

∥∥ + γ 〈Gwn,GG∗Gwn
〉

≤ ( – αn)
∥∥(vn – un)

∥∥ + γ λ‖Gwn‖,

we have

∞∑
n=

‖wn+ –wn‖ < ∞.

On the other hand,

‖un+ – un‖ =
∥∥wn+ –wn + γG∗G(wn+ –wn)

∥∥

≤ 
(‖wn+ –wn‖ +

∥∥γG∗G(wn+ –wn)
∥∥)

≤ 
(‖wn+ –wn‖ + γ λ

∥∥(wn+ –wn)
∥∥),

that is,

∞∑
n=

‖un+ – un‖ < ∞.

Thus, limn→∞ ‖un+ – un‖ =  and limn→∞ ‖un+j – un‖ =  for all j = , , . . . ,N .
It follows that, for any j = , , . . . ,N ,

d(un,Ri(n+j)un) ≤ ‖un – un+j‖ + d(un+j,Ri(n+j)un+j)

+ H̃(Ri(n+j)un+j,Ri(n+j)un)

http://www.journalofinequalitiesandapplications.com/content/2014/1/428
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≤ ‖un – un+j‖ + d(un+j,Ri(n+j)un+j)

→ .

Hence, limn→∞ d(un,Rjun) =  for all j = , , . . . ,N . Since Rj
, R

j
 are demi-closed at the

origin, it is easy to check that Rj is demi-closed at the origin, and it follows that w̃ ∈⋂N
j= FixRj = C ×Q, i.e., PS(w̃) = w̃. That is to say w̃ ∈ Fix(PS). Hence w̃ ∈ Fix(PS)∩ Fix(I –

γG∗G). By Lemma ., we get that w̃ is a solution of the MSSEP (.).
The weak convergence of the whole sequence {wn} holds true since all conditions of the

well-known Opial lemma (Lemma .) are fulfilled with S = �̄.
Moreover, if Rj

, R
j
 are semi-compact, it is easy to prove that Rj is semi-compact, since

d(un,Rjun) → , we find that there exists a subsequence of {uni} ⊆ {un} such that uni
converges strongly to w∗. Since unv converges weakly to w̃, we have w∗ = w̃ and so uni
converges strongly to w̃ ∈ �. From the Féjer-monotonicity of {wn} and ‖wn+ – un‖ =
( – αn)‖un – vn‖ → , we can see that ‖wn – w̃‖ → , i.e., {wn} converges strongly to a
solution of the MSSEP (.). �
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