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Abstract
In this paper, we obtain sufficient conditions for the lower semicontinuity of an
approximate solution mapping for a parametric generalized vector equilibrium
problem involving set-valued mappings. By using a scalarization method, we obtain
the lower semicontinuity of an approximate solution mapping for such a problem
without the assumptions of monotonicity and compactness.

Keywords: lower semicontinuity; approximate solution mapping; parametric
generalized vector equilibrium problems; scalarization method

1 Introduction
The vector equilibrium problem is a unified model of several problems, for example, the
vector optimization problem, the vector variational inequality problem, the vector com-
plementarity problem and the vector saddle point problem. In the literature, existence re-
sults for various types of vector equilibrium problems have been investigated intensively,
e.g., see [–] and the references therein. The stability analysis of the solution mappings
for VEP is an important topic in vector equilibrium theory. Recently, the semicontinuity,
especially the lower semicontinuity, of solution mappings to parametric vector equilib-
rium problems has been studied in the literature, see [–]. In the mentioned results, the
lower semicontinuity of solution mappings to parametric generalized strong vector equi-
librium problems is established under the assumptions of monotonicity and compactness.
Very recently, Han and Gong [] studied the lower semicontinuity of solution mappings
to parametric generalized strong vector equilibrium problems without the assumptions
of monotonicity and compactness.
On the other hand, exact solutions of the problemsmay not exist inmany practical prob-

lems because the data of the problems are not sufficiently ‘regular’. Moreover, these math-
ematical models are solved usually by numerical methods which produce approximations
to the exact solutions. So it is impossible to obtain an exact solution of many practical
problems. Naturally, investigating approximate solutions of parametric equilibrium prob-
lems is of interest in both practical applications and computations. Anh and Khanh []
considered two kinds of approximate solution mappings to parametric generalized vector
quasiequilibrium problems and established the sufficient conditions for their Hausdorff
semicontinuity (or Berge semicontinuity). Among many approaches for dealing with the
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lower semicontinuity and continuity of solution mappings for parametric vector varia-
tional inequalities and parametric vector equilibrium problems, the scalarization method
is of considerable interest. By using a scalarization method, Li and Li [] discussed the
Berge lower semicontinuity and Berge continuity of an approximate solution mapping for
a parametric vector equilibrium problem.
Motivated by the work reported in [–], in this paper we aim to establish efficient

conditions for the lower semicontinuity of an approximate solution mapping for a para-
metric generalized vector equilibrium problem involving set-valued mappings. By using
a scalarization method, we obtain the lower semicontinuity of an approximate solution
mapping for such a problem without the assumptions of monotonicity and compactness.

2 Preliminaries
Throughout this paper, let X and Y be real Hausdorff topological vector spaces, and let Z
be a real topological space.We also assume thatC is a pointed closed convex cone inY with
its interior intC �= ∅. Let Y ∗ be the topological dual space of Y . Let C∗ := {ξ ∈ Y ∗ : 〈ξ , y〉 ≥
,∀y ∈ C} be the dual cone ofC, where 〈ξ , y〉 denotes the value of ξ at y. Since intC �= ∅, the
dual cone C∗ of C has a weak∗ compact base. Let e ∈ intC. Then B∗

e := {ξ ∈ C∗ : 〈ξ , e〉 = }
is a weak∗ compact base of C∗.
Suppose that K is a nonempty subset of X and F : K ×K → Y\{∅} is a set-valued map-

ping. We consider the following generalized vector equilibrium problem (GVEP) of find-
ing x ∈ K such that

F(x, y) ⊂ Y\ – intC, ∀y ∈ K . (.)

When the set K and the mapping F are perturbed by a parameter μ which varies over a
setM of Z, we consider the following parametric generalized vector equilibrium problem
(PGVEP) of finding x ∈ K (μ) such that

F(x, y,μ)⊂ Y\ – intC, ∀y ∈ K (μ), (.)

where K :M → X\{∅} is a set-valued mapping, F : B × B × M ⊂ X × X × Z → Y\{∅}
is a set-valued mapping with K (M) =

⋃
μ∈M K (μ) ⊂ B. For each ε >  and μ ∈ M, the

approximate solution set of (PGVEP) is defined by

S̃(ε,μ) :=
{
x ∈ K (μ) : F(x, y,μ) + εe ⊂ Y\ – intC,∀y ∈ K (μ)

}
,

where e ∈ intC. For each ξ ∈ B∗
e and (ε,μ) ∈ R

+ × M, by S̃ξ (ε,μ) we denote the ξ -ap-
proximate solution set of (PGVEP), i.e.,

S̃ξ (ε,μ) :=
{
x ∈ K (μ) : inf

z∈F(x,y,μ)
ξ (z) + ε ≥ ,∀y ∈ K (μ)

}
.

Definition . Let D be a nonempty convex subset of X. A set-valued mapping G : X →
Y is said to be:

(i) C-convex on D if, for any x,x ∈D and for any t ∈ [, ], we have

tG(x) + ( – t)G(x) ⊆G
(
tx + ( – t)x

)
+C.
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(ii) C-concave on D if, for any x,x ∈ D and for any t ∈ [, ], we have

G
(
tx + ( – t)x

) ⊆ tG(x) + ( – t)G(x) +C.

Definition . [] Let M and M be topological vector spaces. Let D be a nonempty
subset of M. A set-valued mapping G :M → M is said to be uniformly continuous on D
if, for any neighborhood V of  ∈ M, there exists a neighborhood U of  ∈ M such that
G(x) ⊆G(x) +V for any x,x ∈D with x – x ∈ U.

Definition . [] Let M and M be topological vector spaces. A set-valued mapping
G :M → M is said to be:

(i) Hausdorff upper semicontinuous (H-u.s.c.) at u ∈M if, for any neighborhood V of
 ∈M, there exists a neighborhood U(u) of u such that

G(u) ⊆ G(u) +V for every u ∈U(u).

(ii) Lower semicontinuous (l.s.c.) at u ∈M if, for any x ∈G(u) and any neighborhood
V of x, there exists a neighborhood U(u) of u such that

G(u)∩V �= ∅ for every u ∈U(u).

The following lemma plays an important role in the proof of the lower semicontinuity
of the solution mapping S̃(·, ·).

Lemma. [, Theorem] The union� =
⋃

i∈I �i of a family of l.s.c. set-valuedmappings
�i from a topological space X into a topological space Y is also an l.s.c. set-valuedmapping
from X into Y , where I is an index set.

3 Lower semicontinuity of the approximate solutionmapping for (PGVEP)
In this section, we establish the lower semicontinuity of the approximate solutionmapping
for (PGVEP) at the considered point (ε,μ) ∈R

+ ×M with ε > .
Firstly, using the same argument as in the proof given in [, Lemma .], we can prove

the following useful result.

Lemma . For each ε > , μ ∈ M, if for each x ∈ K (μ), F(x,K (μ),μ) + C is a convex set,
then

S̃(ε,μ) =
⋃

ξ∈C∗\{}
S̃ξ (ε,μ) =

⋃
ξ∈B∗

e

S̃ξ (ε,μ).

Proof For any x ∈ ⋃
ξ∈C∗\{} S̃ξ (ε,μ), there exists ξ ′ ∈ C∗\{} such that x ∈ S̃ξ ′ (ε,μ). Thus,

we can obtain that x ∈ K (μ) and infz∈F(x,y,μ) ξ ′(z) + ε ≥ , ∀y ∈ K (μ). Then, for each y ∈
K (μ) and z ∈ F(x, y,μ), ξ ′(z) + ε ≥ , which arrives at z /∈ – intC. It then follows that, for
each z ∈ F(x, y,μ),

F(x, y,μ) + εe ⊆ Y\ – intC, ∀y ∈ K (μ),

http://www.journalofinequalitiesandapplications.com/content/2014/1/421
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which gives that x ∈ S̃(ε,μ). Hence,
⋃

ξ∈C∗\{} S̃ξ (ε,μ)⊆ S̃(ε,μ). Conversely, let x ∈ S̃(ε,μ)
be arbitrary. Then x ∈ K (μ) and F(x, y,μ) + εe ⊆ Y\ – intC, ∀y ∈ K (μ). Thus, we have

F
(
x,K (μ),μ

) ∩ (– intC) = ∅,

and hence

(
F
(
x,K (μ),μ

)
+C

) ∩ (– intC) = ∅.

Because F(x,K (μ),μ)+C is a convex set, by thewell-knownEdidelheit separation theorem
(see [], Theorem .), there exist a continuous linear functional ξ ∈ Y ∗\{} and a real
number γ such that

ξ (ĉ) < γ ≤ ξ (z + c)

for all z ∈ F(x,K (μ),μ), c ∈ C and ĉ ∈ – intC. Since C is a cone, we have ξ (ĉ) ≤  for all
ĉ ∈ – intC. Thus, ξ (ĉ) ≥  for all ĉ ∈ C, that is, ξ ∈ C∗. Moreover, it follows from c ∈ C,
ĉ ∈ – intC and the continuity of ξ that ξ (z) + ε ≥  for all z ∈ F(x,K (μ),μ). Thus, for all
y ∈ K (μ), we have infz∈F(x,y,μ) ξ (z) + ε ≥ , i.e., x ∈ S̃ξ (ε,μ)⊆ ⋃

ξ∈C∗\{} S̃ξ (ε,μ). �

Theorem . We assume that for any given ξ ∈ B∗
e , there exists δ >  such that the ξ -ap-

proximate solution set S̃ξ (·, ·) exists in [ε, δ)×N(μ),where N(μ) is a neighborhood ofμ.
Assume further that the following conditions are satisfied:

(i) K (μ) is nonempty convex;
(ii) K is H-u.s.c. at μ and l.s.c. at μ;
(iii) for any y ∈ K (μ), F(·, y,μ) is C-concave on K (μ);
(iv) F(·, ·, ·) is uniformly continuous on K (M)×K (M)×N(μ).

Then the ξ -approximate solution mapping S̃ξ : [ε, δ)×N(μ) → X is l.s.c. at (ε,μ).

Proof Suppose to the contrary that S̃ξ (·, ·) is not l.s.c. at (ε,μ), then there exist x ∈
S̃ξ (ε,μ) and a neighborhood W of X ∈ X. For any neighborhoods J(ε) and U(μ) of
ε and μ, respectively, there exist ε′ ∈ J(ε)∩ [ε, δ) and μ′ ∈ U(μ) such that (x +W)∩
S̃ξ (ε′,μ′) = ∅. In particular, there exist sequences {εn} ↓ ε and {μn} → μ such that

(x +W)∩ S̃ξ (εn,μn) = ∅, ∀n ∈ N. (.)

For the aboveW, there exists a neighborhoodW of X ∈ X such that

W +W ⊆W. (.)

We define a ξ -set-valued mapping Hξ : [, δ) → X by

Hξ (ε) =
{
x ∈ K (μ) : inf

z∈F(x,y,μ)
ξ (z) + ε + ε ≥ ,∀y ∈ K (μ)

}
, ε ∈ [, δ).

Notice that Hξ () = S̃ξ (ε,μ) �= ∅. Next, we claim that Hξ is l.s.c. at . Suppose to the
contrary that Hξ is not l.s.c. at , then there exist x̄ ∈ Hξ () and a neighborhood O of

http://www.journalofinequalitiesandapplications.com/content/2014/1/421
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X ∈ X. For any neighborhood U of , there exists ε ∈U such that (x̄+O)∩Hξ (ε) = ∅. In
particular, there exists a nonnegative sequence {ε′

n} ↓  such that

(x̄ +O)∩Hξ

(
ε′
n
)
= ∅, ∀n ∈N. (.)

Since Hξ () �= ∅, we choose x∗ ∈ Hξ (). Since ε′
n → , there exists ε′

n such that

ε

ε + ε′
n
x̄ +

ε′
n

ε + ε′
n
x∗ = x̄ +

ε′
n

ε + ε′
n

(
x∗ – x̄

) ∈ x̄ +O. (.)

We claim that ε
ε+ε′

n
x̄+

ε′
n

ε+ε′
n
x∗ ∈Hξ (ε′

n ). In fact, since x̄ ∈Hξ () and x∗ ∈ Hξ (), for any
y ∈ K (μ), we have inft∈F(x̄,y,μ) ξ (t) + ε ≥  and infk∈F(x∗ ,y,μ) ξ (k) + ε ≥ . Then, for any
u ∈ F(x̄, y,μ),

ε

ε + ε′
n

ξ (u) +
ε

ε + ε′
n

ε ≥ , (.)

and for any v ∈ F(x∗, y,μ),

ε′
n

ε + ε′
n

ξ (v) +
ε′
n

ε + ε′
n

ε ≥ . (.)

By the C-concavity of F(·, y,μ), we have that

F
(

ε

ε + ε′
n
x̄ +

ε′
n

ε + ε′
n
x∗, y,μ

)
⊆ ε

ε + ε′
n
F(x̄, y,μ) +

ε′
n

ε + ε′
n
F
(
x∗, y,μ

)
+C.

It follows that, for any w ∈ F( ε
ε+ε′

n
x̄ +

ε′
n

ε+ε′
n
x∗, y,μ), there exist z̄ ∈ F(x̄, y,μ), z∗ ∈

F(x∗, y,μ) and c′ ∈ C such that w = ε
ε+ε′

n
z̄ +

ε′
n

ε+ε′
n
z∗ + c′. It follows from the linearity

of ξ that ξ (w) – ε
ε+ε′

n
ξ (z̄) –

ε′
n

ε+ε′
n

ξ (z∗) = ξ (c′) ≥ , which gives that ξ (w) ≥ ε
ε+ε′

n
ξ (z̄) +

ε′
n

ε+ε′
n

ξ (z∗). For all w ∈ F( ε
ε+ε′

n
x̄ +

ε′
n

ε+ε′
n
x∗, y,μ), by (.) and (.), we have

ξ (w) ≥ –
ε

ε + ε′
n

ε –
ε′
n

ε + ε′
n

ε = –
ε

ε + ε′
n

(
ε′
n + ε

) ≥ –
(
ε′
n + ε

)
.

This implies that inf
z∈F( ε

ε+ε′n
x̄+

ε′n
ε+ε′n

x∗ ,y,μ)
ξ (z) + ε′

n + ε ≥ , that is, ε
ε+ε′

n
x̄ +

ε′
n

ε+ε′
n
x∗ ∈

Hξ (ε′
n ). By (.), we get that ε

ε+ε′
n
x̄ +

ε′
n

ε+ε′
n
x∗ ∈ (x̄ + O) ∩ Hξ (ε′

n ), which contra-

dicts (.). Therefore, Hξ is l.s.c. at . Since Hξ is l.s.c. at , for above x ∈ S̃ξ (ε,μ) =
Hξ () and for above W, there exists a balanced neighborhood V of  such that (x +
W) ∩ Hξ (ε) �= ∅, ∀ε ∈ V. In particular, from {εn} ↓ ε, there exits N ∈ N such that
(x +W)∩Hξ (εN – ε) �= ∅. Let x′ ∈ (x +W)∩Hξ (εN – ε).
For any ε̄ > , since e ∈ intC, there exists δ >  such that

δBY + ε̄e⊆ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/421
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Since F(·, ·, ·) is uniformly continuous on K (M) × K (M) × N(μ), for above δBY , there
exists a neighborhood V of  ∈ B, a neighborhood U of  ∈ B and a neighborhood N of
 ∈M, for any (x, y,μ), (x, y,μ) ∈ K (M)×K (M)×N(μ) with x –x ∈ V, y –y ∈U

and μ –μ ∈ N, we have

F(x, y,μ)⊆ δBY + F(x, y,μ). (.)

Since K is H-u.s.c. at μ, for aboveU, there exists a neighborhoodU(μ) of μ such that

K (μ) ⊆ K (μ) +U, ∀μ ∈ U(μ). (.)

We see that x′ ∈ K (μ). Since K is l.s.c. at μ, for V ∩ W, there exists a neighborhood
U(μ) of μ such that

(
x′ +V ∩W

) ∩K (μ) �= ∅, ∀μ ∈U(μ). (.)

It follows from μn → μ that there exists a positive integer N ′
 ≥ N such that μN ′


∈

U(μ)∩U(μ)∩U(μ)∩ (μ +N). Noting that (.) and (.), we obtain

K (μN ′

) ⊆ K (μ) +U (.)

and

(
x′ +V ∩W

) ∩K (μN ′

) �= ∅. (.)

By (.), we choose

x′′ ∈ (
x′ +V ∩W

) ∩K (μN ′

). (.)

Next, we prove that x′′ ∈ S̃ξ (εN ′

,μN ′


). For any y′ ∈ K (μN ′


), by (.), there exists y ∈ K (μ)

such that y′ – y ∈ U. It follows from (.) that x′′ – x′ ∈ V. Noting that μN ′

∈ U(μ) ∩

(μ +N) and (.), we have

F
(
x′′, y′,μN ′



) ⊆ δBY + F
(
x′, y,μ

)
.

By (.), we have

F
(
x′′, y′,μN ′



) ⊆ C – ε̄e + F
(
x′, y,μ

)
. (.)

Hence, for any y ∈ K (μN ′

) and z′′ ∈ F(x′′, y′,μN ′


), there exist c′′ ∈ C and z′ ∈ F(x′, y,μ)

such that

z′′ = c′′ – ε̄e + z′.

It follows from the linearity of ξ that ξ (z′′)+ ε̄ ≥ ξ (z′) for all ε̄ > . This leads to ξ (z′′)≥ ξ (z′).
Thus

ξ
(
z′′) + εN ′


≥ ξ

(
z′) + εN ′


= ξ

(
z′) + (εN ′


– ε) + ε ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/421
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Hence x′′ ∈ S̃ξ (εN ′

,μN ′


). Also, since x′ ∈ (x +W) and by (.) and (.), we have

x′′ ∈ x′ +V ∩W ⊆ x +W +W ⊆ x +W.

This means that (x +W)∩ S̃ξ (εN ′

,μN ′


) �= ∅, which contradicts (.). This completes the

proof. �

Theorem . We assume that for any given ξ ∈ B∗
e , there exists δ >  such that the ap-

proximate solution set S̃ξ (·, ·) exists in [ε, δ) × N(μ). Suppose that conditions (i)-(iv) as
in Theorem . are satisfied. Assume further that for each x ∈ K (μ), F(x,K (μ),μ) + C
is a convex set. Then the approximate solution mapping S̃ : [ε, δ)×N(μ) → X is l.s.c. at
(ε,μ).

Proof Since F(x,K (μ),μ) +C is a convex set for each x ∈ K (μ), by virtue of Lemma .,
it holds that S̃(ε,μ) =

⋃
ξ∈B∗

e
S̃ξ (ε,μ). It follows from Theorem . that for each ξ ∈

B∗
e , S̃ξ (·, ·) is l.s.c. at (ε,μ). Thus, in view of Lemma ., we obtain that S̃(·, ·) is l.s.c. at

(ε,μ). �

The following example illustrates all of the assumptions in Theorem ..

Example . Let Y = R
, C = R


+ := {(x,x) ∈ R

 : x ≥ ,x ≥ } and Z = X = R. Let
B(,  ) be the closed ball of radius / in R

. Let B = [–, ],M = [–, ] and the set-valued
mapping F : B× B×M → Y be defined by

F(x, y,μ) =
(
w(x, y,μ), v(x, y,μ)

)
+ B(, /),

where w(x, y,μ) := y(μ – ) + x(y– x+ ) – y+ and v(x, y,μ) := y(μ – ) – x + xy + .
Define a set-valuedmapping K :M → X for allμ ∈M, by K (μ) := [–+μ, +μ]∩ [–, ].
We choose e = (, ) ∈ intC, ε = ., μ =  and ξ = (, ). We can see that B∗

(,) =
{(x,x) : x + x = ,x,x ≥ } and  ∈ S̃(,)(ε, ). Further, for any μ ∈ (–, ), there ex-
ists ε ∈ [., .) such that  ∈ S̃(,)(ε,μ). Hence, S̃(,)(·, ·) exists in [., .) × [–, ]. It
is easy to observe that for any y ∈ K (), F(·, y, ) is C-concave on K (). Clearly, condi-
tion (ii) is true. It is obvious thatK (M) = [–, ]. LetN(μ) = [–, ], we can see that F(·, ·, ·)
is uniformly continuous on K (M) × K (M) × N(μ). Finally, we can check that for each
x ∈ [–, ], F(x, [–, ], ) + C is a convex set. Applying Theorem ., we obtain that S̃ is
l.s.c. at (., ).

The following example illustrates that the concavity of F cannot be dropped.

Example . Let Y = R
, C = R


+ and Z = X = R. Let B = [–, ], M = [–, ] and the set-

valued mapping F : B× B×M → Y be defined by

F(x, y,μ) =
[
μx(x – y) – ., 

] × {
x(x – y) – .

}
.

Define a set-valued mapping K : M → X for all μ ∈ M, by K (μ) := [, ]. We choose
e = (, ) ∈ intC, ε = ., μ = . Then, all the assumptions of Theorem . are satisfied

http://www.journalofinequalitiesandapplications.com/content/2014/1/421
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except (iii). Indeed, taking y = , x = , x =  and t = ., we have

(–.,–.) = (–.,–.) – .(,–.) – .(,–.)

∈ [–., ]× {–.} – .
(
[–., ]× {–.})

– .
(
[–., ]× {–.})

∈ F
(
.() + .(), , 

)
– .F(, , ) – .F(, , )

= F(., , ) – .F(, , ) – .F(, , ),

but (–.,–.) /∈ C. The direct computation shows that

S̃(ε,μ) =

⎧⎪⎪⎨
⎪⎪⎩

{, } if μ ∈ (, ],

[, ] if μ = ,

{} if μ ∈ [–, ).

(.)

Clearly, we see that S̃(·, ·) is even not l.s.c. at (ε,μ) since F(·, y,μ) is not C-concave on
K (μ).
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