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Abstract

Four common fixed point theorems for a pair of weakly compatible mappings
satisfying contractive conditions of integral type in metric spaces are proved. The
existence result of bounded solutions for a system of functional equations arising in
dynamic programming is discussed by using one of the common fixed point
theorems obtained in this paper. An example is given to illustrate that our results
extend properly two fixed point theorems due to Branciari and Rhoades.
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1 Introduction and preliminaries

In 2002, Branciari [1] proved an interesting fixed point theorem for a single-valued con-
tractive mapping of integral type satisfying an analog of the Banach contraction principle
in metric spaces. Afterwards many researchers [2—20] extended the result of Branciari and
obtained a lot of fixed point and common fixed point theorems for various single-valued
and multi-valued mappings involving a large amount of general contractive conditions of
integral type in metric spaces, modular spaces, symmetric spaces, fuzzy metric spaces,
cone metric spaces, uniform spaces, and Hausdorff topological spaces etc.

Liu et al. [12] and Rhoades [15] got the existence, uniqueness, and iterative approxi-
mations of fixed points for general contractive mappings of integral type, Djoudi and
Merghadi [8] and Vijayaraju et al. [20] showed several common fixed point theorems for
a pair of weakly compatible mappings satisfying certain contractive mappings of integral
type, Altun and Tirkoglu [3], Altun et al. [5] and Djoudi and Aliouche [7] discussed a few
common fixed point theorems for two pairs of weakly compatible mappings satisfying
an implicit relation and contractive conditions of integral type, respectively, Suzuki [19]
proved that Meir-Keeler contractions of integral type are still Meir-Keeler contractions,
Jachymski [10] discussed that most contractive conditions of integral type given recently
by many authors coincide with classical ones and got a new contractive condition of in-
tegral type which is independent of classical ones, and Sintunavarat and Kumam [17, 18]
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proved Gregus-type common fixed point theorems for tangential multi-valued mappings
satisfying strict general contractive conditions of integral type in metric spaces.

Beygmohammadi and Razani [6], Hussain and Salimi [9], and Mongkolkeha and Kumam
[13] presented more general fixed point and common fixed point theorems for some
integral-type contractions in modular spaces. Murthy et al. [14] proved common fixed
point theorems for different variant of compatible mappings, satisfying a contractive con-
dition of integral type in fuzzy metric spaces. De la Sen [16] investigated the existence
of fixed points and best proximity points of p-cyclic self-mappings in a set of subsets of
a certain uniform space under integral-type contractive conditions. Khojasteh et al. [11]
obtained a fixed point theorem of an integral-type contraction in complete cone metric
spaces. Aliouche [2] proved a common fixed point theorem for two pairs of weakly com-
patible mappings satisfying a contractive condition of integral type in symmetric spaces.
Altun and Tirkoglu [4] established two fixed point and common fixed point theorems
for mappings satisfying contractive conditions of integral type in Hausdorff d-complete
topological spaces.

However, to the best of our knowledge, no one studied the existence and uniqueness
problems of common fixed points for a pair of contractive mappings of integral type sat-
isfying (2.1), (2.13), (2.20), and (2.22), respectively.

The aim of this paper is to show the existence and uniqueness of common fixed points
for the four kinds of weakly compatible mappings (2.1), (2.13), (2.20), and (2.22) in metric
spaces under weaker conditions. As an application, we use Theorem 2.1 to study solvabil-
ity of system of functional equations (2.26). Our results extend, improve, and unify The-
orem 2.1 of Branciari [1], Theorems 5.1-5.3 of Liu et al. [12], Theorem 2 of Rhoades [15],
Theorem 1 of Bhakta and Mitra [21], Theorem 3.1 of Liu and Kang [22], and Theorem 3.2
of Liu et al. [23]. A nontrivial example with uncountably many points is included.

Throughout this paper we assume that R* = [0, +00), Ny = {0} UN, where N denotes the

set of all positive integers, and

D= {(p: ¢ : R* — R" satisfies the requirement that ¢ is Lebesgue integrable,

summable on each compact subset of R* and / o(t)dt >0 for each e >0 },
0

W= {1//: ¥ :R* — R* is upper semi-continuous,

¥(0) = 0 and ¥ (¢£) > O for each ¢ > O}.

Recall that a pair of self-mappings f and g in a metric space (X, d) are said to be weakly
compatible if they commute at their coincidence points.

The following lemma plays an important role in this paper.

Lemma 1.1 ([12]) Let ¢ € ® and {r,},cn be a nonnegative sequence with lim,_, » 1, = a.
Then

lim (p(t)dt:/ o(t) dt.
0 0

n—00
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Lemmal.2 ([22]) LetE beaset,p and q: E — R be mappings. If opt,c p(y) and opt . q(y)
are bounded, then

optp(y) - Optq(y)‘ < sup|p(y) - q0)|.
yeE yeE yeE

2 Common fixed point theorems
Now we show the existence and uniqueness of common fixed points for four classes of
weakly compatible mappings satisfying contractive conditions of integral type.

Theorem 2.1 Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

a(fxfy) M (x,y)
/ ot)ydt <y (/ o(t) dt), Vx,y € X, (2.1)
0 0

where (¢, ) € ® x V and

d(fx, da(fy,
Mi(x,y) = max{d(gx,gy),d(fx,gx),d(fy,gy), (. 2y) ; (f,8%)

d(fx,gy)d(fy,gx) d(fx,gx)d(fy,gx) d(fy,gy)d(fx,gy)
L+d(gr,gy) ~ 2[1+d(gr,gy)] ’ 2[1+d(gx,gy)]

’

}, Vx,y € X. (2.2)

Iff(X) € g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Proof Firstly we prove that f and g have at most one common fixed point in X. Suppose
that f and g possess two common fixed points a,b € X and a # b. It follows from (2.1),
(2.2), and (p, ) € ® x ¥ that

d(fa,gb) + d(fb, ga)
2

d(fa,gb)d(fb, ga) d(fa,ga)d(fb,ga) d(fb,gb)d(fa,gb)}
1+d(ga,gb) ° 2[1+d(ga,gh)] " 2[1+d(ga,gb)]

’

M;i(a,b) = max{d(ga,gb), d(fa,ga), d(fb, gb),

d*(a,b)

= d ,b,0,0,d ,b,710)0
max{ (@0),0,0,d(a,b), === }

=d(a,b)

and

d(a,b) d(fa,fb) My (a,b)
fo o(6)dt = /0 w(t)dt§w</o w(t)dt>

d(a,b)
=w< f w(t)dt)
0
d(a,b)
d;
< /0 o(0)dt

which is impossible.

Secondly we show that f and g have a common fixed point in X. Let xy be an arbitrary
pointin X. Since f(X) C g(X), it follows that there exists a sequence {x,},cn, in X satisfying
fxn = gxus for each n € Ny. Put d, = d(fx,, fx,.1) for all n € Ny.
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Assume that d,,, = 0 for some n € Ny. It follows that

Sxng = fong+1 = Gong1. (2.3)

Because f and g are weakly compatible, by (2.3) we get

fzxn(yrl :fgxnoﬂ :gfxnoﬂ :g2xn0+1~ (24)

Now we assert that fx,.1 = f*%,,.1. Otherwise we infer that in view of (2.1)-(2.4) and
(oY) edx V¥

Ml (fxn0+1¢ Xng +1)
= max { d(gfxno +1:8%ng +1); d(fzxn0+ljgfxno+1)’ d(fxn0+lrgxn0+l);

A% 11, 8%ng 1) + Ao 11, Gf¥ng 1) A X1, 80+1)8 Py 11, Gf¥ng 1)
2 ’ 1+ d(gfxnoﬂygxnoﬂ)

d(fzxno+lrgxn0+l)dvxn0+1!gxno+l) d(fxn()+llgxn0+l)dvzxn0+l’gxno+l) }
2[1 + d(gfxn0+1;gxno+1)] ' 2[1 + dwxno+1)gxn0+l)]

’

= maX{d (F2%ng 41, f%ng+1)5 0,0, A(F 2% 41, fng 41 )

d(fzxnoﬂyfxno+1)d(fxno+l:f2xno+l) 0 0}
1+ d(fzxn0+1»fxno+l) 7

= d(fono +10f%n, +l)

and

d(fzxn0+1fxn0+1) M (fxng+1%n0+1)
[ vde < o0)at)
0

0
d(f2xn0+l:fxno+l)
(| o0)dt)
0

/d(fzxnoﬂ vfxn0+1)

< p(t) dt,

0

which is absurd. Therefore fx, .1 = f2%,,+1, which together with (2.3) means that fx,,.; is
a common fixed point of f and g in X.
Assume that d,, # 0 for all # € Ny. Observe that

dn—ld(fxn+17fxn—l) < d(fxn+lrfxn—l) < dn—l + dn
- 2

n-1r%nj, V . 2.
20+d, 1) — ) < max{d,_1,d,}, VYneN 2.5)

It follows from (2.2) and (2.5) that
Ml (xn:xn+1)

= max { d(gxmgxnﬂ)r d(fxmgxn)» d(fxnﬂ:gxnﬂ);
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d(fxmgxnﬂ) + d(fxnﬂygxn) d(fxn:gxnﬂ)d(fxnﬂ;gxn)

2 ’ 1+ d(gxn;gxnﬂ)
A%, §%n)A (X141, 8%0)  AfXni1, §5n41)A(fXns §Xns1)
2[1 + d(gxmgxnﬂ)] ’ 2[1 + d(gxmgxn+l)]

= maX{d(fxn_l,fxn), A(fxn, frtn1), A1, f5n),

d(fxmfxn) + d(fxwrl:fxn—l) d(fxmfxn)d(fxnﬂ:fxn—l)
2 ’ 1+ d(fxn—lrfxn) ’
d(fxnrfxn—l)d(fxn+1:fxn—l) d(fxnﬂ:fxn)d(fxmfxn) }
201 + d(fxp-1,fx4)] T 21+ a(fx,_1,fx)]

=maxld, 1,d, 1, d,, d(fxnﬂxfxn—l)’o, dn—ld(fxrﬁl)fxn—l)’o
2 2 +d,_1)

=max{d,_1,d,}, VneN. (2.6)

Ifd, > d,_; for some n € N, using (2.1), (2.6), and (¢, ¥) € ® x ¥, we conclude that

dy d(fxn»fxml) Ml(xmxnﬂ)
f o(6)dt - / <p(t)dt§w< / w(t)dt>
0 0 0

dy
= w<f0 w(t)dt)

dn
< / o(t) dt,
0

which is a contradiction. Hence d,, < d,,_; for each n € N. Consequently, the sequence

{dy}nen, is nondecreasing and bounded, which imply that there exists a constant W with
lim,ood, =W >0.

Next we show that W = 0. Otherwise W > 0. Taking the upper limit in (2.1) and using
(2.6), (p,¥) € ® x ¥, and Lemma 1.1, we infer that

w dy A(fxn fens1)
/ o(t)dt = lim sup/ @(t)dt = lim sup/ o(t)de
0 0 0

n—00 n—00

M1 (%n%n41) dp1
< limsup ¥ </ o(t) dt) = limsup ¥ </ o(t) dt>
n—00 0 n—00 0

dp1 w
< w(limsup/0 o(t) dt) = w</0 o(t) dt)

w
d)
</0 o(t)dt

which is impossible. Therefore, W = 0, that is,
lim d, = 0. (2.7)
n—0oQ

Now we prove that {fx,}.cn, is a Cauchy sequence. Suppose that {fx,},cn, is not a
Cauchy sequence, which means that there exist a constant ¢ > 0 and two sequences
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{m(p)}nen and {n(p)},en in N such that m(p) < n(p) < m(p + 1) and

d(fxm(p),fxn(p)) >g, d(fxm(p),fx,,(p)_l) <g, VpelN (2.8)

Note that

Ay Sonp) < Axn)-1:femp) + dnpy-1, VP €N;

|d () o) = APy fonpy-1)| < dur1, VP EN;

(2.9)
|y Sn) = A1 fon(p)| < dmip1, VP €N
|AFtmp)-1: o)1) = A mp)—1:fonp)| < dup-1,  Vp €N
By virtue of (2.7)-(2.9), we deduce that
&= lim d(fitn) fomp) = i (), fong)-1)
= plin;o AfXm(p)-15fXnp)) = pliﬂgo AfXm(p)-15 fXn(p)-1)- (2.10)

In light of (2.1), (2.2), (2.7), (2.10), (¢, ¥) € & x ¥, and Lemma 1.1, we conclude that

lim M; (xm(p), x,,(p))

p—>00

= lim max{d(gxm(,,),gxn(p)),d(fxm(p),gxm@), A(fn(p) &n(p))s

A% &n(p) + AfxXn(p) §¥m(p))  AUXm(p)r &n(p))AU%n(p) &Xm(p))
2 ’ 1+ d(gxm@),gxn(p))
AFm(p)r 8m(p)) A n(p)> &mip)) d(fxnw,gxn(p))d(fxm(p>,gxn<p>)}
201+ d(@mipy @np)]  2[L+ d(@hmip) GFn(p)]

= plingo max { AfXm(p)-1fEn)-1) AXm(p) s fXmp)-1)» () fon(p)-1),

AfXmip) fEnp)-1) + Q) fomp-1) A Em(p)s fon(p)-1) AP n(p)s fomp)-1)
2 ’ 1+ d(fxm(,,)_l,fxn(p)_l)
Am(p)fmp)-1)An () fomp)-1) d(fxn(p),fxn(p>1)d(fxm(p),fxn<p>1)}
201+ d(fXmp)-1: -] 2[L+ A1 fnp)-1)]

82
:max{s,0,0,s, —,0,0}
l+e¢
=¢

and

e At fon(p)) MiEp(p) n(p))
/ (t)dt = lim sup/ o(t) dt < limsup </ o(t) dt)
0 0

p—oo Jo p—>oo

M1 () %n(p)) €
< w<lim sup/ o(t) dt) = 1//(/ o(t) dt)
p—>00 0 0

<A%ma
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which is a contradiction. Hence {fx,},cn, is a Cauchy sequence. Since g(X) is complete,
there exist a,z € X with

lim fx, = lim gx, =a =gz (2.11)
n—00

n—00

Suppose that fz # a. Making use of (2.1), (2.2), (2.11), and (¢, ¥) € ® x ¥ and Lemma 1.1,
we arrive at

lim Mi(z,x,) = lim max{d(gz,gxn),d(fz,gz),d(fxn,gxn),
n—0oQ0 n— 00
d(fz, gxn) + d(fxn, g2) d(fz, gx,)d(fx,, g2)
2 © 1+d(gz,gx,)

d(fz, gz2)d(fx,, gz) d(fx,,gx,)d(fz, gx,) }
21 +d(gz, gx,)] " 2[1 +d(gz, gx,)]

d(fz,a) + d(a,a)
2
d(fz,a)d(a,a) d(fz,a)d(a,a) d(a,a)d(fz,a)
1+d(aa)  2[1+daa)]’ 2[1+da a)l }

’

= max { d(a,a),d(fz,a),d(a, a),

d ]
- max{O,d(fz, 4),0, @ 0, 0,0}

= d(fz,a)

and

d(fz,a) d(fz,fxn) Mi(z,xn)
/ o(t)dt = lim sup/ @(t)dt <limsup ¢ (/ o(t) dt)
0 0 0

n—00 n—00

My (z,%1) d(fz,a)
< 1//<1im sup/ o(t) dt) = 1//(/ o(t) dt)
n—00 0 0

d(fz,a)
‘ / o(t)dt,
0

which is a contradiction. Thus a = fz = gz. Since f and g are weakly compatible, it follows
that

fa=f*z=fgz=gfz=g’2=ga. (2.12)

Suppose that a # fa. In view of (2.1), (2.2) (2.12), and (¢, V) € ® x ¥, we infer that

d(fz, d(fez,
M (z,g2) = max{d(gz, 292), d(fz,g2), d(fgz, gg2), (fz, 88z) ; (fegz gz)’

d(fz, ggz)d\fgz, g2) d(fz g2)d(fgz, gz) d(fgz,ggZ)d(fz,ggZ)}
1+d(gz.ggz) 201 +d(gz,gez)]’ 2[1+d(gz ggz)]

2
= max{d(a,fa), 0,0, d(a.fa) ; difa,a) s lcj- i;:j;)l) ,0, 0}

=d(a,fa)
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and

d(afa) d(fzfgz) M (z,g2)
/ o()dt = / o(6)dt < w( / o(t) a't)
0 0 0

d(afa)
:w< / o0 dt)
0
d(afa)
</ o(0)dt,
0

which is absurd. Hence a = fa. It follows from (2.12) that f and g have a common fixed
point a € X. This completes the proof. d

Theorem 2.2 Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

d(fxfy) Ma(xy)
/ p)dt <y </ o(t) dt>, Vx,y € X, (2.13)
0 0

where (¢, V) € ® x V and

d(fy,gx) + d(fx,
M(x,y) :max{d(gx,gy),d(fx,gx),d(fy’gy), (7:& )2 (5 gy)’

d(fx,gy)d(fy,gx) d(fx,gy)d(fx,gx) d(fy,gx)d(fy,gy)
L+d(frfy)  2[L+d(fx,fy)] 201+ d(fx,fy)]

}, Vx,ye X. (2.14)

Iff(X) C g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Proof Firstly we prove that f and g have at most one common fixed point in X. Suppose
that f and g possess two common fixed points a,b € X and a # b. It follows from (2.13),
(2.14), and (¢, ¥) € ® x ¥ that

d(fb, ga) + d(fa,gb)
2
d(fa, gb)d(fb,ga) d(fa,gb)d(fa,ga) d(fb,ga)d(fb,gb) }
L+d(fa,fb) ~ 2[1+d(fa,fb)] ~ 2[1+d(fa,fb)]

d*(a, b)
——,0,0
1+d(a,b)

)

My(a,b) = max{d(ga,gb),dﬁga,fa),d(fb,gb),

= max{d(a, b),0,0,d(a,b),

=d(a,b)

and

d(a,b) d(fa,fb) My (a,b)
/ o()dt - / o(t)dt < vf( / o(0) dt)
0 0 0

d(a,b)
:w< /0 o0 dt)
d(a,b)
dt,
< /0 o(t)dt

which is absurd.
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Secondly we show that f and g have a common fixed point in X. Let xy be an arbitrary
pointin X. Since f(X) C g(X), it follows that there exists a sequence {x,},cn, in X satisfying
fx, = gy for each n € Ny. Put d,, = d(fx,, fx,,1) for all n € Ny.

Assume that d,, = 0 for some n € No. Now we assert that fx,, .1 =f ny,0+1. Otherwise we
infer that in light of (2.2), (2.4), (2.13), (2.14), and (¢, ) € & x ¥

M, (fxno +1» xno+1)
= max { d(gfxnoﬂrgxno +1)’ d(f2xr10+1’gfxn0+1)r d(fxn0+1vgxn0+1);

d(fxn0+1;gfxno+l) + d(fzxn0+17gxn0+1) d(fzxnoﬂrgxno+l)d(fxn0+1:gfxno+l)

2 ’ 1+ d(fzxnoﬂ’fxnoﬂ) ’
d(fzxno+1’gxn0+1)d(fzxn0+1:gfxng+l) d(fxno+1:gfxn0+1)d(fxn0+1rgxn0+l) }
2[1 + d(fzxngﬂ;fxnoﬂ)] ’ 2[1 + d(fzxnoﬂrfxnoﬂ)]

= max{d(fzxn0+1,fxn0+1), 0) O; d(fzxnoﬂvfxnoﬂ);

d(fzxno+lrfxn()+l)d(fxno+l’f2xn0+l) 0 0}
1+ d(f2xn0+lrfxn0+l) T

= d(f2xn0+1rfxn0 +1)

and

d(fzxnoﬂ'fxnoﬂ) My (fxnoﬂvxnoﬂ)
[ vode < o)
0

0
d(f2xn0+l:fxno+l)
(| o0)at)
0

/’d(fzxnoﬂ SfEng+1)

< p(t) dt,

0

which is absurd. Therefore fx,; 41 = fx,,+1, which together which (2.3) means that fx,1
is a common fixed point of f and g in X.
Suppose that d,, # 0 for all n € Ny. Using (2.5), (2.13), and (2.14), we deduce that

M2 (xn: xn+1)

= max { d(gxnrgx}ﬁ-l)r d(fxn’gxn)7 d(fxn+l’gxn+l);

d(fxnﬂrgxn) + d(fxmgxnﬂ) d(fxn:gxn+l)dvxn+1’gxn)
2 ’ 1+ d(fxy, fxu)
A(fn, 8%ni1)A(fn, 8%n)  A(fni1, 8%0)A (X1, §%041)
2[1 + d(fxm xn+1)] ’ 2[1 + d(fxnvfxnﬂ)]

’

= maX{d(fxn_l,fxn), A(fxn, frtn), A1, f50n),

d(fxnﬂ’fxn—l) + d(fxmfxn) d(fxmfxn)d(fxnﬂ:fxn—l)
2 ’ 1+ d(fxnxfxn+l) ’
d(fxmfxn)d(fxmfxn—l) d(fxn+1)fxn—l)dvxn+lvfxn) }
201+ d(fxn:fxnﬂ)] ’ 201+ d(fxn:fxnﬂ)]
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=max{d, 1,d,1,d,, d(fxn+l;fxn—l)’0’ 0, A(fxps1, fxn-1)dy
2 2(1+dy,)

=max{d,_1,d,}. (2.15)

If d, > d,,-1 for some n € N, making use of (2.13), (2.15), and (¢, ¥) € ® x ¥, we obtain

dn d(fxnfxnﬂ) MZ(xn:xnﬂ)
/'aww=/ ¢mwsw(/ wmm)
0 0 0

dy
=w<£ wmdq

dn
< / o(t) dt,
0

which is impossible. Thus d,, < d,,_; for each n € N. Hence the sequence {d,,} N, is nonde-
creasing and bounded, which imply that there exists a constant Q with lim,,_, d, = Q > 0.

Next we show that Q = 0. Otherwise Q > 0. Taking the upper limit in (2.13) and using
(2.15), (p, ¥) € ® x ¥, and Lemma 1.1, we infer that

Q dy d(fon frn.1)
f o(t)dt = limsup/ o(t)dt = limsup/ o(t) dt
0 0 0

n— 00 n—oo

Mo (% %p41) dp-1
< limsup ¥ (f o(t) dt) =limsup (/ o(t) dt)
n—00 0 n—00 0
dp-1 Q
< w<lim supf o(t) dt) = W(/ o(t) dt)
n—00 0 0

Q
< /0 o(t) dt,

which is absurd. Therefore, Q = 0, that is,

limd,=0, VneN. (2.16)

n—00

Now we claim that {fx,},cn, is a Cauchy sequence. Suppose that {fx,},cn, is not a
Cauchy sequence. According to (2.10), (2.13), (2.14), (2.16), and (¢, ) € ® x ¥ and Lem-
ma 1.1, we have

plingo M (xm(p): xn(p))
= lim max{d(gxm(p),gxn(p)),d(fxm(p)ygxm(p))» A(fn(p) &n(p))>

p—>00

A(fxn(p) &mp) + Afxmp)r &n) AXm(p) §5n)AfXn(p)r &Em(p)
2 ’ 1+ d(fxm(p),fxn(p))

AXm(p)r §%n()) A X m(p)s &m(p)) d(fxn(p)7gxm(p))d(fxn(p):gxn(p))}
2[1 + d(fxm(p)’fxn(p))] ’ 2[1 + d(fxm(p):fxn(p))]

= lim max { A(fxmp)-1:S%n(p)-1) AFEmp) fomp)1)s A En(p) fon(p)-1),

p—>x

Afxnp) fomp)-1) + Afxmp) fonp)-1)  AFxmp), fonp)-1)AS %), flmp)-1)

2 1+ d(fx,,,(p),fx,,(p))
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Axm(p) f5n(p)-1) A% m(p), fom(p)-1) d(fxn(p),fxm(p>1)d(fxn(p),fxn<p>1)}
2[1 + d(fXm(p)s fXnp))] ’ 2[1 + d(fXim(p), fXn(p))]
82
= max{s, 0,0,s, —,0,0}
l+e

=g (2.17)

and

e Afx(p) fon(p)) Mo Fy(p) %n(p))
/ () dt < lim sup/ o(t) dt < limsup ¥ </ o(t) dt)
0 0

p—>oo Jo p—00

M (Epm(p) %n(p)) €
<y (lim sup/ o(t) dt) <y (/ o(t) dt)
p—> 0 0 0

<A}ma

which is a contradiction. Hence {fx,}.en is a Cauchy sequence. Since g(X) is complete,
there exist 4,z € X such that

lim fx, = lim gx, =a=gz. (2.18)

n—00

Suppose that fz # a. By means of (2.13), (2.14), (2.18), (¢, ) € ® x ¥ and Lemma 1.1, we

arrive at

lim M;(z,x,) = lim max{d(gz,gxn),d(fz,gz),d(fx,,,gxn),
d(fxn, gz) + d(fz,gx,) d(fz, gxn)d(fx,, g2)
2 T 1+ d(fz,fx,)

d(fz, gx,)d(fz, g2) d(fxn,gZ)d(fxmgxn)}
2[1 + d(fz, fx,)] T2+ d(fz, fx,)]

=HMX{d@LaLdvzaxduLax?ﬁﬁfl%éﬂézﬁ,

d(fz,a)d(a,a) d(fz,a)d(fz,a) d(a,a)d(a,aq)
1+d(a,a) 20 +d(fz,a))’ 2[1+d(fz,a)] }

= max{o,d(fz, a),0, d(fz, a) 0 d*(fz,a) O}

2 T2+ d(fz,a)]’
= d(fz,a)

and

d(fz.a) Aa(fz,fxn) My (zxn)
/ o(t)dt = lim sup/ @(t)dt <limsup ¢ (/ o(t) dt)
0 0 0

n—0o0 n— o0

Mo (z,%n) d(fz,a)
< w<lim sup/ o(t) dt) = w(/ o(t) dt)
n—00 0 0

d(fz,a)
ﬁ/ olt)dt,
0
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which is a contradiction. Therefore, a = fz = gz. Because f and g are weakly compatible, it
follows that

fa=f*z=fez=gfz=g"2=ga. (2.19)
Suppose that a # fa. In view of (2.13), (2.14) (2.19), and (¢, ¥) € ® x W, we acquire

d(fgz,g2) + d(fz,g°2)
5 ,
d(fz,g*2)d(fgz, gz) d(fz,g*2)d(fz, gz) d(ng»gZ)d(fgz,g%)}
1+d(fz.fez) 21 +d(fz,fgz)] ~ 2[1 +d(fz.fgz)]

d(fa,a) + d(a,fa) d*(a,fa) 0.0
2 "1+da,fa) }

M;(z,g2) = max { d(gz,8°2), d(fz,gz), d(fgz.g°2),

= max { d(a,fa),0,0,

=d(a,fa)

d(afa)
‘ / olt)dt,
0

which is absurd. Hence a = fa. It follows from (2.13) that f and g have a common fixed
point a € X. This completes the proof. d

Similar to the arguments of Theorems 2.1 and 2.2, we conclude the following results and

omit their proofs.

Theorem 2.3 Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

d(fx,fy) M3 (x,y)
/ p)dt <y </ @(t) dt), Vx,y € X, (2.20)
0 0

where (¢, V) € ® x V and

Ms(x,y) = max{d(gx,gy), d(fx,gx),d(fy, gy),

d(fy,gx) + d(fx,gy) d(fx,gy)d(fy, gx)
2 ©1+d(gx,gy)
min{ d(fx, gx)d(fy,gx) d(fy,gy)d(fx,gy)
1+d(gx,gy) T 1+ d(gx,gy)

} }, Vx,y € X. (2.21)

Iff(X) C g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Page 12 of 19
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Theorem 2.4 Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

d(fx,fy) My (xy)
| ewar=y ( | e dt), VoyeX, (2.22)
0 0

where (¢, V) € ® x V and

My(x,y) = max{d(gx, 2y),d(fx, gx), d(fy, gy),

d(fy,gx) + d(fx,gy) d(fx,gy)d(fx, gx)
2 © 1+d(fy,gw)
mm{ d(fx,gy)d(fx, gx) d(fy,gx)d(fy,gy)
L+d(fx,fy) =~ 1+d(fx,fy)

} }, Vx,y € X. (2.23)

Iff(X) C g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Remark 2.5 In case f = g and () = ¢t for each ¢ € R*, where ¢ is a constant in (0,1),
then Theorems 2.1-2.4 reduce to four results which include Theorem 2.1 in [1] and The-
orem 2 in [15] as special cases. Example 2.6 below shows that Theorems 2.1-2.4 extend
substantially Theorem 2.1 in [1] and Theorem 2 in [15].

Example 2.6 Let X = R* be endowed with the Euclidean metric d(x,y) = |x — y| for all
x,y € X.Let f : X — X be defined by

3, VxeX-{5},
4, x=5.

fi=

Now we prove that Theorem 2.1 in [1] and Theorem 2 in [15] cannot be used to prove
the existence of fixed points of the mapping f in X. Suppose that there exist ¢ € ® and
¢ € [0,1) satisfying the condition of Theorem 2 in [11], that is,

a(fx,fy) m(x,y)
/ () dt < c/ p()dt, Vx,yeX, (2.24)
0 0
where
m(x,y) = max{d(x,y), d(x, fx), d(y, ), %[d(y,fx) + d(x,fy)] }, Vx,y € X. (2.25)

Taking (x9,%0) = (4,5) and using (2.24), (2.25), ¢ € ®, and ¢ € [0,1), we get

m(xo,0) = maX{d(xo,yo), d(x0,f%0), A0, o), %[d()’o,fxo) +d(x0,/y0)] }

= max{d(4, 5),d(4,3),d(5,4), %[d(s, 3) +d(4, 4)]}

=1
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and

1 d(fxo.fy0) m(x0,0) 1
/ o(t)dt = / e(t)dt < c/ o(t)dt = c/ o(t)dt
0 0 0 0

1
d’
</0g0(t) t

which is a contradiction. Note that Theorem 2 in [15] is a generalization of Theorem 2.1
in [1]. Therefore, Theorem 2.1 in [1] is also futile in proving the existence of fixed points
for the mapping f in X.

Define three mappings g: X — X and ¢,y : R* — R* by

3, VxeX\({5,10},
gx =410, x=5,

4, x=10,
In(1+¢
o= 0D o R
1+¢
and
100sin¢, Vte[0,1],
V() =

£, Vt € (1, +00).
It is clear that (¢,¢¥) € ® x W, f and g are weakly compatible in X, f(X) = {3,4} <
{3,4,10} = g(X) and g(X) is complete. Let x,y € X with x < y. In order to verify (2.1), (2.3),

(2.20), and (2.22) hold, we have to consider the following four possible cases:
Case 1. x,y € X \ {5}. It follows that

d(fx.fy) d(3,3) M;(xy)
/ go(t)dt:/ w(t)dt:Ogtp(/ go(t)dt), Vie {1,2,3,4).
0 0 0

Case 2. x = 5 and y = 10. Observe that  is strictly increasing in (1, +00) and
M;(x,y) > d(gx,gy) =d(10,4) =6, Vie{l,2,3,4}.

It is easy to verify that

d(fx,fy) d(4,3) 1 1 1
/ go(t)dt:/ (p(t)dtz/ e@®dt=-1n’2< =<1
0 0 0 2 4

< l1n47= ¢<11n27) =1/f(/6g0(t)dt>
Mi(xry)

< w(/ o(t) dt>, Vie(1,2,3,4}).
0

Case 3. x =5 and y € (5,10) U (10, +00). Note that ¥ is strictly increasing in (1, +oo) and

M;(x,y) > d(gx,gy) =d(10,3) =7, Vie{l,2,3,4}.
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It is clear that

d(fx,fy) d(4,3) 1 1 1
/ go(t)dt:/ (p(t)dt:f pt)dt==-1n’2< =<1
0 0 0 2 4

1148— 1128 = ’ (¢)dt

<gs=v(yurs)=v( [ vwa)
M;(x,y)

w([ w(t)dt>, vie (1,2,3,4)
0

Case 4. x < 5 and y = 5. Note that ¥ is strictly increasing in (1, +oo) and
M;(x,y) > d(gx,gy) =d(3,10) =7, Vie{l,2,3,4}.

Clearly we have

d(fx,fy) d(3,4) 1 1 1
/ go(t)dt:/ (p(t)dt:/ pt)dt==-1n’2< =<1
0 0 0 2 4

1148— 1128 = ’ (¢)dt

<gns=v(yus)=v([ owa)
M;(x,y)

sw</ <p(t)dt>, vie (1,2,3,4)
0

That is, (2.1), (2.3), (2.20), and (2.22) hold. Hence each of Theorems 2.1-2.4 guarantees
that f and g possess a unique common fixed point in X.

Finally, we use Theorem 2.1 to discuss solvability of the following system of functional

equations arising in dynamic programming:

flx) = opg{u(x,y) +H(x,9,f (a(x,))) }, Vx €S,
ye

(2.26)
g) = opt{v(x,9) + G(x,5,g(b(x,9))}, VxeS,

yeD

where opt stands for sup or inf, Z and Y are Banach spaces, S C Z is the state space, D C Y
is the decision space, x and y signify the state and decision vectors, respectively, a and
b represent the transformations of the process, f(x) and g(x) denote the optimal return
functions with the initial state x, B(S) denotes the Banach space of all bounded real-valued
functions on S with norm

[[w] = sup{!w(x)| ‘x € S} for any w € B(S).

Example 2.7 Let #,v:SxD—>R,a,b:SxD— S H,G:SxDxR—Rand (¢,¥) €
® x W satisfy the following conditions:
u,v,H and G are bounded; (2.27)
foh=gfh for each h € B(S) with fh = gh; (2.28)
f(B(S)) - g(B(S)) andg(B(S)) are complete (2.29)
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and
|H (x,,h(a(x,y))-H (x,y,w(a(x,y)))| M ()
/ o) dt < w( / o(0) dt),
0 0
Y(x,y,h,w) € S x D x B(S) x B(S), (2.30)

where the mappings f and g are defined by

Sh(x) = opt{u(x,y) + H(x, 3, h(alx,9)))},  Vix,h) €S x B(S),

D
7 (2.31)
gh(x) = O%{v(x,y) + G(x,y,h(b(x,y)))}, VY(x,h) € S x B(S)
ye
and
M () = max{ Igh — gwll, Iff — ghll, fw — gwl,
[l —gwll + Ilfw—ghll |ifh—gwllfw—ghl
2 o1+ |gh-gw|
fh = ghllllfw —ghll |ifw—gwllifh—gwl }
) . VhweB(S). 2.32
20+ lgh—gwl) 21+ ligh—gwl) ) (2:32)

Then the system of functional equations (2.26) has a unique common solution w € B(S).

Proof It follows from (2.27) that there exists M > 0 satisfying

v(x,y)|,

H(x,y,8)|, (x,y,t)|:(x,y,t)eSxDxR}§M. (2.33)

sup{ ‘u(x,

It is easy to see that f and g are self-mappings in B(S) by (2.31), (2.33), and Lemma 1.2. It
is clear that Theorem 12.34 in [24] and ¢ € ® yield, for each ¢ > 0: there exists § € (0, M)
satisfying

/ o(t)dt <e, YCC[0,3M] with m(C) <3, (2.34)
c

where m(C) denotes the Lebesgue measure of C.
Let (x,,w) € S x B(S) x B(S). Suppose that opt yep = infyep. Clearly (2.31) implies that
there exist y,z € D satisfying

) > ul,) + H(xy, h(a(x, ) - 5
fw@>M&@+H@z w(ax,2))) - 8
Sh(x) < ulx,z) + H(x, 2, h(a(x,2)));
Swlx) < ulx,y) + H(x,y, w(a(x,9))),

which means that

1) = fiwlx) > H(x, 3, h(a.9))) = H (x5, w(a(x.))) - 8
> —max{|H (x,y,h(a(x,)) - H(xy w(alx,))|,
|H (x,2, h(a(x,2))) - H(x,z,w(a(x,2)))|} - 8
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and
h(x) = fw@) < H(xz,h(alx,2))) - H(x2,w(a(x2))) + 8
< max{|H(x,y,h(a(x,y))) — H(x,y, w(a(x,9)))|,
|H (x,2,h(a(x,2))) - H(x,z,w(a(x,2)))|} + 6,
which yield

’

[fh(x) - fw(x)| < max{|H (x,y, h(a(x,y))) - H(x,y, w(a(x,)))
|H (x,2,h(a(x,2))) - H(x,z, w(a(x,2)))|} + 8
(

= max{|H(x, 5, h(a(x,y))) - H(x,y, w(a(x,p)))| + 6,
|H (x,2,h(a(x,2))) - H(x,z,w(a(x,2)))| + §}. (2.35)

Similarly we infer that (2.35) holds also for Opt,p = sup,.p. Combining (2.31), (2.34), and
(2.35), we arrive at

[fh(x)~fw(x)| |H (xy,h(a(x,y)~H (xy,w(a(xy))|+8
/ p(t)dt < max{/ o(t) dt,
0 0

|H(x,2,h(a(x,2)))—H (x,z,w(a(x,2)))|+6
/ o(t)dt }

0
|H (x,y,h(a(x,y))~H (x,y,w(a(x,9)))]
= max{ / o(t)dt
0

|H (x,,h(a(x,y)-H (x,y,w(a(x,)))|+8
. / o(0)dt,
|

H(x,y,h(a(x,y)))-H (xy,w(a(x,y)))|

|H(x,z,h(a(x,2)))-H (x,z,w(a(x,2)))|
/ o(t) dt
0

|H (x,z,h(a(x,2)))-H (x,z,w(a(x,z))) | +6
+ / o(t)de }
\

H (x,z,h(a(x,2)))-H(x,z,w(a(x,2)))|

|H (x,y,h(a(x,y))~-H (x,y,w(a(x,9)))]
/ p(0)dt,

< max{
0

|H(x,z,h(a(x,2)))—H (x,z,w(a(x,2)))|
| o) dt}

0

|H (x,p,h(a(x,y)))-H (x,y,w(a(x,9)))|+8
+ max{/ @(t)dt,
|

H (x,y,h(a(x.9))—H (x,y,w(a(x.9)))|

|H(x,z,h(a(x,2)))—H (x,z,w(a(x,2)))| +8
/ 0 dt}
\

H(x,z,h(a(x,2)))-H (x,z,w(a(x,2)))|

M ()
< 1//(/0 o(t) dt> +&, Vxhw)eS x B(S) x B(S),

which means that

fh—fwl M ()
/ o@®)dt <y (/ o(t) dt) +¢&, Vh,we B(S),
0 0
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letting ¢ — 0" in the above inequality, we deduce that

fh—fwl M (hw)
/ ot)dt <y </ o(t) dt), VYh,w € B(S).
0 0

Thus Theorem 2.1 ensures that the mappings f and g have a unique common fixed point
w € B(S), which is a unique common solution of the system of functional equations (2.26).
This completes the proof. d

Remark 2.8 The conclusion of Example 2.7 generalizes and improves Theorems 5.1-5.3
in [12], Theorem 1 in [21], Theorem 3.1 in [22], and Theorem 3.2 in [23].
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