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1 Introduction
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H; and H, respec-
tively. The split feasibility problem (SFP) is formulated as

to finding x* € C and Ax* € Q, (1.1)

where A : H; — H, is abounded linear operator. In 1994, Censor and Elfving [1] first intro-
duced the SFP in finite-dimensional Hilbert spaces for modeling inverse problems which
arise from phase retrievals and in medical image reconstruction [2]. It has been found
that the SFP can also be used in various disciplines such as image restoration, and com-
puter tomograph and radiation therapy treatment planning [3—-5]. The SFP in an infinite-
dimensional real Hilbert space can be found in [2, 4, 6-10].

Assuming that the SFP is consistent, it is not hard to see that x* € C solves SFP if and

only if it solves the fixed point equation

x* = Pc(I - yA*(I - Po)A)x",
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where P¢ and P are the metric projection from H; onto C and from H, onto Q, respec-
tively, y > 0 is a positive constant and A* is the adjoint of A.
A popular algorithm to be used to solve SFP (1.1) is due to Byrne’s CQ-algorithm [2]:

g = Pe(l - yA* (I - Po)A)x, k=1,

where y € (0,2/A) with A being the spectral radius of the operator A*A.
Recently, Moudafi [11] introduced the following split equality problem (SEP):

to find x € C,y € Q such that Ax = By, (1.2)

where A : Hy — Hs and B: H, — Hj3 are two bounded linear operators. Obviously, if B = 1
(identity mapping on Hy) and Hs = Hj, then (1.2) reduces to (1.1). This kind of split equality
problem (1.2) allows asymmetric and partial relations between the variables x and y. The
interest is to cover many situations, such as decomposition methods for PDEs, applications
in game theory, and intensity-modulated radiation therapy.

In order to solve the split equality problem (1.2), Moudafi [11] introduced the following
relaxed alternating CQ-algorithm:

Xrs1 = Pey (xx — y A*(Axy — Byk)),
Vi1 = Pk + BB* (Axy — Byi)),

where

Cr = {x € Hsclxi) + (iox — i) <0}, & € dc(wi),
(1.4)

Qi = {y € Ha;q(y) + (o y — i) <O}, 1k € dg (),

and ¢: H; — R (respectively g : H, — R) is a convex and subdifferentiable function. Under
suitable conditions, he proved that the sequence {x,} defined by (1.4) converges weakly to
a solution of the split equality problem (1.2).

Each nonempty closed convex subset of a Hilbert space can be regarded as a set of
fixed points of a projection. In [12], Moudafi and Al-Shemas introduced the following split
equality fixed point problem:

find x € C:=F(S),y € Q:= F(T) such that Ax = By, (1.5)

where S: Hy — H; and T : H, — H, are two firmly quasi-nonexpansive mappings, F(S)
and F(T) denote the fixed point sets of S and T, respectively.

To solve the split equality fixed point problem (1.5) for firmly quasi-nonexpansive map-
pings, Moudafi et al. [11-13] proposed the following iteration algorithm:

X1 = Sxx — VA (Axg — Byy)),

. (L.6)
Vi = Ty + viB* (Axy — By)).

Very recently, Eslamian and Latif [14] and Chen et al. [15] introduced and studied some
kinds of general split feasibility problem and split equality problem in real Hilbert spaces,
and under suitable conditions some strong convergence theorems are proved.
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Motivated by the above works, the purpose of this paper is to introduce the following
general split equality fixed point problem:

(GSEFP) tofindx € C:=(")|F(S),y € Q:=[ | F(T;) such that Ax = By, 1.7)
i=1 i=1

and the general split equality problem:
(GSEP) to find x € Cy € Q such that Ax = By. (1.8)

For solving the GSEFP (1.7) and GSEP (1.8), in Sections 3 and 4, we propose an algorithm
for finding the solutions of the general split equality fixed point problem and general split
equality problem in a Hilbert space. We establish the strong convergence of the proposed
algorithms to a solution of GSEFP and GSEP. As applications, in Section 5 we utilize our
results to study the split feasibility problem, the null point problem of maximal monotone
operators, and the equality equilibrium problem.

2 Preliminaries
Let H be areal Hilbert space and C be a nonempty closed convex subset of H. In the sequel,
denote by F(T) the set of fixed points of a mapping 7 and by x, — x* and x,, — x*, the
strong convergence and weak convergence of a sequence {x,} to a point x*, respectively.
Recall that a mapping T : H — H is said to be nonexpansive, if ||7x — Ty|| < |lx — y||,
Vx,y € H. A typical example of a nonexpansive mapping is the metric projection P¢ from
H onto C C H defined by |lx — Pcx|| = infyec [lx — y||. The metric projection Pc is firmly
nonexpansive, i.e.,

IPcx - Peyll> < (x =y, Pcx - Pcy), Vx,y€H, 2.1)
and it can be characterized by the fact that

Pc(x) e C  and (y — Pc(x),x — Pc(x)> <0, VxeH,yeC. (2.2)
Definition 2.1 A mapping T : H — H is said to be quasi-nonexpansive, if F(T) # (), and

ITx—pl| < |lx—p| foreachxe H andp e F(T).
Lemma 2.2 [16] Let H be a real Hilbert space, and {x,} be a sequence in H. Then, for any

given sequence {\,} of positive numbers with Y, A, = 1 such that for any positive integers
i, j with i < j, the following holds:

2 oo
2 2
< E Anllnll” = Aidjllx; — oxi]|”
i-1

o0
E Ann
i=1

Lemma 2.3 [17] Let H be a real Hilbert space. For any x,y € H, the following inequality
holds:

I+ y11> < xll® + 20y, 2 + ).
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Lemma 2.4 [18] Let {t,} be a sequence of real numbers. If there exists a subsequence {n;} of
{n} such that t,,, < t,.1 for all i > 1, then there exists a nondecreasing sequence {t(n)} with
T(n) — oo such that for all (sufficiently large) positive integer numbers n, the following
holds:

tr(n) =< tt(n)+1: ty, < tr(n)+1-
In fact,
t(n) = max{k < n:t; < tr1}

Definition 2.5 (Demiclosedness principle) Let C be a nonempty closed convex subset of
a real Hilbert space H, and T : C — C be a mapping with F(T) #@. Then I — T is said to
be demi-closed at zero, if for any sequence {x,} C C with x,, — x and ||x,, — Tx, | — 0, then
x=Tx.

Remark 2.6 It is well known that if 7: C — C is a nonexpansive mapping, then I — T is

demi-closed at zero.

Lemma 2.7 Let{a,}, {b,}, and {c,} be sequences of positive real numbers satisfying a,,; <
(1-by)a, + c, for all n > 1. If the following conditions are satisfied:

(1) b, €(0,1) and > 2, b, =00,

(2) Y02 ¢ <00, orlimsup,,_, o Z—Z <0,
then lim,_, o a, = 0.

3 Strong convergence theorem for general split equality fixed point problem
Throughout this section we always assume that

(1) Hi, H,, Hj are real Hilbert spaces;

(2) (S} : H — Hy and {13}, : Hy — H, are two families of one-to-one and

quasi-nonexpansive mappings;

(3) A:H; — Hs and B: Hy — Hj3 are two bounded linear operators;

4) f= [};1], where f;, i = 1,2 is a k-contractive mapping on H; with k € (0,1);

(5) C:=NZ F(S), Q:=NZ E(Ty), T is the set of solutions of GSEFP (1.7),

P S; A*A -A*B
P=|"°|, K= , G=[A -B, GG= ;
Pq T ~B*A  B*B
(6) for any given wy € Hy x Hy, the iterative sequence {w,} C H; x H; is generated by
[o¢]
Wyl = P|:0‘nwn + Buf (W) + Z Vn,i(1<i(1 - )\n,iG*G)Wn):|7 n>0, (3.1
i=1

where {a,}, {81}, {vui} are the sequences of nonnegative numbers with

o0
oy + By +Zy,,,,' =1 foreachn>0.
i=1

Page 4 of 14


http://www.journalofinequalitiesandapplications.com/content/2014/1/367

Chang and Agarwal Journal of Inequalities and Applications 2014, 2014:367 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/367

We are now in a position to give the following main result.

Lemma 3.1 Let w* = (x*,y*) be a point in C x Q, i.e, x* € C =[5 F(S;) and y* € Q =
(Misy E(T)). Then the following statements are equivalent:

(i) w* is a solution to GSEFP (1.7);

(i) w* = Ki(w*) for each i > 1 and G(w*) = 0;

(iii) for each i > 1 and for each X > 0, w* solves the fixed point equations:
w* =Kw* and w*=K(I-\G*G)w". (3.2)

Proof (i) = (ii). If w* € C x Q is a solution to GSEFP (1.7), then for each i > 1, w* = K;w*,
and Ax* = By*. This implies that for each i > 1, w* = K;w*, and

G(w*) =[A -B] |:x*] =Ax" - By* =0.
y
(i) = (ii). If w* = Ki(w*), Vi > 1 and G(w*) = 0, it is easy to see that (3.2) holds.
(iii) = (i). From (3.2), for each i > 1 we have K;w* = K;(I — AG*G)w*. Since S; and T;
both are one-to-one, so is K;. Hence we have ||w* — (I - A\G*G)w*|| = 0, for any A > 0. This
implies that G*G(w*) = 0, and so

2

’

0 = (G*Gw*,w*) = (Gw*, Gw*) = | Gw*

i.e, G(w*) = Ax* - By* =0.
This completes the proof of Lemma 3.1. d

Lemma 3.2 IfA € (0, %), where L = ||G||?, then (I - \G*G) : H; x Hy — H, x H, is a non-
expansive mapping.

Proof In fact for any w,u € H; x H,, we have

|(1-1G*G)u - (I-rG*G)w|*
= | u-w) - 16" G -w)|?
= u—wl? + 22| G*Glu—w)|* - 22{u— w, G* G(u — w))
< flu—wl? + L) G(u—w)|* - 24(G(u — w), G(u — w))
= llu—wl? + AL|| Gl = w)||* = 22| G — w) |
= llu—w|)* = 22 - AL) | Glu - )|

< llu—wl?.
This completes the proof. d

Theorem 3.3 Let Hi, Hy, Hs, {S;}, {T:}, A, B, f, C, Q, T, P, G, K;, G*G satisfy the above
conditions (1)-(5). Let {w,} be the sequence defined by (3.1). If the solution set T of GSEFP
(1.7) is nonempty and the following conditions are satisfied:
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(D) an+Bu+ D oy Vui=1,foreach n>0;
(i) limy— o0 By =0,and oo By = 00;
(iif) liminf,— oo @y > 0 for each i > 1;

(iv) {Ani} C(0,2) foreach i > 1, where L = ||G||%;

(v) foreachi>1, the mapping I — Ki(I — 1,,;G*G) is demi-closed at zero,
then the sequence {w,} converges strongly to w* = Pr.f(w*) which is a solution of GSEFP
(1.7).

Proof (1) First we prove that the sequence {w,} is bounded.
In fact, for any given z € T, it follows from Lemma 3.1 that

G(z) =0, Kiz=z and z=K(I-1,,G*G)z foreachi>1.

By the assumptions and Lemma 3.2, for each 2 € (0, %), (I -1G*G): Hy x Hy — Hy x H,
is nonexpansive, and for each i > 1, K; = [ %] is quasi-nonexpansive, hence we have

IWps1 =zl =

P|:anwn + Buf (W) + Z VniKi (1 = hniG" G)Wn:| - P(z)

i=1

o0

< ayllwy =zl + Bulf W) = 2| + Y v | Ki(I = 2iG*G)w, 2|
i=1
[o¢]

< ayllwy -zl + By “f(wn) _Z” + Zyn,i” (1_ )\n,iG*G)Wn _ZH

i=1

<a,llw, -zl + B Hf(w,,) - zH +Z yn,iH (I - kn,iG*G)wn - (I - k,,,iG*G)zH
i=1

o0
< cullwn =zl + Ba[f W) = 2| + Y yiillwn — 2]

i=1
= 1= B)llwn =zl + Bn “f(wn) _Z”
< (1= B)llwn =zl + Ba “f(wn) —f(Z)” + Bu Hf(z) - Z”
< (L= B Iwn =zl + kBullw, —zll + B | f (2) - 2|

e R
1
< max{ o, 21, @) -] .

By induction, we can prove that

It -l < s o =21, 1 @) -] .

This shows that {w,} is bounded, and so is {f(w,)}.
(II) Now we prove that the following inequality holds:

Vi ” Wy — I<z(1 - )\n,iG* G)Wn ”2

< 1wy —2II> = W1 — 2> + B | f (W) — 2|°  for eachi > 1. (33)
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Indeed, it follows from (3.1) and Lemma 2.2 that for each i > 1

2

2
||Wn+1 - Z” =

P|:Oln(W,, - Z) + ﬁn(f(wn) - Z) + Z Vn,z(1<z(1 - )\n,iG*G)Wn)i| -z

i=1
2 > 2
< apllwn =2+ Ballf W) = 2" + Y v | Ki (I = 1i G G)w — 2|
i=1
— Oy Vn,i ” Wy — 1<l(1 - )\n,iG*G)Wn H2
o0
< aullwa =2 + Bufwa) =2 + Y yusllwn — 2112
i=1
= i | Wn = Ki(I = 20iG* G)w, |
= (L= B)llwn — 2% + Bul f(wn) — 2|
— Wy Yni ” Wy — Ki(l - )»n,iG*G)WV, ”2

This implies that for each i > 1
Olnyn,i”Wn _I<i(1 - }\n,iG*G)Wn ”2 <lw.- Z||2 = Wy — Z||2 + Bn Hf(wn) - 2“2'

Inequality (3.3) is proved.

It is easy to see that the solution set I of GSEFP (1.7) is a nonempty closed and convex
subset in C x Q, hence the metric projection Pr is well defined. In addition, since Prf :
H; x H, — Hj X H, is a contractive mapping, there exists a w* € I" such that

w* = Prf(w"). (3.4)

(IIT) Now we prove that w,, — w*.

For this purpose, we consider two cases.

Case I. Suppose that the sequence {||w, — w*||} is monotone. Since {|w, — w*||} is
bounded, {||w, — w*||} is convergent. Since w* € I, in (3.3) taking z = w* and letting
n — 00, in view of conditions (ii) and (iii), we have

lim ||wy, — Ki(I = 4,,,G*G)wy| =0 foreachi>1. 3.5)
n— 00

On the other hand, by Lemma 2.3 and (3.1), we have

2

s =" =

0
P|:anwn + lgrlf(wn) + Z yn,il(i (I - )\‘}’l,iG*G) Wn:| - W*

i=1

< ot (W = w*) + Bu(f () — w*)
00 2
3 Vi (Ki(I = 1iG* G)wy, — w")
i=1
2
<

oy, (w,, - w*) + Z y,,,,-(Ki (I - 2 G* G)w,, - w*)
i-1
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+2Bulf (Wn) = w*, w1 —w*)  (by Lemma 2.3)
2

oo
< qelwn=w ]+ 3 vnillwa—w'|
i=1

+2Bulf (W) = f (WF), Wiar = W) + 2B,(f (W*) = w*, w1 — w¥)
= =B [wa = w[* + 2Bk = | [ 1 = w7

2B W) W s~
< W= B [wn =" | + Bok{ | wn = w" | + [ wr = w7}

+ 2ﬂn(f(w*) — WS Wy — w*).

Simplifying we have
y (1= B.)* + Bak 2P . » »
= = EPEE B o 2P ) 1= w)
L e o
T 1-Buk " 1- B k"""

2/3” * * *
+1_’3 k{f(w)—w,wml—w)

(. 20-R)B,
- (1- 220 - v

n 2(1_/()ﬁn { /SYIM + likV(w*) —W*,Wn+1_W*)}

1-B.k |20-k)
2
= (L= 1) W = w*[|” + 085, (3.6)
where 7, = (11 ; f”, 8n = ’3{’ ot ﬁ(f(w*) — W Wy — W), M= sup,.q [lw, —w|.

By condition (ii), lim,_.« B, =0 and ) o2, B, = 00, and s0 Y o} 1, = 00
Next we prove that

limsupd, <0. (3.7)

n—00

In fact, since {w,} is bounded in C x Q, there exists a subsequence {w,, } C {w,} with
Wy, — V* (some point in C x Q), and A, ; — A; € (0, %) such that

i (0) " =) = imsapl (") =", ),
n—00
In view of (3.5)

”w,,k —K,»(I - )»,,k,iG*G)w,,k ” — 0 foreachi>1.

Again by the assumption that for each i > 1, the mapping I - K;(I — 1,,;G*G) is demi-closed

at zero, hence we have

V' =Ky an v =Kill — Ay v, 1> 1. .
*—Kp* and v = Ki(I = b G*G)v*, Vi>1 (3.8)

Page 8 of 14
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By Lemma 3.1, this implies that v* € T". In addition, since w* = Prf(w*), we have
lim sup(f(w*) —ww, — w*> = lim (f(w*) - W Wy, — w*)

n—00

This shows that (3.7) is true. Taking a,, = ||w,, — w*||2, b,, = n,,, and ¢,, = §,,1,, in Lemma 2.7,
all conditions in Lemma 2.7 are satisfied. We have w, — w*.
Case IL If the sequence {||w,, — w*||} is not monotone, by Lemma 2.4, there exists a se-

quence of positive integers: {t(n)}, n > ny (where ny is large enough) such that
t(n) :max{kfn: Hwk—w* || < Hwk+1—w*H}. (3.9)

Clearly {t(n)} is nondecreasing, 7(n) — 0o as n — 00, and for all n > ny

[ween =wl| < Jweenea =wls Jwn = w"| < [wegna =] (3.10)

Therefore {||w-(,) —w*||} is a nondecreasing sequence. According to Case I, lim,,_, oo ||[Wr () —
w¥|| = 0 and lim,,—, o [Wr ()41 — W*|| = 0. Hence we have

0< ”w,,—w*” §max{Hw,,—w* , wr(,,)—w*”} < ”wf(,,)ﬂ—w*” — 0, asn— 0.

This implies that w,, — w* and w* = Prf(w*) is a solution of GSEFP (1.7).
This completes the proof of Theorem 3.3. d

Remark 3.4 Theorem 3.3 extends and improves the main results in Moudafi et al. [11-13]
in the following aspects:
(a) For the mappings, we extend the mappings from firmly quasi-nonexpansive
mappings to an infinite family of one-to-one quasi-nonexpansive mappings.
(b) For the algorithms, we propose new iterative algorithms which are different from
ones given in [11-13].
(c) For the convergence, the iterative sequence proposed by our algorithm converges
strongly to a solution of GSEFP (1.7). But the iterative sequences proposed in
[11-13] are only of weak convergence to a solution of the split equality problem.

4 Strong convergence theorem for general split equality problem
Throughout this section we always assume that
(1) Hh, Hy, Hs are real Hilbert spaces; {C;}55, C H; and {Q;}{°, C H; are two families of
nonempty closed and convex subsets with C = (5 C; # @ and Q =, Q; # J;
(2) P, (resp. Pg,) is the metric projection from H; onto C; (resp. Hy onto Q;), and
Pii=[pi ] i=12,... and Pi= [ ];
(3) A:H; — Hj and B: H, — Hj are two bounded linear operators;
(4) f, G, G*@G are the same as in Theorem 3.3.

The so-called general split equality problem (GSEP) is

to find x € Cy € Q such that Ax = By. (4.1)
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Lemma 4.1 Let Hy, Hy, Hs, P, {P;}, A, B, f, C, Q, G, G*G be the same as above. Then a
point w* = (x*,y*) is a solution to GSEP (4.1), if and only if for each i > 1 and for each X > 0,
w* solves the following fixed point equations:

w*=Pw* and w"'=D; (I - AG*G)W*. (4.2)
Proof In fact, a point w* = (x*,y*) is a solution of GSEP (4.1)

& w'=(x%y")eCxQ and Ax"=By*
& foreachi>1, «" =P (x*), y* =Pg, (y*) and Ax* =By*

& w'=P (w*) and Ax* = By*

o A% =PacirsnBy
By* = PpqnacAx”
N (Ax™ — Ppq)By*,Au—Ax*) >0, VYueC,
(By* — Py(cyAx*,Bv—By*) =0, VveQ
N (Ax* —By*,Au—Ax*) >0, VueC,
(By* —Ax*,Bv—-By*) >0, VYveQ
N (yA*(Ax* —By*),u—x*)>0, VYueC,y>0,
(yB*(By* —Ax*),v-y*) >0, VveQ,y>0
N (x* — (x* — yA*(Ax* - By*)),u —x*) >0, VYueC,y>0,
(y* = (o —yB*(By* —Ax*)),v—-y*) >0, VYveQ,y>0
N x* = Pc,(x* — y A*(Ax* — By")),
y* =Pq,(y* — yB*(By* — Ax™))

& w'=P(I-yG'G)w" and w"=Pw"
This completes the proof of Lemma 4.1. d

The metric projections P¢, and P, are nonexpansive with F(P¢,) = C; and F(Pg,) = Q;,
i > 1. This implies that the metric projections Pc, and Py, all are quasi-nonexpansive. In
addition, by Lemma 3.2, for each i > 1 and each A € (0, %), the mapping P;(I - AG*G) :
H, x Hy — C; x Q; is nonexpansive. By Remark 2.6, for each i > 1 and each 1 € (0, 2), the
mapping (I — P;(I - AG*@)) is demi-closed at zero.

Consequently, we have the following.

Theorem 4.2 Let Hy, H, Hs, P, {P;}, A, B, f, C, Q, G, G*G be the same as above. Let {w,}
be the sequence generated by wy € Hy x Hy

00
Wnil = P|:05nwn + Buf (W) + Z VYu,iPi (I - )‘n,iG*G)Wn:|, n=0. (4.3)
i=1

If the solution set I'1 of GSEP (4.1) is nonempty and the following conditions are satisfied:
(i) otn+ B+ D ooy Yui =1, for each n > 0;
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(i) limy— o0 By =0, and > oo By = 00;

(ili) liminf,_, o 0ty Yn,; > 0 for each i > 1;

(iv) {Ani} C(0,2) foreach i>1, where L = |G|,
then the sequence {w,} defined by (4.3) converges strongly to a solution w* of GSEP (4.1)
and w* = Pr.f(w*).

Proof Taking S; = Pc,, T; = Pg,, and K; = P;, i = 1,2,... in Theorem 3.3, we know that
S; and T; both are nonexpansive with F(S;) = C; and F(T;) = Q; and so they are quasi-
nonexpansive mappings, and C = ﬂfzol F(S;) and Q = ﬂ;’:’l F(T;). Therefore all condi-
tions in Theorem 3.3 are satisfied. The conclusion of Theorem 4.2 can be obtained from
Lemma 4.1 and Theorem 3.3 immediately. O

Remark 4.3 Theorem 4.2 extends and improves the corresponding results in Censor and
Elfving [1], Moudafi et al. [11, 12], Eslamian and Latif [14], Chen et al. [15], Censor and
Segal [19].

5 Applications
In this section we shall utilize the results presented in the paper to give some applications.

5.1 Application to split feasibility problem
Let C C H; and Q C H; be two nonempty closed convex subsets and A : H; — Hj be a
bounded linear operator. The so-called split feasibility problem (SFP) [1] is to find

x € C,y € Qsuchthat Ax =y. (5.1)

Let P¢ and Pg be the metric projection from H; onto C and H, onto Q, respectively. Thus
F(Pc) = Cand F(Pg) = Q. From Theorem 4.2 we have the following.

Theorem 5.1 Let Hy, H, be two real Hilbert spaces, A : HL — H, be a bounded linear
operator and I be the identity mapping on Hy. Let C C Hy and Q C Hy be nonempty closed
convex subsets and Pc and P are the metric projections from H; onto C and Hj onto Q,
respectively. Let {w,} be the sequence generated by wy € H; x Hy:

Was1 = Plotuwy + Bof W) + vuP(I = LU U)wy], 1 >0, (5.2)

where f is the mapping as given in Theorem 4.2 and

U=[A -1, P:[PC:|, u*u:{A*A _A*} (5.3)
P A

If the solution set Ty of SFP (5.1) is nonempty and the following conditions are satisfied:
(i) ay+ Bu+yu=1,foreachn=>0;
(i) limy— o0 By =0,and oo By = 00;
(iii) liminf,_ o o,y > 0;
(iv) {An} C(0,2), where L= ||U|?,
then the sequence {w,} defined by (5.2) converges strongly to a solution w* of SFP (5.1) and
w* = Pr, f(w¥).
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Proof In Theorem 4.2 taking H, = H3, B=1, G = U, {C;} = {C}, and {Q;} = {Q}, the con-
clusions of Theorem 5.1 can be obtained from Theorem 4.2 immediately. O

Remark Theorem 5.1 generalizes and extends the main results of Censor and Elfving [1]
and Censor and Segal [19] from weak convergence to strong convergence.

5.2 Application to null point problem of maximal monotone operators

Let Hy, Hy, H3, A, B, be the same as in Theorem 3.3. Let M : H; — H;, and N : Hy, — H, be
two strictly maximal monotone operators. It is well known that the associated resolvent
mappings /) (x) := (I + uM)™" and J}(x) := (I + uN)™' of M and N, respectively, are one-

to-one nonexpansive mappings, and
xeM™0) & xeF()); yeN(0) & yeF()). (5.4)

Denote S = J), T =], C = M7(0) = F(J)"), and Q = N7}(0) = F(JY), then the general split
equality fixed point problem (1.7) is reduced to the following null point problem related
to strictly maximal monotone operators M and N (NPP(M, N)):

to find x* € M7(0),y* € N7(0) such that Ax* = By*. (5.5)
From Theorem 3.3 we can obtain the following.

Theorem 5.2 Let Hy, Hy, Hs, A, B, f, G, be the same as in Theorem 3.3. Let C, Q, S, and
T be the same as above. Let {w,} be the sequence generated by wy € H; x Hy

Wpsl = P[a,,wy, + Bof (wy) + y,,K(I - )»,,G*G)w,,], n>0, (5.6)

where P = [ﬁg], K = [?] If the solution set I's of NPP(M,N) (5.5) is nonempty and the
following conditions are satisfied:
() ay+ Bn+yn=1, foreachn=>0;

(i) limy— 00 By =0, and oo By = 00;

(iii) liminf,_ o o,y > 0;

(iv) {Aa} C(0,2), where L = ||G|%,
then the sequence {w,} defined by (5.6) converges strongly to w* = Pr,f (w*), which is a so-
lution of NPP(M, N) (5.5).

Proof Since S = ]fy and T = ]/1:[ both are one-to-one nonexpansive with F(S) # ¥ and
F(T) # 9. Hence they are one-to-one quasi-nonexpansive mappings and / — K(/ - 1,G*G)
is demi-closed at zero. Therefore all conditions in Theorem 3.3 are satisfied. The conclu-
sions of Theorem 5.2 can be obtained from Theorem 3.3 immediately. O

5.3 Application to equality equilibrium problem
Let D be a nonempty closed and convex subset of a real Hilbert H. A bifunction g: D x
D — (—00, +00) is said to be a equilibrium function, if it satisfies the following conditions:
(A1) g(x,x) =0, for all x € D;
(A2) gis monotone, i.e., g(x,y) + g(y,x) <0 forallx,y € D;
(A3) limsup, o g(tz + (1 - £)x,y) < g(x,y) for all x,y,z € D;
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(A4) for eachx € D, y — g(x,y) is convex and lower semi-continuous.
The so-called equilibrium problem with respective to the equilibrium functions g and
Dis

to find x* € D such that g(x*,y) >0, VyeD. (5.7)

Its solution set is denoted by EP(g, D).
For given X > 0 and x € H, the resolvent of the equilibrium function g is the operator
R;.¢ : H — D defined by

Ry () := {zeD:g(z,y) + %(y—z,z—x) > O,VyeD}. (5.8)

It is well known that the resolvent R; ; of the equilibrium function g has the following
properties [20]:

(1) Ry is single-valued;

(2) F(R;g) = EP(g,D) and F(R;,¢) is a nonempty closed and convex subset of D;

(3) R, is a nonexpansive mapping, and so it is quasi-nonexpansive.

Definition 5.3 Let /,j: D x D — (—00, +00) be two equilibrium functions and, for given
A >0, let R; , and R, ; be the resolvents of / and j (defined by (5.8)), respectively. Denote
by S =Ry, T =Ryj, C:= F(R;, 1), and Q := F(R; ;). Then the equality equilibrium problem
with respective to the equilibrium functions h, j, and D is

(EEP(h,j,D)) to find x* € F(R;),y* € F(R;,)) such that i (x*,u) > 0,

Yu e D,j(y*, v) >0,Vv e D and Ax" = By", (5.9)
where A,B: H — H are two linear and bounded operators.
The following theorem can be obtained from Theorem 3.3 immediately.

Theorem 5.4 Let H be a real Hilbert space, D be a nonempty and closed convex subset
of H. Let G, f be the same as in Theorem 3.3. For given A > 0, let h, j, Ry, Ry, S, T, C, Q
be the same as above. Let {w,} be the sequence generated by wy € H x H:

Was1 = Plotuwy + Bof W) + ¥uK (I = 1y G* G)w,], n>0, (5.10)

where P = [ﬁg], K = [;] If the solution set T'y of EEP(h,j,D) (5.9) is nonempty and the
following conditions are satisfied:
() oy + Bu+ yn =1, foreach n>0;

(i) im0 By =0,and oo By = 00;

(iii) liminf,_ o o,y > 0;

() (i} C (0,2), where L = |G,
then the sequence {w,} converges strongly to w* = Pr,f(w*), which is a solution of EEP(h,
j,D) (5.9).
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