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Abstract
We introduce the notion of almost generalized (ψ ,ϕ , L)-contractive mappings, and
establish the coincidence and common fixed point results for this class of mappings
in partially ordered complete b-metric spaces. Our results extend and improve several
known results from the context of ordered metric spaces to the setting of ordered
b-metric spaces. As an application, we prove the existence of a unique solution to a
class of nonlinear quadratic integral equations.
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1 Introduction
Fixed points theorems in partially ordered metric spaces were firstly obtained in  by
Ran and Reurings [], and then by Nieto and Rodríguez-López []. In this direction sev-
eral authors obtained further results under weak contractive conditions (see, e.g., [–]).
Berinde initiated in [] the concept of almost contractions and obtained several interesting
fixed point theorems. This has been a subject of intense study since then; see, e.g., [–].
Some authors used related notions as ‘condition (B)’ (Babu et al. []) and ‘almost general-
ized contractive condition’ for two maps (Ćirić et al. []), and for four maps (Aghajani et
al. []). See also a note by Pacurar []. On the other hand, the concept of b-metric space
was introduced by Czerwik in []. After that, several interesting results of the existence
of fixed point for single-valued and multivalued operators in b-metric spaces have been
obtained (see [–]). Pacurar [] proved some results on sequences of almost con-
tractions and fixed points in b-metric spaces. Recently, Hussain and Shah [] obtained
results onKKMmappings in cone b-metric spaces. Using the concepts of partially ordered
metric spaces, almost generalized contractive condition, and b-metric spaces, we define a
new concept of almost generalized (ψ ,ϕ,L)-contractive condition. In this paper, some co-
incidence and common fixed point theorems for mappings satisfying almost generalized
(ψ ,ϕ,L)-contractive condition in the setup of partially ordered complete b-metric spaces
are proved. Consistent with [] and [, p.], the following definitions and results will
be needed in the sequel.
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Definition . [] LetX be a (nonempty) set and s ≥  be a given real number. A function
d : X ×X →R

+ is said to be a b-metric space iff for all x, y, z ∈ X, the following conditions
are satisfied:

(i) d(x, y) =  iff x = y,
(ii) d(x, y) = d(y,x),
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X,d) is called a b-metric space with the parameter s.
It should be noted that the class of b-metric spaces is effectively larger than that ofmetric

spaces, since a b-metric is a metric, when s = .
The following example shows that in general a b-metric does not necessarily need to be

a metric (see, also, []).

Example . [] Let (X,d) be a metric space and ρ(x, y) = (d(x, y))p, where p >  is a real
number. Then ρ is a b-metric with s = p–. However, if (X,d) is a metric space, then (X,ρ)
is not necessarily a metric space. For example, if X = R is the set of real numbers and
d(x, y) = |x– y| is the usual Euclidean metric, then ρ(x, y) = (x– y)s is a b-metric on R with
s = , but it is not a metric on R.

Also, the following example of a b-metric space is given in [].

Example . [] Let X be the set of Lebesgue measurable functions on [, ] such that∫ 
 |f (x)| dx < ∞. Define D : X ×X → [,∞) by D(f , g) =

∫ 
 |f (x) – g(x)| dx. As (∫ 

 |f (x) –
g(x)| dx)  is a metric on X, then, from the previous example, D is a b-metric on X, with
s = , where the b-metric D is defined with D(x, y) = ‖d(x, y)‖, d is a cone metric (also see
[–]).

Khamsi [] also showed that each conemetric space over a normal cone has a b-metric
structure.

Definition . [] We shall say that the mapping T is g-nondecreasing if

gx≤ gy �⇒ Tx ≤ Ty.

2 Main results
Throughout the paper, let � be the family of all functions ψ : [,∞) → [,∞) satisfying
the following conditions:
(a) ψ is continuous,
(b) ψ is nondecreasing,
(c) ψ() =  < ψ(t) for every t > .

We denote by � the set of all functions ϕ : [,∞) → [,∞) satisfying the following con-
ditions:

(i) ϕ is right continuous,
(ii) ϕ is nondecreasing,
(iii) ϕ(t) < t for every t > .

Let (X,d,≤) be a partially ordered b-metric space and T : X → X and g : X → X be two
mappings. Set

M(x, y) =max

{
d(gx, gy),d(gx,Tx),d(gy,Ty),

d(gx,Ty) + d(gy,Tx)
s

}
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and

N(x, y) =min
{
d(gx,Tx),d(gy,Ty),d(gx,Ty),d(gy,Tx)

}
.

Now, we introduce the following definition.

Definition . Let (X,d,≤) be a partially ordered b-metric space. We say that T : X → X
is an almost generalized (ψ ,ϕ,L)-contractive mapping with respect to g : X → X for some
ψ ∈ � , ϕ ∈ �, and L ≥  if

ψ
(
sd(Tx,Ty)

) ≤ ϕ
(
ψ

(
M(x, y)

))
+ Lψ

(
N(x, y)

)
(.)

for all x, y ∈ X with gx≤ gy.

Now, we establish some results for the existence of coincidence point and common
fixed point of mappings satisfying almost generalized (ψ ,ϕ,L)-contractive condition in
the setup of partially ordered b-metric spaces. The first result in this paper is the follow-
ing coincidence point theorem.

Theorem. Suppose that (X,d,≤) is a partially ordered complete b-metric space. Let T :
X → X be an almost generalized (ψ ,ϕ,L)-contractive mapping with respect to g : X → X,
and T and g are continuous such that T is a monotone g-nondecreasing mapping, com-
mutative with g and T(X) ⊆ g(X). If there exists x ∈ X such that gx ≤ Tx, then T and g
have a coincidence point in X.

Proof By the given assumptions, there exists x ∈ X such that gx ≤ Tx. Since T(X) ⊆
g(X), we can define x ∈ X such that gx = Tx, then gx ≤ Tx = gx. Also there exists
x ∈ X such that gx = Tx. Since T is a monotone g-nondecreasing mapping, we have

gx = Tx ≤ Tx = gx.

Continuing in this way, we construct a sequence {xn} in X such that for all n = , , , . . . ,

gxn+ = Txn (.)

for which

gx ≤ gx ≤ gx ≤ · · · ≤ gxn ≤ gxn+ ≤ · · · . (.)

If there exists k ∈ N such that gxk+ = gxk , then gxk = Txk . This means that xk is a
coincidence point of T , g , and the proof is finished. Thus, gxn+ �= gxn for all n ∈ N. From
(.) and (.) and the inequality (.) with (x, y) = (xn,xn+), we have

ψ
(
d(gxn+, gxn+)

) ≤ ψ
(
sd(gxn+, gxn+)

)
= ψ

(
sd(Txn,Txn+)

)
≤ ϕ

(
ψ

(
M(xn,xn+)

))
+ Lψ

(
N(xn,xn+)

)
, (.)
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where

M(xn,xn+) = max

{
d(gxn, gxn+),d(gxn,Txn),d(gxn+,Txn+),

d(gxn,Txn+) + d(gxn+,Txn)
s

}

= max

{
d(gxn, gxn+),d(gxn, gxn+),d(gxn+, gxn+),

d(gxn, gxn+)
s

}

and

N(xn,xn+) =min
{
d(gxn,Txn),d(gxn+,Txn+),d(gxn,Txn+),d(gxn+,Txn)

}
= .

Since

d(gxn, gxn+)
s

≤ d(gxn, gxn+) + d(gxn+, gxn+)


≤ max
{
d(gxn, gxn+),d(gxn+, gxn+)

}
,

then we get

M(xn,xn+) =max
{
d(gxn, gxn+),d(gxn+, gxn+)

}
,

N(xn,xn+) = .
(.)

By (.) and (.), we have

ψ
(
d(gxn+, gxn+)

) ≤ ϕ
(
ψ

(
max

{
d(gxn, gxn+),d(gxn+, gxn+)

}))
. (.)

Suppose that max{d(gxn, gxn+),d(gxn+, gxn+)} = d(gxn+, gxn+) >  for some n ∈ N, then
by (.)

ψ
(
d(gxn+, gxn+)

) ≤ ϕ
(
ψ

(
d(gxn+, gxn+)

))
< ψ

(
d(gxn+, gxn+)

)
;

a contradiction. Hence,

max
{
d(gxn, gxn+),d(gxn+, gxn+)

}
= d(gxn, gxn+)

and thus

ψ
(
d(gxn+, gxn+)

) ≤ ϕ
(
ψ

(
d(gxn, gxn+)

))
< ψ

(
d(gxn, gxn+)

)
.

Thus, we get

ψ
(
d(gxn+, gxn+)

)
<ψ

(
d(gxn, gxn+)

)
for all n ∈N. Now, from

ψ
(
d(gxn, gxn+)

) ≤ ϕ
(
ψ

(
d(gxn–, gxn)

)) ≤ ϕ(ψ(
d(gxn–, gxn–)

))
≤ · · · ≤ ϕn(ψ(

d(gx, gx)
))
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and the property of ϕ, we obtain limn→∞ ψ(d(gxn, gxn+)) = , and consequently

lim
n→∞d(gxn, gxn+) = . (.)

Now, we shall prove that {gxn} is a Cauchy sequence in (X,d). Suppose, on the contrary,
that {gxn} is not a Cauchy sequence. Then there exist ε >  and subsequences {gxm(k)},
{gxn(k)} of {gxn} with m(k) > n(k) ≥ k such that

d(gxn(k), gxm(k)) ≥ ε. (.)

Additionally, corresponding to n(k), wemay choosem(k) such that it is the smallest integer
satisfying (.) andm(k) > n(k) ≥ k. Thus,

d(gxn(k), gxm(k)–) < ε. (.)

Using the triangle inequality in b-metric space and (.) and (.) we obtain

ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxm(k)–) + sd(gxm(k)–, gxn(k))

< sd(gxm(k), gxm(k)–) + sε.

Taking the upper limit as k → ∞ and using (.) we obtain

ε ≤ lim sup
k→∞

d(gxn(k), gxm(k)) ≤ sε. (.)

Also

ε ≤ d(gxn(k), gxm(k)) ≤ sd(gxn(k), gxm(k)+) + sd(gxm(k)+, gxm(k))

≤ sd(gxn(k), gxm(k)) + sd(gxm(k), gxm(k)+) + sd(gxm(k)+, gxm(k))

≤ sd(gxn(k), gxm(k)) +
(
s + s

)
d(gxm(k), gxm(k)+).

So from (.) and (.), we have

ε

s
≤ lim sup

k→∞
d(gxn(k), gxm(k)+)≤ sε. (.)

Also

ε ≤ d(gxm(k), gxn(k)) ≤ sd(gxm(k), gxn(k)+) + sd(gxn(k)+, gxn(k))

≤ sd(gxm(k), gxn(k)) + sd(gxn(k), gxn(k)+) + sd(gxn(k)+, gxn(k))

≤ sd(gxm(k), gxn(k)) +
(
s + s

)
d(gxn(k), gxn(k)+).

So from (.) and (.), we have

ε

s
≤ lim sup

k→∞
d(gxm(k), gxn(k)+)≤ sε. (.)
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Also

d(gxn(k)+, gxm(k)) ≤ sd(gxn(k)+, gxm(k)+) + sd(gxm(k)+, gxm(k)),

so from (.) and (.), we have

ε

s
≤ lim sup

k→∞
d(gxn(k)+, gxm(k)+). (.)

Linking (.), (.), (.) together with (.) we get

lim sup
k→∞

M(xn(k),xm(k))

=max

{
lim sup
k→∞

d(gxn(k), gxm(k)), lim sup
k→∞

d(gxn(k), gxn(k)+), lim sup
k→∞

d(gxm(k), gxm(k)+),

lim supk→∞ d(gxn(k), gxm(k)+) + lim supk→∞ d(gxm(k), gxn(k)+)
s

}

≤ max

{
sε, , ,

sε + sε
s

}
= sε.

So,

lim sup
k→∞

M(xn(k),xm(k)) ≤ εs. (.)

Similarly, we have

lim sup
k→∞

N(xn(k),xm(k)) = . (.)

Sincem(k) > n(k) from (.), we have

gxn(k) ≤ gxm(k).

Thus,

ψ
(
sd(gxn(k)+, gxm(k)+)

)
= ψ

(
sd(Txn(k),Txm(k))

)
≤ ϕ

(
ψ

(
M(xn(k),xm(k))

))
+ Lψ

(
N(xn(k),xm(k))

)
.

Passing to the upper limit as k → ∞, and using (.), (.), and (.), we get

ψ(sε)≤ ψ
(
s lim sup

k→∞
d(gxn(k)+, gxm(k)+)

)
= lim sup

k→∞
ψ

(
sd(gxn(k)+, gxm(k)+)

)
= lim sup

k→∞
ψ

(
sd(Txn(k),Txm(k))

)
≤ lim sup

k→∞
ϕ
(
ψ

(
M(xn(k),xm(k))

))
+ lim sup

k→∞
Lψ

(
N(xn(k),xm(k))

)
= ϕ

(
ψ

(
lim sup
k→∞

M(xn(k),xm(k))
))

+ Lψ
(
lim sup
k→∞

N(xn(k),xm(k))
)

≤ ϕ
(
ψ(εs)

)
<ψ(sε),
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which is a contradiction. Thus, we proved that {gxn} is a Cauchy sequence in (X,d). Since
X is a complete b-metric space, there exists x ∈ X such that

lim
n→∞ gxn+ = x. (.)

From the commutativity of T and g , we have

g(gxn+) = g
(
T(xn)

)
= T(gxn). (.)

Letting n → ∞ in (.) and from the continuity of T and g , we get

gx = lim
n→∞ g(gxn+) = lim

n→∞T(gxn) = T
(
lim
n→∞ gxn

)
= T(x).

This implies that x is a coincidence point of T and g . This completes the proof. �

Now, we will prove the following result.

Theorem . Suppose that (X,d,≤) is a partially ordered complete b-metric space. Let
T : X → X be an almost generalized (ψ ,ϕ,L)-contractive mapping with respect to g : X →
X, T is a g-nondecreasing mapping and T(X)⊆ g(X). Also suppose

if {gxn} ⊂ X is a nondecreasing sequence with gxn → gz in gX,

then gxn ≤ gz, gz ≤ g(gz) ∀n hold.
(.)

Also suppose gX is closed. If there exists x ∈ X such that gx ≤ Tx, then T and g have a
coincidence. Further, if T and g commute at their coincidence points, then T and g have a
common fixed point.

Proof As in the proof of Theorem ., we can show that {gxn} is a Cauchy sequence. Since
gX is a closed, there exists x ∈ X such that

lim
n→∞ gxn+ = gx. (.)

Nowwe show that x is a coincidence point of T and g . Since from (.) and (.) we have
gxn ≤ gx for all n, then by the triangle inequality in a b-metric space and (.), we get

d(gx,Tx)≤ sd(gx, gxn+) + sd(gxn+,Tx) = sd(gx, gxn+) + sd(Txn,Tx),

ψ
(
d(gx,Tx)

) ≤ lim
n→∞ψ

(
sd(Txn,Tx)

) ≤ lim
n→∞ψ

(
sd(Txn,Tx)

)
≤ lim

n→∞
[
ϕ
(
ψ

(
M(xn,x)

))
+ Lψ

(
N(xn,x)

)]
≤ ϕ

(
ψ

(
d(gx,Tx)

))
< ψ

(
d(gx,Tx)

)
.

Indeed,

lim
n→∞M(xn,x) = lim

n→∞max

{
d(gxn, gx),d(gxn,Txn),d(gx,Tx),

d(gxn,Tx) + d(gx,Txn)
s

}

= d(gx,Tx)

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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and

lim
n→∞N(xn,x) = lim

n→∞min
{
d(gxn,Txn),d(gx,Tx),d(gxn,Tx),d(gx,Txn)

}
= .

Hence d(gx,Tx) = , that is, Tx = gx. Thus we proved that T and g have a coincidence.
Suppose now that T and g commute at x. Set y = Tx = gx. Then

Ty = T(gx) = g(Tx) = gy.

Since from (.) we have gx ≤ g(gx) = gy and as gx = Tx and gy = Ty, from (.) we obtain

ψ
(
d(Tx,Ty)

) ≤ ψ
(
sd(Tx,Ty)

) ≤ ϕ
(
ψ

(
M(x, y)

))
+ Lψ

(
N(x, y)

)
= ϕ

(
ψ

(
max

{
d(gx, gy),d(gx,Tx),d(gy,Ty),

d(gx,Ty) + d(gy,Tx)
s

}))

+ Lψ
(
min

{
d(gx,Tx),d(gy,Ty),d(gx,Ty),d(gy,Tx)

})
= ϕ

(
ψ

(
d(Tx,Ty)

))
< ψ

(
d(Tx,Ty)

)
.

Hence d(Tx,Ty) = , that is, y = Tx = Ty. Therefore, Ty = gy = y. Thus we proved that T
and g have a common fixed point. �

In the following, we deduce some fixed point theorems from our main results given by
Theorems . and ..

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space and T : X → X
is a nondecreasing mapping. Suppose there exist ψ ∈ � , ϕ ∈ �, and L ≥  such that

ψ
(
sd(Tx,Ty)

) ≤ ϕ
(
ψ

(
M(x, y)

))
+ Lψ

(
N(x, y)

)
,

where

M(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)
s

}

and

N(x, y) =min
{
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
for all x, y ∈ X with x≤ y. Also suppose either
(a) if {xn} ⊂ X is a nondecreasing sequence with xn → z in X , then xn ≤ z, for all n,

holds, or
(b) T is continuous.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point in X.

Example . Let X be the set of Lebesgue measurable functions on [, ] such that∫ 
 |x(t)|dt < ∞. Define D : X ×X → [,∞) by

D(x, y) =
(∫ 



∣∣x(t) – y(t)
∣∣dt)

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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Then D is a b-metric on X, with s = . Also, this space can also be equipped with a partial
order given by

x, y ∈ X, x � y ⇐⇒ x(t)≤ y(t) for any t ∈ [a,b].

The operator T : X → X defined by

Tx(t) = tn + et +
√



ln
(∣∣x(t)∣∣ + 

)
. (.)

Now, we prove that T has a fixed point. For all x, y ∈ X with x≤ y, we have

√
D(Tx,Ty) =

√


(∫ 



∣∣Tx(t) – Ty(t)
∣∣dt)

≤ 
√

∫ 



∣∣∣∣
√



ln
(∣∣x(t)∣∣ + 

)
–

√



ln
(∣∣y(t)∣∣ + 

)∣∣∣∣dt
≤

∫ 



∣∣(ln(∣∣x(t)∣∣ + 
)
– ln

(∣∣y(t)∣∣ + 
))∣∣dt

≤
∫ 


ln

( |x(t)| + 
|y(t)| + 

)
dt

≤
∫ 


ln

(
 +

|x(t) – y(t)|
|y(t)| + 

)
dt

≤ ln

(
 +

∫ 



∣∣x(t) – y(t)
∣∣dt)

≤ ln

(
 +

√(∫ 



∣∣x(t) – y(t)
∣∣dt))

≤ ln
(
 +

√
D(x, y)

)
.

Now, if we define ϕ(t) = ln( + t), ψ(t) =
√
t, and x = . Thus, by Corollary . we see that

T has a fixed point.

Remark . Corollary . extends and generalizes many existing fixed point theorems in
the literature [, , , ].

The following result is the immediate consequence of Corollary ..

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space and T : X → X
is a nondecreasing mapping. Suppose there exists ϕ ∈ � such that

sd(Tx,Ty) ≤ ϕ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)
s

})
(.)

for all x, y ∈ X with x≤ y. Also suppose either
(a) if {xn} ⊂ X is a nondecreasing sequence with xn → z in X , then xn ≤ z, for all n,

holds, or

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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(b) T is continuous.
If there exists x ∈ X such that x ≤ Tx, then T has a fixed point in X.

Remark . Corollary . is a generalization to [, Theorem .].

Taking ϕ(t) = λt,  < λ < , in Corollary . we obtain the following generalization of the
results in [, ].

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space and T : X → X
is a nondecreasing mapping. Suppose there exists ϕ ∈ � such that

sd(Tx,Ty) ≤ λmax

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)
s

}

for all x, y ∈ X with x≤ y. Also suppose either
(a) if {xn} ⊂ X is a nondecreasing sequence with xn → z in X , then xn ≤ z, for all n,

holds, or
(b) T is continuous.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point in X.

Corollary . Let (X,d,≤) be a partially ordered complete b-metric space and T : X → X
is a nondecreasing mapping. Suppose there exist ψ ∈ � and  ≤ λ <  such that

ψ
(
sd(Tx,Ty)

) ≤ λψ
(
d(x, y)

)
for all x, y ∈ X with x≤ y. Also suppose either
(a) if {xn} ⊂ X is a nondecreasing sequence with xn → z in X , then xn ≤ z, for all n,

holds, or
(b) T is continuous.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point in X.

3 Application to integral equations
Here, in this section, we wish to study the existence of a unique solution to a nonlinear
quadratic integral equation, as an application to the our fixed point theorem. Consider the
integral equation

x(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds, t ∈ I = [, ],λ ≥ . (.)

Let 	 denote the class of those functions γ : [, +∞) → [, +∞) for which γ ∈ � and
(γ (t))p ≤ γ (tp), for all p ≥ .
For example, γ(t) = kt, where  ≤ k <  and γ(t) = t

t+ are in 	.
We will analyze (.) under the following assumptions:

(a) f : I ×R → R is continuous monotone nondecreasing in x, f (t,x) ≥  and there exist
constant  ≤ L <  and γ ∈ 	 such that for all x, y ∈R and x≥ y

∣∣f (t,x) – f (t, y)
∣∣ ≤ Lγ (x – y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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(a) h : I →R is a continuous function.
(a) k : I × I → R is continuous in t ∈ I for every s ∈ I and measurable in s ∈ I for all t ∈ I

such that

∫ 


k(t, s)ds≤ K

and k(t, s)≥ .
(a) There exists α ∈ C(I) such that

α(t)≤ h(t) + λ

∫ 


k(t, s)f

(
s,α(s)

)
ds.

(a) LpλpKp ≤ 
p– .

We consider the space X = C(I) of continuous functions defined on I = [, ] with the
standard metric given by

ρ(x, y) = sup
t∈I

∣∣x(t) – y(t)
∣∣ for x, y ∈ C(I).

This space can also be equipped with a partial order given by

x, y ∈ C(I), x≤ y ⇐⇒ x(t)≤ y(t) for any t ∈ I.

Now for p≥ , we define

d(x, y) =
(
ρ(x, y)

)p = (
sup
t∈I

∣∣x(t) – y(t)
∣∣)p

= sup
t∈I

∣∣x(t) – y(t)
∣∣p for x, y ∈ C(I).

It is easy to see that (X,d) is a complete b-metric space with s = p– [].
For any x, y ∈ X and each t ∈ I , max{x(t), y(t)} and min{x(t), y(t)} belong to X and are

upper and lower bounds of x, y, respectively. Therefore, for every x, y ∈ X, one can take
max{x, y},min{x, y} ∈ X which are comparable to x, y. Now, we formulate the main result
of this section.

Theorem . Under assumptions (a)-(a), (.) has a unique solution in C(I).

Proof We consider the operator T : X → X defined by

T(x)(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds for t ∈ I.

By virtue of our assumptions, T is well defined (this means that if x ∈ X then T(x) ∈ X).
For x ≤ y, and t ∈ I we have

T(x)(t) – T(y)(t) = h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds – h(t) – λ

∫ 


k(t, s)f

(
s, y(s)

)
ds

= λ

∫ 


k(t, s)

[
f
(
s,x(s)

)
– f

(
s, y(s)

)]
ds≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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Therefore, T has the monotone nondecreasing property. Also, for x ≤ y, we have

∣∣T(x)(t) – T(y)(t)
∣∣ = ∣∣∣∣h(t) + λ

∫ 


k(t, s)f

(
s,x(s)

)
ds – h(t) – λ

∫ 


k(t, s)f

(
s, y(s)

)
ds

∣∣∣∣
≤ λ

∫ 


k(t, s)

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
≤ λ

∫ 


k(t, s)Lγ

(
y(s) – x(s)

)
ds.

Since the function γ is nondecreasing and x ≤ y, we have

γ
(
y(s) – x(s)

) ≤ γ
(
sup
t∈I

∣∣x(s) – y(s)
∣∣) = γ

(
ρ(x, y)

)
,

hence

∣∣T(x)(t) – T(y)(t)
∣∣ ≤ λ

∫ 


k(t, s)Lγ

(
ρ(x, y)

)
ds≤ λKLγ

(
ρ(x, y)

)
.

Then we obtain

d
(
T(x),T(y)

)
= sup

t∈I

∣∣T(x)(t) – T(y)(t)
∣∣p

≤ {
λKLγ

(
ρ(x, y)

)}p = λpKpLpγ
(
ρ(x, y)

)p
≤ λpKpLpγ

(
ρ(x, y)p

)
= λpKpLpγ

(
d(x, y)

)
≤ λpKpLpϕ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)
s

})

≤ 
p–

ϕ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)
s

})
.

This proves that the operator T satisfies the contractive condition (.) appearing in
Corollary .. Also, let α, β be the functions appearing in assumption (a); then, by (a),
we get α ≤ T(α). So, (.) has a solution and the proof is complete. �

Example . Consider the following functional integral equation:

x(t) =
t

 + t
+




∫ 



e–s sin t
( + t)

|x(s)|
 + |x(s)| ds (.)

for t ∈ [, ]. Observe that this equation is a special case of (.) with

h(t) =
t

 + t
,

k(t, s) =
e–s

 + t
,

f (t,x) =
sin t


|x|
 + |x| .

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
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Indeed, by using γ (t) = 
 t we see that γ ∈ � and (γ (t))p = (  t)

p = 
p t

p ≤ 
 t

p = γ (tp), for
all p≥ . Further, for arbitrarily fixed x, y ∈R such that x ≥ y and for t ∈ [, ] we obtain

∣∣f (t,x) – f (t, y)
∣∣ = ∣∣∣∣ sin t |x|

 + |x| –
sin t


|y|
 + |y|

∣∣∣∣
≤ 


|x – y| = 


γ (x – y).

Thus, the function f satisfies assumption (a) with L = 
 . It is also easily seen that h is a

continuous function. Further, notice that the function k is continuous in t ∈ I for every
s ∈ I and measurable in s ∈ I for all t ∈ I and k(t, s)≥ . Moreover, we have

∫ 


k(t, s)ds =

∫ 



e–s

 + t
ds =

 – e–

 + t

≤  – e– ≤ 

= K .

If we put α(t) = t
(+t) , we have

α(t) =
t

( + t)
≤ t

 + t

≤ t

 + t
+




∫ 



e–s sin t
( + t)

|α(s)|
 + |α(s)| ds

= h(t) + λ

∫ 


k(t, s)f

(
s,α(s)

)
ds.

This shows that assumption (a) holds. Taking L = 
 , K = 

 and λ = 
 , then inequality

LpλpKp ≤ 
p– appearing in assumption (a) has the following form:


p

× 
p

× p

p
≤ 

p–
.

It is easily seen that each number p ≥  satisfies the above inequality. Consequently, all
the conditions of Theorem . are satisfied. Hence the integral equation (.) has a unique
solution in C(I).
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49. An, TV, Dung, NV, Kadelburg, Z, Radenović, S: Various generalizations of metric spaces and fixed point theorems. Rev.

R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2014). doi:10.1007/s13398-014-0173-7
50. Khamsi, MA: Remarks on cone metric spaces and fixed point theorems of contractive mappings. Fixed Point Theory

Appl. 2010, Article ID 315398 (2010). doi:10.1155/2010/315398
51. Altman, M: A fixed point theorem in compact metric spaces. Am. Math. Mon. 82, 827-829 (1975)
52. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc.

30, 1-9 (1984)
53. Ray, BK: On Ciric’s fixed point theorem. Fundam. Math. 94(3), 221-229 (1977)

doi:10.1186/1029-242X-2014-355
Cite this article as: Allahyari et al.: A generalization on weak contractions in partially ordered b-metric spaces and its
application to quadratic integral equations. Journal of Inequalities and Applications 2014 2014:355.

http://www.journalofinequalitiesandapplications.com/content/2014/1/355
http://dx.doi.org/10.1007/s13398-014-0173-7
http://dx.doi.org/10.1155/2010/315398

	A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations
	Abstract
	Keywords

	Introduction
	Main results
	Application to integral equations
	Competing interests
	Authors' contributions
	Author details
	References


