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Abstract
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1 Introduction
Throughout this paper, let K be a closed convex subset of an Euclidean space Rn and
F : Rn → B(Rn,Rm) be a continuously differentiable mapping. We consider a weak vector
variational inequality (WVVI) of finding x∗ ∈ K such that

〈
F
(
x∗),x – x∗〉 /∈ – intC, ∀x ∈ K ,

where C ⊆ Rm is a closed convex and pointed cone with nonempty interior intC. (WVVI)
was firstly introduced by Giannessi []. It has been shown to have many applications in
vector optimization problems and traffic equilibrium problems (e.g., [, ]).
Error bounds are to depict the distance from a feasible solution to the solution set, and

have played an important role not only in sensitivity analysis but also in convergence anal-
ysis of iterative algorithms. Recently, kinds of error bounds have been presented for weak
vector variational inequalities in [–]. By using a scalarization approach of Konnov [],
Li and Mastroeni [] established the error bounds for two kinds of (WVVIs) with set-
valued mappings. By a regularized gap function and a D-gap function for a weak vector
variational inequality, Charitha and Dutta [] obtained the error bounds of (WVVI), re-
spectively. Recently, in virtue of the regularized gap functions, Sun and Chai [] studied
some error bounds for generalized (WVVIs). By using the image space analysis, Xu and
Li [] got a gap function for (WVVI). Then, they established an error bound for (WVVI)
without the convexity of the constraint set. These papers have a common characteristic:
the solution set of (WVVI) is a singleton [, ]. Even though the solution set of (WVVI) is
not a singleton [, ], the solution set of the corresponding variational inequality (VI) is a
singleton, when their results reduce to (VI).
In this paper, by the nonlinear scalarization method, we study a global error bound of

(WVVI). This paper is organized as follows. In Section , we establish a global error bound
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of (VI) via the generalized gap functions. In Section , we discuss a global error bound of
(WVVI) by the nonlinear scalarization method.

2 A global error bound of (VI)
Let h : Rn → R ∪ {+∞} be a proper lower semicontinuous function, and let S =
{x ∈ Rn|h(x)≤ }. h has a global error bound if there exists τ >  such that

d(x,S)≤ τh(x)+, ∀x ∈ X,

where h(x)+ :=max{h(x), } and d(x,S) := inf{‖x – s‖|s ∈ S} if S is nonempty and d(x,S) =
+∞ if S is empty. f : Rn → Rn is said to be coercive on K if

lim
x∈K ,‖x‖→+∞

〈f (x),x – y〉
‖x‖ = +∞, ∀y ∈ K .

f : Rn → Rn is said to be strongly monotone on Rn with the modulus λ >  if

〈
f (x) – f

(
x′),x – x′〉 ≥ λ

∥∥x – x′∥∥, ∀x,x′ ∈ Rn.

In this section, we establish a global error bound of (VI) of finding x ∈ K such that

〈
f (x), y – x

〉 ≥ , ∀y ∈ K ,

where f : Rn → Rn is a continuously differentiable mapping.
To study the error bound of (VI), we need to construct a class of merit functions which

were made to reformulate (VI) as an optimization problem; see [–]. One of such func-
tions is a generalized regularized gap function [] defined by

fγ (x) := – inf
y∈K

{〈
f (x), y – x

〉
+ γ ϕ(x, y)

}
, ∀x ∈ Rn,γ > , ()

where ϕ : Rn × Rn → R is a real-valued function with the following properties:
(P) ϕ is continuously differentiable on Rn × Rn.
(P) ϕ(x, y)≥ , ∀x, y ∈ Rn and the equality holds if and only if x = y.
(P) ϕ(x, ·) is uniformly strongly convex on Rn with the modulus β >  in the sense that

ϕ(x, y) – ϕ(x, y) ≥
〈∇ϕ(x, y), y – y

〉
+ β‖y – y‖, ∀x, y, y ∈ Rn,

where ∇ϕ denotes the partial derivative of ϕ with respect to the second variable.
(P) ∇ϕ(·, y) is uniformly Lipschitz continuous on Rn with the modulus α, i.e., for all

x ∈ Rn,

∥∥∇ϕ(x, y) –∇ϕ(x, y)
∥∥ ≤ α‖y – y‖, ∀y, y ∈ Rn.

Now we recall some properties of ϕ in ().

Proposition . The following statements hold for each x, y ∈ K :
(i) 〈∇ϕ(x, y),u〉 ≤ α‖x – y‖‖u‖, ∀u ∈ span(K – x).
(ii) β‖x – y‖ ≤ ϕ(x, y)≤ (α – β)‖x – y‖.
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(iii) ϕ(x, y) – 〈∇ϕ(x, y), y – x〉 ≥ –(α – β)‖x – y‖.
(iv) ∇ϕ(x, y) =  if and only if x = y.

Proof Parts (i)-(iii) are taken from [, Lemma .] and part (iv) is from [, Lemma .].
�

Remark . In light of (ii) in Proposition ., it holds true that α ≥ β .

Then we list some basic properties of the generalized regularized gap function fγ .

Proposition . The following conclusions are valid for (VI).
(i) For every x ∈ Rn, there exists a unique vector yϕ

γ (x) ∈ K at which the infimum in ()
is attained, i.e.,

fγ (x) = –
〈
f (x), yϕ

γ (x) – x
〉
– γ ϕ

(
x, yϕ

γ (x)
)
.

(ii) fγ is a gap function of (VI).
(iii) x = yϕ

γ (x) if and only if x is a solution of (VI).
(iv) fγ is continuously differentiable on Rn with

∇fγ (x) = –∇f (x)
(
yϕ
γ (x) – x

)
+ f (x) – γ∇ϕ

(
x, yϕ

γ (x)
)
.

(v) yϕ
γ and fγ are both locally Lipschitz on Rn.

(vi) If f is coercive on K , then (VI) has a nonempty compact solution set.
(vii) fγ (x)≥ βγ ‖yϕ

γ (x) – x‖, ∀x ∈ K .

Proof Parts (i)-(iv) are from [], part (v) from [, Lemma .] and part (vi) from [,
Proposition ..].
It follows from (ii) and (iii) that we only need to prove (vii) for x ∈ K \ S. Since yϕ

γ (x) is
the minimizer of the function

G(·) := 〈
f (x), · – x

〉
+ γ ϕ(x, ·) on K ,

the first-order optimality condition implies that

〈∇G
(
yϕ
γ (x)

)
, y – yϕ

γ (x)
〉 ≥ , ∀y ∈ K .

Letting y = x, we get

〈∇G
(
yϕ
γ (x)

)
, –yϕ

γ (x) + x
〉 ≥ ,

i.e.,

〈
f (x) + γ∇ϕ

(
x, yϕ

γ (x)
)
, yϕ

γ (x) – x
〉 ≤ .

It follows from (P) that the mapping G is strongly convex on Rn with the modulus β > ,
i.e., ∀x, y, y ∈ Rn

G(x, y) –G(x, y) ≥
〈
f (x) + γ∇ϕ(x, y), y – y

〉
+ βγ ‖y – y‖.
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Letting y = x and y = yϕ
γ (x), by fγ (x) = –G(x, yϕ

γ (x)), we obtain

fγ (x) ≥
〈
f (x) + γ∇ϕ

(
x, yϕ

γ (x)
)
,x – yϕ

γ (x)
〉
+ βγ

∥∥yϕ
γ (x) – x

∥∥.

Thus, one has fγ (x) ≥ βγ ‖yϕ
γ (x) – x‖. �

Theorem . Let f be coercive on K and γ (α – β) < μ. Assume that ϕ satisfies
(P) 〈∇ϕ(x, yϕ

γ (x)) +∇ϕ(x, yϕ
γ (x)), yϕ

γ (x) – x〉 ≥ , ∀x ∈ K .
Suppose further that the following condition holds:

μ := inf

{〈
d,∇f (x)d

〉∣∣∣x ∈ K \ S,d =
yϕ
γ (x) – x

‖yϕ
γ (x) – x‖

}
> , ()

where S is the solution set of (VI). Then
√
fγ has a global error bound with the modulus

max

{

√

βγ

μ + γβ – γα
,

√

βγ

βγ

}
.

Proof It follows from (vi) of Proposition . that S is a nonempty compact set ofK . If x ∈ S,
then the assertion obviously holds. Let x ∈ K \ S. Then fγ (x) > . For brevity, we denote
w := yϕ

γ (x) – x and d := w
‖w‖ . It follows from [, Theorem .] that we only need to prove

∇
√
fγ (x)d ≤ –min

{
μ + γβ – γα


√

βγ
,
√

βγ



}
. ()

It follows from (iv) of Proposition . that

∇fγ (x)w =
〈
–∇f (x)w + f (x) – γ∇ϕ

(
x, yϕ

γ (x)
)
,w

〉
=

〈
–∇f (x)w,w

〉
+

〈
f (x),w

〉
+ γ ϕ

(
x, yϕ

γ (x)
)

– γ
[〈∇ϕ

(
x, yϕ

γ (x)
)
,w

〉
+ ϕ

(
x, yϕ

γ (x)
)]

=
〈
–∇f (x)w,w

〉
– fγ (x) – γ

[〈∇ϕ
(
x, yϕ

γ (x)
)
,w

〉
+ ϕ

(
x, yϕ

γ (x)
)]
.

By (P) and (), we have

∇fγ (x)w≤ –μ‖w‖ – fγ (x) – γ
[
–
〈∇ϕ

(
x, yϕ

γ (x)
)
,w

〉
+ ϕ

(
x, yϕ

γ (x)
)]
.

It follows from (iii) of Proposition . that

∇fγ (x)w≤ –μ‖w‖ – fγ (x) + γ (α – β)‖w‖.

Thus,

∇
√
fγ (x)d =

∇fγ (x) w
‖w‖


√
fγ (x)

≤ –[μ – γ (α – β)]‖w‖

√
fγ (x)

–
√
fγ (x)

‖w‖ . ()

In light of () and (vii) of Proposition ., we have

∇
√
fγ (x)d ≤ –

[μ – γ (α – β)]‖w‖

√
fγ (x)

–
√

βγ


.
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If μ < γ (α – β), then it follows from γ (α – β) < μ that

∇
√
fγ (x)d ≤ [γ (α – β) –μ]


√

βγ
–

√
βγ


=

γα –μ – γβ


√

βγ
< . ()

If μ ≥ γ (α – β), then

∇
√
fγ (x)d ≤ –

√
βγ


. ()

Hence, () follows from () and (). The proof is complete. �

Now we use two examples to show that () cannot be dropped and that Theorem . is
applicable, respectively.

Example . Consider K = R, ϕ(x, y) = 
 |x – y|, γ = 

 and f (x) = x. Then we can easily
get that α = β = , yϕ

γ (x) = x – f (x), fγ (x) = x and S = {}. It is clear that f is coercive
on K and μ = . Thus, () does not hold. Moreover, it is obvious that

√
fγ does not have a

global error bound.

Example . Consider K = [,+∞), ϕ(x, y) = 
 |x – y|, γ =  and f (x) = x. Then we can

easily get that α = β = , ∇f (x) = , yϕ
γ (x) = , fγ (x) = 

x
 and S = {}. It is clear that f is

coercive on K and () holds. Thus, it follows from Theorem . that
√
fγ has a global error

bound.

By [, Proposition .(ii)] Huang and Ng [, Theorem .] have obtained the following
conclusion. Now we give a slightly different proof by Theorem ..

Corollary . Let f be strongly monotone on Rn with the modulus λ >  and γ (α–β) < λ.
Assume that ϕ satisfies (P). Then

√
fγ has a global error bound with the modulus

max

{

√

βγ

λ + γβ – γα
,

√

βγ

βγ

}
.

Proof Let x ∈ K \ S and w = yϕ
γ (x) – x. Since f is continuously differentiable, then

f (x + tw) = f (x) + t
〈∇f (x),w

〉
+ o(t),

where o(t)
t →  as t → . Since f is strongly monotone with the modulus λ, one has

〈
f (x + tw) – f (x), tw

〉 ≥ λ‖tw‖,

which implies that

〈
w,∇f (x)w

〉 ≥ λ‖w‖.

Thus, () holds. Moreover, the strong monotonicity of f implies the coerciveness of f (cf.
[, Remark .]). Thus, by Theorem ., we get that

√
fγ has a global error bound. �
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3 A global error bound of (WVVI)
In this section, by the nonlinear scalarization method and by Theorem ., we discuss
a global error bound of (WVVI). The dual cone of C is defined by C∗ := {ξ ∈ Rm :
〈ξ , z〉 ≥ ,∀z ∈ C}. For each ξ ∈ Rm, ‖ξ‖ := sup{|〈ξ , z〉| : ‖z‖ ≤ }, where 〈ξ , z〉 denotes the
value of ξ at z. Let e ∈ intC and B∗

e := {ξ ∈ C∗ : 〈ξ , e〉 = }. It is well known that B∗
e is a

compact convex base of C∗.

Lemma . []

S ⊃
⋃

ξ∈C∗\{}
Sξ =

⋃
ξ∈B∗

e

Sξ ,

where Sξ := {x ∈ K : 〈∑m
i= ξiFi(x∗),x – x∗〉 ≥ ,∀y ∈ K} and S is the solution set of (WVVI).

Recall the generalized regularized gap function for (WVVI) which is defined by

φγ (x) :=min
ξ∈B∗

e
fγ (x, ξ ),

where fγ (x, ξ ) =maxy∈K {〈∑m
i= ξiFi(x),x– y〉– γ ϕ(x, y)}. When φ(x, y) = 

‖x– y‖, the gen-
eralized regularized gap function reduces to the regularized gap function which was de-
fined in [].

Theorem . Let γ (α – β) < minξ∈B∗
e μξ . Assume that ϕ satisfies (P). For each ξ ∈ B∗

e ,
suppose that ξ ◦ F is coercive on K , and that the following condition holds:

μξ := inf

{〈
d, (ξ ◦ ∇F)(x)d

〉∣∣∣x ∈ K \ S,d =
yϕ
γ (x) – x

‖yϕ
γ (x) – x‖

}
> . ()

Then
√

φγ has a global error bound with the modulus

max

{
max
ξ∈B∗

e


√

βγ

μξ + γβ – γα
,

√

βγ

βγ

}
.

Proof It follows from (vi) of Proposition . that Sξ is a nonempty compact set of K for
each ξ ∈ B∗

e . If x ∈ S, then the assertion obviously holds. Let x ∈ K \ S. Then φγ (x) >  and
there exists ξ ∈ B∗

e such that fγ (x, ξ) = φγ (x). It follows from Theorem . that

d(x,Sξ ) ≤ τξ

√
fγ (x, ξ),

where τξ =max{ 
√

βγ

μξ+γβ–γ α
, 

√
βγ

βγ
}. Thus, by Lemma ., one has

d(x,S)≤ d(x,Sξ ) ≤ τξ ·
√
fγ (x, ξ) ≤ max

ξ∈B∗
e
τξ ·

√
φγ (x).

Hence,
√

φγ has a global error bound with the modulus maxξ∈B∗
e τξ . �
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Remark . If Fi is strongly monotone with the modulus λi for i = , , . . . ,m and C = Rm
+ ,

it follows from [, Proposition .] that

〈
d, (ξ ◦ ∇F)(x)d

〉 ≥ λ‖d‖, ∀d ∈ Rn, ξ ∈ B∗
e .

Moreover, the strongmonotonicity of Fi implies the coerciveness of Fi (cf. [, Remark .])
and that (VI) has a unique solution (cf. [, Theorem ..]). Thus, by Theorem ., we get
that

√
φγ has a global error bound. Hence, our results extend those of [, Theorem .].
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