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Abstract
The purpose of this paper is to introduce a new three step iteration scheme for
approximation of fixed points of the nonexpansive mappings. We show that our
iteration process is faster than all of the Picard, the Mann, the Agarwal et al., and the
Abbas et al. iteration processes. We support our analytic proof by a numerical
example in which we approximate the fixed point by a computer using Matlab
program. We also prove some weak convergence and strong convergence theorems
for the nonexpansive mappings.
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1 Introduction
Many nonlinear equations are naturally formulated as fixed point problems,

x = Tx, (.)

where T , the fixed point mapping, may be nonlinear. A solution x∗ of the problem (.) is
called a fixed point of the mapping T . Consider a fixed point iteration, which is given by

xn+ = Txn. (.)

The iterative method (.) is also called a Richardson iteration, a Picard iteration, or the
method of successive substitution. The standard result for a fixed point iteration is the con-
tractionmapping theorem. Indeed, the contractionmapping theoremholds on an arbitrary
complete metric space; that is, if E is a complete metric space with metric d and T : E → E
such that d(Tx,Ty) ≤ kd(x, y) for some ≤ k <  and all x, y ∈ E, then T has a unique fixed
point x∗ and the iterates (.) converge to the fixed point x∗. The Picard iteration has been
successfully employed in approximating the fixed point of contraction mappings and its
variants. This success, however, has not extended to nonexpansivemappings T even when
the existence of a fixed point of T is known. Consider the simple example of a self map-
ping in [, ] defined by Tx =  – x for  ≤ x ≤ . Then T is a nonexpansive mapping with
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a unique fixed point at x = 
 . If one chooses as a starting value x = a, a �= 

 , then the suc-
cessive iterations of T yield the sequence { – a,a,  – a,a, . . .}. Thus when a fixed point
of nonexpansive mappings exists, other approximation techniques are needed to approx-
imate it.
Consider an average mapping of the form T 


= 

 I +

T , where I is the identity opera-

tor. This average mapping is nonexpansive because T is nonexpansive, and both have the
same fixed point set. Krasnosel’skii [] was first to notice the regularization effect of this
average mapping. Schaefer [] proved a convergence result for a general Tλ = λI + (–λ)T
( < λ < ). An approximation of fixed points of a nonexpansive mapping using Mann’s
algorithm [] has extensively been studied in the literature (see, e.g., [, ] and references
therein). Mann’s algorithm generates, for an arbitrary x ∈ C, a sequence {xn} according
to the following:

xn+ = αnxn + ( – αn)Txn, n ≥ , (.)

where {αn} is a real control sequence in the interval (, ).
In , Ishikawa [] introduced an iteration process where {xn} is defined iteratively for

each positive integer n≥  by

xn+ = ( – αn)xn + αnTyn,
yn = ( – βn)xn + βnTxn.

}
(.)

In , Noor [] introduced the following iterative scheme: for any fixed x ∈ C, con-
struct {xn} by

xn+ = ( – αn)xn + αnTyn,
yn = ( – βn)xn + βnTzn,
zn = ( – γn)xn + γnTxn

⎫⎪⎬
⎪⎭ (.)

for all n ≥ , where {αn}, {βn}, and {γn} are sequences in (, ).
In , Agarwal et al. [] introduced the following iteration process: for an arbitrary

x ∈ C construct a sequence {xn} by

xn+ = ( – αn)Txn + αnTyn,
yn = ( – βn)xn + βnTxn, n ∈N,

}
(.)

where {αn} and {βn} are in (, ). They showed that this process converges at a rate that is
the same as that of the Picard iteration and faster than theMann iteration for contractions.
Recently, Abbas and Nazir [] introduced the following iteration: for an arbitrary x ∈ C

construct {xn} by

xn+ = ( – αn)Tyn + αnTzn,
yn = ( – βn)Txn + βnTzn,
zn = ( – γn)xn + γnTxn,

⎫⎪⎬
⎪⎭ (.)

where {αn}, {βn}, and {γn} are in (, ). They showed that this process converges faster than
the Agarwal et al. [] iteration process.
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Motivated and inspired by the above work, in this paper we introduce a new iterative
scheme, where the sequence {xn} is generated from arbitrary x ∈ C by

xn+ = ( – αn)Txn + αnTyn,
yn = ( – βn)zn + βnTzn,
zn = ( – γn)xn + γnTxn,

⎫⎪⎬
⎪⎭ (.)

where {αn}, {βn}, and {γn} are real sequences in (, ).
The purpose of this paper is to prove that our process (.) converges faster than all of the

Picard, theMann, the Ishikawa, the Noor, the Agarwal et al., and the Abbas et al. iteration
processes for contractions in the sense of Berinde []. We also prove weak and strong
convergence theorems for nonexpansive mapping using iteration (.). In the last section,
using a numerical example, we compare the behavior of iteration (.) with respect to the
above mentioned iteration processes.

2 Rate of convergence
Berinde [] proposed a method to compare the fastness of two sequences.

Definition . Let {an} and {bn} be two sequences of real numbers that converge to a
and b, respectively, and assume that there exists

l = lim
n→∞

|an – a|
|bn – b| . (.)

(i) If l = , then it can be said that {an} converges faster to a than {bn} to b.
(ii) If  < l < ∞, then it can be said that {an} and {bn} have the same rate of convergence.

Suppose that, for two fixed point iteration procedures {un} and {vn}, both converging to
the same fixed point p, the error estimates

‖un – p‖ ≤ an, n = , , , . . . , (.)

‖vn – p‖ ≤ bn, n– = , , , . . . , (.)

are available, where {an} and {bn} are sequences of positive numbers (converging to zero).
Then, in view of Definition ., Berinde [] adopted the following concept.

Definition . Let {un} and {vn} be two fixed point iteration procedures that converge to
the same fixed point p and satisfy (.) and (.), respectively. If {an} converges faster than
{bn}, then it can be said that {un} converges faster than {vn} to p.

In recent years, Definition . has been used as a standard tool to compare the fastness
of two fixed point iterations. Using this technique Sahu [] established that the Agarwal
et al. iteration (.) converges faster than the Mann (.) and the Picard (.) iterations
and supported the claim by the following example.

Example  Let X =R and K = [,∞). Let T : K → K be a mapping defined by Tx = (x +
)  for all x ∈ K . For x = , and αn = βn = 

 , n = , , , . . . , Agarwal et al. iteration is
faster than both the Mann and the Picard iteration.
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Using a similar technique Abbas and Nazir [] established that the Abbas et al. iteration
(.) converges faster than the Agarwal et al. iteration (.) and hence it converges faster
than theMann (.) and the Picard (.) iterations also. An example is also given in support
of the claim.

Example  Let X = R and K = [, ]. Let T : K → K be a mapping defined by Tx =√
x – x +  for all x ∈ K . For x =  and αn = βn = γn = 

 , n = , , , . . . , the Abass
et al. iteration (.) is faster than the Agarwal et al. iteration (.). Since Sahu [] already
has shown that the iteration (.) is faster than the Mann iteration (.), the iteration (.)
is faster than the iterations (.), (.), and (.).

Wenow show that our process (.) converges faster than (.) in the sense of Berinde [].

Theorem . Let C be a nonempty closed convex subset of a norm space E. Let T be a
contraction with a contraction factor k ∈ (, ) and fixed point p. Let {un} be defined by the
iteration process (.) and {xn} by (.), where {αn}, {βn}, and {γn} are in [ε,  – ε] for all
n ∈ N and for some ε in (, ). Then {xn} converges faster than {un}. That is, our process
(.) converges faster than (.).

Proof As proved in Theorem  of Abbas and Nazir [],

‖un+ – p‖ ≤ kn
[
 – ( – k)αβγ

]n‖u – p‖,

for all n ∈N. Let

an = kn
[
 – ( – k)αβγ

]n‖u – p‖.

Now

‖zn – p‖ = ∥∥( – γn)xn + γnTxn – p
∥∥

≤ ( – γn)‖xn – p‖ + kγn‖xn – p‖
=

(
 – ( – k)γn

)‖xn – p‖,

so that

‖yn – p‖ = ∥∥( – βn)zn + βnTzn – p
∥∥

≤ ( – βn)‖zn – p‖ + kβn‖zn – p‖
≤ ( – βn)

(
 – ( – k)γn

)‖xn – p‖ + kβn
(
 – ( – k)γn

)‖xn – p‖
=

(
 – ( – k)βn

)(
 – ( – k)γn

)‖xn – p‖.

Thus

‖xn+ – p‖ = ∥∥( – αn)Txn + αnTyn – p
∥∥

≤ ( – αn)k‖xn – p‖ + kαn‖yn – p‖
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≤ ( – αn)k‖xn – p‖ + kαn
(
 – ( – k)βn

)(
 – ( – k)γn

)‖xn – p‖
= k

[
 – αn + αn

(
 – ( – k)βn

)(
 – ( – k)γn

)]‖xn – p‖
= k

[
 – αn +

(
αn – ( – k)αnβn

)(
 – ( – k)γn

)]‖xn – p‖
= k

[
 – αn + αn – ( – k)αnγn – ( – k)αnβn + ( – k)αnβnγn

]‖xn – p‖
≤ k

[
 – ( – k)αnβnγn – ( – k)αnβnγn + ( – k)αnβnγn

]‖xn – p‖
= k

(
 – ( – k)( + k)αnβnγn

)‖xn – p‖
= k

(
 –

(
 – k

)
αnβnγn

)‖xn – p‖.

Let

bn = kn
(
 –

(
 – k

)
αβγ

)n‖x – p‖.

Then

bn
an

=
kn( – ( – k)αβγ )n‖x – p‖
kn[ – ( – k)αβγ ]n‖u – p‖

=
( – ( – k)αβγ )n

( – ( – k)αβγ )n
‖x – p‖
‖u – p‖

→  as n→ ∞.

Consequently {xn} converges faster than {un}. �

Now, we present an example which shows that the new iteration process (.) converges
at a rate faster than the existing iteration schemes mentioned above.

Example  Let E = R and C = [, ]. Let T : C → C be a mapping defined by T(x) =√
x – x +  for all x ∈ C. Choose αn = ., βn = ., γn = ., with the initial value

x = . Our corresponding iteration process, the Abbas and Nazir iteration process (.),
the Agarwal et al. iteration process (.), the Noor iteration process (.), the Ishikawa
iteration process (.), theMann iteration process (.), and the Picard iteration processes
(.) are, respectively, given in Table .

All sequences converge to x∗ = . Comparison shows that our iteration process (.)
converges fastest among all the iterations considered in the example.

3 Convergence theorems
In this section, we give some convergence theorems using our iteration process (.);
please, see Table  and Figure .

Lemma . Let C be a nonempty closed convex subset of a norm space E. Let T be a nonex-
pansive self mapping on C, {xn} defined by (.) and F(T) �= ∅. Then limn→∞ ‖xn –p‖ exists
for all p ∈ F .
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Table 1 Comparative results

Step Picard Mann Ishikawa Noor Agarwal Abbas New iter.

1 40.0000000000 40.0000000000 40.0000000000 40.0000000000 40.0000000000 40.0000000000 40.0000000000
2 36.3318042492 36.8820336118 34.8751575132 33.9816211055 34.3249281505 34.2399531822 32.9458774280
3 32.7008496221 33.7905308732 29.8335259837 28.0882816012 28.7529148550 28.5873914017 26.0696692526
4 29.1159538575 30.7306375124 24.9067432334 22.3811620460 23.3289757744 23.0905148078 19.4826041425
5 25.5892777970 27.7090706072 20.1467307646 16.9736024952 18.1321892967 17.8350979079 13.4242477938
6 22.1381326176 24.7347891266 15.6449263114 12.0962209155 13.3147454600 12.9887334680 8.4745882697
7 18.7880774656 21.8200359935 11.5741197024 8.2289280979 9.1939307941 8.9032413368 5.7279660470
8 15.5784221001 18.9820007784 8.2638548016 6.0182077910 6.3717274607 6.2123720180 5.0765141830
9 12.5721859009 16.2455313784 6.1736938982 5.2517005165 5.2434387591 5.2064678069 5.0064676549
10 9.8733161157 13.6475866165 5.3185408455 5.0576355955 5.0298139084 5.0252795464 5.0005330507
11 7.6482574613 11.2442765494 5.0768890301 5.0129587850 5.0033662656 5.0028941692 5.0000438381
12 6.1081734180 9.1201110370 5.0179832209 5.0029016212 5.0003761718 5.0003285479 5.0000036046
13 5.3333287129 7.3913650188 5.0041744485 5.0006491038 5.0000419870 5.0000372607 5.0000002964
14 5.0771808572 6.1732610225 5.0009673150 5.0001451769 5.0000046858 5.0000042253 5.0000000244
15 5.0160062399 5.4814708358 5.0002240577 5.0000324684 5.0000005229 5.0000004791 5.0000000020
16 5.0032258274 5.1725897008 5.0000518932 5.0000072614 5.0000000584 5.0000000543 5.0000000002
17 5.0006461643 5.0576419946 5.0000120186 5.0000016240 5.0000000065 5.0000000062 5.0000000000
18 5.0001292729 5.0187159301 5.0000027835 5.0000003632 5.0000000007 5.0000000007 5.0000000000
19 5.0000258562 5.0060176595 5.0000006447 5.0000000812 5.0000000001 5.0000000001 5.0000000000
20 5.0000051713 5.0019286052 5.0000001493 5.0000000182 5.0000000000 5.0000000000 5.0000000000
21 5.0000010343 5.0006174572 5.0000000346 5.0000000041 5.0000000000 5.0000000000 5.0000000000
22 5.0000002069 5.0001976174 5.0000000080 5.0000000009 5.0000000000 5.0000000000 5.0000000000
23 5.0000000414 5.0000632408 5.0000000019 5.0000000002 5.0000000000 5.0000000000 5.0000000000
24 5.0000000083 5.0000202374 5.0000000004 5.0000000000 5.0000000000 5.0000000000 5.0000000000
25 5.0000000017 5.0000064760 5.0000000001 5.0000000000 5.0000000000 5.0000000000 5.0000000000
26 5.0000000003 5.0000020723 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
27 5.0000000001 5.0000006631 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
28 5.0000000000 5.0000002122 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
29 5.0000000000 5.0000000679 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
30 5.0000000000 5.0000000217 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
31 5.0000000000 5.0000000070 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
32 5.0000000000 5.0000000022 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
33 5.0000000000 5.0000000007 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
34 5.0000000000 5.0000000002 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000
35 5.0000000000 5.0000000001 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000

Figure 1 Convergence behavior of the Picard,
the Mann, the Ishikawa, the Noor, the Agarwal
et al., the Abbas et al. iterations, and new
iteration for the function given in Example 3.

Proof Let p ∈ F(T) for all n ∈N. From (.), we have

‖zn – p‖ = ∥∥( – γn)xn + γnTxn – p
∥∥

≤ ( – γn)‖xn – p‖ + γn‖Txn – p‖
≤ ( – γn)‖xn – p‖ + γn‖xn – p‖
= ‖xn – p‖ (.)
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and

‖yn – p‖ = ∥∥( – βn)zn + βnTzn – p
∥∥

≤ ( – βn)‖zn – p‖ + βn‖Tzn – p‖
≤ ( – βn)‖xn – p‖ + βn‖xn – p‖
= ‖xn – p‖, (.)

thus from (.) and (.)

‖xn+ – p‖ = ∥∥( – αn)Txn + αnTyn – p
∥∥

≤ ( – αn)‖Txn – p‖ + αn‖Tyn – p‖
≤ ( – αn)‖xn – p‖ + αn‖xn – p‖
= ‖xn – p‖.

Thus limn→∞ ‖xn – p‖ exists for all p ∈ F(T). �

We need following lemma to establish our next result.

Lemma . [] Suppose that E is a uniformly convex Banach space and  < p≤ tn ≤ q < 
for all n ∈ N. Let {xn} and {yn} be two sequences of E such that lim supn→∞ ‖xn‖ ≤ r,
lim supn→∞ ‖yn‖ ≤ r and lim supn→∞ ‖tnxn + ( – tn)yn‖ = r hold for some r ≥ . Then
limn→∞ ‖xn – yn‖ = .

We now establish a result which will be of key importance for the main result.

Lemma . Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T be a nonexpansive self mapping on C, {xn} defined by (.), where {αn},
{βn}, and {γn} are in [ε,  – ε] for all n ∈ N and for some ε in (, ) and F(T) �= ∅. Then
limn→∞ ‖xn – Txn‖ = .

Proof By Lemma ., limn→∞ ‖xn – p‖ exists. Assume that limn→∞ ‖xn – p‖ = c.
From (.) and (.) we have

lim sup
n→∞

‖yn – p‖ ≤ c (.)

and

lim sup
n→∞

‖zn – p‖ ≤ c. (.)

Since T is a nonexpansive mapping, it follows that

‖Txn – p‖ ≤ ‖xn – p‖

http://www.journalofinequalitiesandapplications.com/content/2014/1/328
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and

‖Tyn – p‖ ≤ ‖yn – p‖.

Taking lim sup on both sides, we obtain

lim sup
n→∞

‖Txn – p‖ ≤ c (.)

and

lim sup
n→∞

‖Tyn – p‖ ≤ c. (.)

Since

c = lim
n→∞‖xn+ – p‖ = lim

n→∞
∥∥( – αn)(Txn – p) + αn(Tyn – p)

∥∥,
by using Lemma ., we have

lim
n→∞‖Txn – Tyn‖ = . (.)

Now

‖xn+ – p‖ = ∥∥( – αn)Txn + αnTyn – p
∥∥ ≤ ‖Txn – p‖ + αn‖Txn – Tyn‖

yields

c≤ lim inf
n→∞ ‖Txn – p‖, (.)

so that (.) and (.) give

lim
n→∞‖Txn – p‖ = c. (.)

On the other hand, we have

‖Txn – p‖ ≤ ‖Txn – Tyn‖ + ‖Tyn – p‖ ≤ ‖Txn – Tyn‖ + ‖yn – p‖,

which yields

c≤ lim inf
n→∞ ‖yn – p‖. (.)

From (.) and (.) we get

lim
n→∞‖yn – p‖ = c.

Since T is a nonexpansive mapping, we have from (.)

lim sup
n→∞

‖Tzn – p‖ ≤ c. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/328
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From (.) and (.), by using Lemma . we obtain

lim
n→∞‖zn – Tzn‖ = . (.)

Since

‖yn – p‖ ≤ ‖zn – p‖ + βn‖Tzn – zn‖,

we write

c≤ lim sup
n→∞

‖zn – p‖, (.)

then

‖zn – p‖ = c, (.)

so

c = lim
n→∞‖zn – p‖

= lim
n→∞

∥∥( – αn)xn + αnTxn – p
∥∥

= lim
n→∞

∥∥( – αn)(xn – p) + αn(Txn – p)
∥∥,

and by Lemma ., we have

lim
n→∞‖xn – Txn‖ = .

This completes the proof. �

Lemma . [] Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space and T : C → E be a nonexpansivemapping.Then there is a strictly increasing
and continuous convex function g : [,∞)→ [,∞) with g() =  such that

g
(∥∥T(

tx + ( – t)y
)
–

(
tTx + ( – t)Ty

)∥∥) ≤ ‖x – y‖ – ‖Tx – Ty‖

for all x, y ∈ C and t ∈ [, ].

Lemma . For any p,p ∈ F(T), limn→∞ ‖txn + ( – t)p – p‖ exists, for all t ∈ [, ]
under the conditions of Lemma ..

Proof By Lemma ., limn→∞ ‖xn – p‖ exists for all p ∈ F(T) and hence {xn} is bounded.
Thus there exists a real number r >  such that {xn} ⊆D≡ Br()∩C, so that D is a closed
convex nonempty subset of C. Set

an(t) :=
∥∥txn + ( – t)p – p

∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/328
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for all t ∈ [, ]. Then limn→∞ an() = ‖p –p‖ and, fromLemma ., limn→∞ an() = ‖xn–
p‖ exist.
Now it remains to show that limn→∞ an(t) exists for t ∈ (, ).
For each n ∈ N , defineWn : D →D by

⎧⎪⎨
⎪⎩
Wnx = ( – αn)Tx + αnTVnx,
Vnx = ( – βn)Unx + βnTUnx,
Unx = ( – γn)x + γnTx

for all x ∈D.
We see that

‖Unx –Uny‖ ≤ ‖x – y‖, ∀x, y ∈ D,

and

‖Vnx –Vny‖ ≤ ‖x – y‖, ∀x, y ∈D,

hence,

‖Wnx –Wny‖ ≤ ‖x – y‖, ∀x, y ∈D.

Set

Rn,m =Wn+m–Wn+m– · · ·Wn

and

bn.m =
∥∥Rn,m

(
txn + ( – t)p

)
–

(
tRn,mxn + ( – t)p

)∥∥,
for all n,m ∈ N . Then Rn,mxn = xn+m and Rn,mp = p ∀p ∈ F(T). Also,

‖Rn,mx – Rn.my‖ ≤ ‖x – y‖, ∀x, y ∈D.

By Lemma ., there exists a strictly increasing continuous function g : [,∞)→ [,∞)
with g() =  such that

g(bn,m) ≤ ‖xn – p‖ – ‖Rn,mxn – Rn,mp‖
= ‖xn – p‖ – ‖xn+m – p‖.

Since limn→∞ ‖xn – p‖ exists for all p ∈ F(T), we get limn,m→∞ g(bn,m) =  and by the
property of g , we get limn,m→∞ bn,m = .
Now,

an+m(t) =
∥∥txn+m + ( – t)p – p

∥∥
=

∥∥tRn,mxn + ( – t)p – p
∥∥
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≤ bn,m +
∥∥Rn,m

(
txn + ( – t)p

)
– p

∥∥
= bn,m +

∥∥Rn,m
(
txn + ( – t)p

)
– Rn,mp

∥∥
≤ bn,m +

∥∥(
txn + ( – t)p

)
– p

∥∥
= bn,m + an(t).

Consequently

lim sup
m→∞

am(t) = lim sup
m→∞

an+m(t)

≤ lim sup
m→∞

(bn,m) + an(t).

Since limn,m→∞ bn,m = , we get

lim sup
n→∞

an(t) ≤ lim inf
n→∞ an(t).

This implies that limn→∞ an(t) exists for all t ∈ (, ), i.e., limn→∞ ‖txn + ( – t)p – p‖
exists for all t ∈ [, ]. �

Let E be a Banach space and SE = {x ∈ E : ‖x‖ = } unit sphere on E. The Banach space E
is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x and y in SE . In this case, the norm of E is called Gâteaux differentiable.
The space E is called Fréchet differentiable normed (see, e.g., []); for each x in E, the

above limit exists and is attained uniformly for y in E, and in this case it is also well known
that

〈
h, J(x)

〉
+


‖x‖ ≤ 


‖x + h‖ ≤ 〈

h, J(x)
〉
+


‖x‖ + b

(‖h‖) (.)

for all x,h ∈ E, where J is the Fréchet derivative of the function 
‖ · ‖ at x ∈ E, 〈·, ·〉 is the

dual pairing between E and E∗, and b is an increasing function defined on [,∞) such that
limt→

b(t)
t = .

Lemma . Assume that the conditions of Lemma . are satisfied. Then, for any p,p ∈
F(T), limn→∞〈xn, J(p – p)〉 exists; in particular, 〈p– q, J(p – p)〉 =  for all p,q ∈ ωw(xn),
the set of all weak limits of {xn}.

The proof of Lemma . is similar to the proof of Lemma . of Khan and Kim [].
A Banach space E is said to satisfy the Opial condition [] if for each sequence {xn} in E,

xn ⇀ x implies that

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ E with y �= x.
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A Banach space E is said to have the Kadec-Klee property if for every sequence {xn} in E,
xn ⇀ x and ‖xn‖ → ‖x‖ together imply xn → x as n→ ∞.
We need the following to prove our next result.

Definition . A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in
C and each x ∈ E, xn ⇀ x, and Txn → y imply that x ∈ C and Tx = y.

Lemma . [] Let C be a nonempty closed convex subset of a uniformly convex Banach
space E, and T a nonexpansive mapping on C. Then I – T is demiclosed at zero.

Lemma . [] Let E be a reflexive Banach space satisfying the Opial condition, C a
nonempty convex subset of E, and T : C → E an operator such that I – T demiclosed at
zero and F(T) �= ∅. Let {xn} be a sequence in C such that limn→∞ ‖xn – Txn‖ =  and
limn→∞ ‖xn – p‖ exists for all p ∈ F(T). Then {xn} converges weakly to a fixed point of T .

Lemma . [] Let E be a real reflexive Banach space such that its dual E∗ has the
Kadec-Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ ωw(xn), here ωw(xn)
denotes the w-limit set of {xn}. Suppose limn→∞ ‖txn + ( – t)x∗ – y∗‖ exists for all t ∈ [, ].
Then x∗ = y∗.

We now establish a weak convergence result.

Theorem . Let E be a uniformly convex Banach space and let C, T , and {xn} be as in
Lemma . and F(T) �= ∅. Assume that any of the following conditions hold:
(a) E satisfies the Opial condition,
(b) E has a Fréchet differentiable norm,
(c) the dual E∗ of E satisfies the Kadec-Klee property.

Then {xn} converges weakly to a point of F(T).

Proof Let p ∈ F(T), by Lemma ., limn→∞ ‖xn – p‖ exists.
We prove that {xn} has a unique weak subsequential limit in F(T).
Let u and v be weak limits of the subsequences {xni} and {xnj} of {xn}, respectively. By

Lemma ., limn→∞ ‖xn – Txn‖ = , and also I – T is demiclosed with respect to zero,
hence by Lemma ., we obtain Tu = u. In a similar manner, we have v ∈ F(T).
Next, we prove the uniqueness.
First assume that (a) holds. If u �= v, then, by the Opial condition,

lim
n→∞‖xn – u‖ = lim

i→∞‖xni – u‖ < lim
i→∞‖xni – v‖ = lim

n→∞‖xn – v‖

= lim
j→∞‖xnj – v‖ < lim

j→∞‖xnj – u‖ = lim
n→∞‖xn – u‖.

This is a contradiction, so u = v.
Next, assume (b) holds.
By Lemma ., 〈p – q, J(p – p)〉 = , for all p,q ∈ ωw(xn). Therefore, ‖u – v‖ = 〈u –

v, J(u – v)〉 =  implies u = v.
Finally, assume that (c) is true.
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Since limn→∞ ‖txn + ( – t)u – v‖ exists for all t ∈ [, ] by Lemma ., u = v by
Lemma ., and {xn} converges weakly to a fixed point of F(T) and this completes the
proof. �

A mapping T : C → C is said to be semicompact if any sequence {xn} in C, such that
limn→∞ ‖xn – Txn‖ = , has a subsequence converging strongly to some p ∈ C.
Next we establish the following strong convergence results.

Theorem . Let E be a uniformly convex Banach space and let C, T , and {xn} be as in
Lemma .. If T is semicompact and F(T) �= ∅, then {xn} converges strongly to a fixed point
of T .

Proof By Lemma ., we have limn→∞ ‖xn – Txn‖ = ; since T is semicompact, {xn} has a
subsequence converging to some p ∈ C asC is closed. Continuity ofT gives limj→∞ ‖Txnj –
Tp‖ → . Then by Lemma .,

‖Tp – p‖ = .

This yields p ∈ F(T). By Lemma ., limn→∞ ‖xn – p‖ exists for all p ∈ F(T), and therefore
{xn} must itself converge to p ∈ F(T) and this completes the proof. �

Theorem. Let E be a uniformly convex Banach space and let C,T , F(T), and {xn} be as
in Lemma .. Then {xn} converges to a point of F(T) if and only if lim infn→∞ d(xn,F(T)) =
, where d(x,F(T)) = inf{‖x – p‖ : p ∈ F(T)}.

Proof Necessity is obvious. Suppose that lim infn→∞ d(xn,F(T)) = . As proved in Lem-
ma ., limn→∞ ‖xn – w‖ exists for all w ∈ F(T), therefore limn→∞ d(xn,F(T)) exists. But
by hypothesis, lim infn→∞ d(xn,F(T)) = , therefore limn→∞ d(xn,F(T)) = .
Wewill show that {xn} is a Cauchy sequence inC. Since limn→∞ d(xn,F(T)) = , for given

ε > , there exists n in N such that, for all n≥ n,

d
(
xn,F(T)

)
<

ε


.

Particularly, inf{‖xn – p‖ : p ∈ F(T)} < ε
 . Hence, there exists p∗ ∈ F(T) such that ‖xn –

p∗‖ < ε
 . Now, form,n≥ n,

‖xn+m – xn‖ ≤ ∥∥xn+m – p∗∥∥ +
∥∥xn – p∗∥∥ ≤ 

∥∥xn – p∗∥∥ < ε.

Hence {xn} is a Cauchy sequence in C. Since C is a closed subset of a complete space,
limn→∞ xn = p ∈ C. Since F(T) is closed, limn→∞ d(xn,F(T)) =  gives d(p,F(T)) = , i.e.,
p ∈ F(T). �

Definition . A mapping T : C → C, where C is a subset of a normed space E, is said
to satisfy Condition (I) [] if there exists a nondecreasing function f : [,∞) → [,∞)
with f () = , f (r) >  for all r ∈ (, ) such that ‖x–Tx‖ ≥ f (d(x,F(T))) for all x ∈ C where
d(x,F(T)) = inf{‖x – p‖ : p ∈ F(T)}.
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Applying Theorem ., we obtain strong convergence of the process (.) under Con-
dition (I) as follows.

Theorem . Let e be a uniformly convex Banach space and let C, T , and {xn} be as in
Lemma .. Let T satisfy Condition (I), then {xn} converges strongly to a fixed point of T .

Proof We proved in Lemma . that

lim
n→∞‖xn – Txn‖ = . (.)

From Condition (I) and (.), we get

lim
n→∞ f

(
d
(
xn,F(T)

)) ≤ lim
n→∞‖xn – Txn‖ = ,

i.e., limn→∞ f (d(xn,F(T))) = . Since f : [,∞) → [,∞) is a nondecreasing function sat-
isfying f () = , f (r) >  for all r ∈ (,∞), we have

lim
n→∞d

(
xn,F(T)

)
= .

Now all the conditions of Theorem . are satisfied, therefore, by its conclusion, {xn}
converges strongly to a point of F(T). �
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