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1 Introduction
Let H be a real Hilbert space and let K be a nonempty closed convex subset of H .
Let T : K → K be a mapping. We denote by Fix(T) the fixed-point set of T , that is,
Fix(T) = {x ∈ K : Tx = x}. A mapping T : K → K is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖
for all x, y ∈ K . Approximation methods for fixed points of nonexpansive mappings have
attracted considerable attention (see [–]). A mapping T : K → K is quasi-nonexpansive
if Fix(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ K and y ∈ Fix(T). It is well known that the
fixed-point set of a quasi-nonexpansive mapping is closed and convex (see [, ]). There
are some quasi-nonexpansive mappings which are not nonexpansive (see [–]). For ex-
ample, the level set of a continuous convex function is characterized as the fixed-point
set of a nonlinear mapping called the subgradient projection, which is not nonexpansive
but quasi-nonexpansive. Quasi-nonexpansivemappings have been discussed in the recent
literature (see [–]).
We say that a mapping T : K → K is demiclosed at zero if for any sequence {xn} ⊂ K

which converges weakly to x, the strong convergence of the sequence {Txn} to zero implies
Tx = . It is well known that I –T is demiclosed whenever T is nonexpansive. In fact, this
property is satisfied for more general mappings (see [, ]).
Let B be a mapping from H into H . The effective domain of B is denoted by dom(B),

namely, dom(B) = {x ∈H : Bx �= ∅}. The graph of B is

Gra(B) =
{
(v, r) ∈H ×H : r ∈ Bv

}
.
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A multi-valued mapping B is said to be monotone if

〈x – y,u – v〉 ≥  for all x, y ∈ dom(B),u ∈ Bx, and v ∈ By.

A monotone operator B is said to be maximal if its graph is not properly contained in the
graph of any other monotone operator. For a maximal monotone operator B on H and
r > , we define a single-valued operator JrB = (I + rB)– :H → dom(B), which is called the
resolvent of B for r. It is well known that JrB is firmly nonexpansive, that is,

〈x – y, JrBx – JrBy〉 ≥ ‖JrBx – JrBy‖ for any x, y ∈H .

A basic problem for maximal monotone operator B is to

find x ∈ H such that  ∈ Bx. (.)

The classical method for solving problem (.) is the proximal point algorithm which was
first introduced by Martinet []. Rockafellar [] obtained the weak convergence of the
proximal point algorithm formaximalmonotone operators. Güler [] constructed a prox-
imal point iteration that converges weakly but not strongly. Some researchers have de-
voted their work to modifications of the proximal point algorithm in order to obtain the
strong convergence theorem (see [, ]). For a positive constant α, a mappingA : K →H
is said to be α-inverse strongly monotone if

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖ for all x, y ∈ K .

We write (A + B)– for the zero set of A + B, that is, (A + B)– = {x ∈ K :  ∈ (A + B)x},
where the mapping A : C →H is inverse strongly monotone and B is maximal monotone.
It is well known that (A + B)– = Fix(JλB(I – λA)) for all λ >  (see []). Takahashi et al.
[] presented the following iterative sequence. Let u ∈ K , x = x ∈ K and let {xn} be a
sequence generated by

xn+ = αnu + ( – αn)JλnB(xn – λnAxn).

Under appropriate conditions they proved that the sequence {xn} converges strongly to a
point z ∈ (A + B)–. Lin and Takahashi [] introduced an iterative sequence that con-
verges strongly to an element of (A + B)– ∩ F–, where F is another maximal mono-
tone operator. Takahashi et al. [] established an iterative scheme for finding a point of
(A + B)–∩ Fix(T) as follows. Let x = x ∈ K and let {xn} be a sequence generated by

xn+ = βnxn + ( – βn)T
[
αnx + ( – αn)JλnB(xn – λnAxn)

]
,

where T : K → K is a nonexpansive mapping.
Motivated by the above results, especially by Chuang et al. [] and Takahashi et al. [],

we obtain the strong convergence theorem for the iterative scheme for finding a common
element of the fixed-point set of a quasi-nonexpansive mapping and the zero set of the
sums of maximal monotone operators in Hilbert spaces. Our results extend and improve
the recent results of [] and [].
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The rest of this paper is organized as follows. Section  contains some important facts
and tools. In Section , we introduce a new iterative scheme for finding a common ele-
ment of the fixed-point set of a quasi-nonexpansive mapping and the zero set of the sums
of maximal monotone operators, and we prove strong convergence theorem in Hilbert
spaces.

2 Preliminaries
Throughout this paper, letH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖,
and let K be a nonempty closed convex subset of H . Let N be the set of positive integers.
We denote the strong convergence and the weak convergence of {xn} to x by xn → x and
xn ⇀ x, respectively. For any x ∈H , there exists a unique point PKx ∈ K such that

‖x – PKx‖ ≤ ‖x – y‖, ∀y ∈ K .

PK is called the metric projection of H onto K . Note that PK is a nonexpansive mapping.
For x ∈H and z ∈ K , we have

z = PKx ⇐⇒ 〈x – z, y – z〉 ≤  for every y ∈ K . (.)

Let f be a proper lower semicontinuous convex function of H into (–∞, +∞]. The sub-
differential ∂f of f is defined as

∂f (x) =
{
z ∈ H : f (y) – f (x) ≥ 〈z, y – x〉,∀y ∈H

}
(.)

for all x ∈H . Rockafellar [] claimed that ∂f is a maximal monotone operator. Let δK be
the indicator function of K , i.e.,

δK (x) =

⎧⎨
⎩
, x ∈ K ,

+∞, x /∈ K .

The subdifferential ∂δK of δK is a maximal monotone operator since δK is a proper lower
semicontinuous convex function on H . The resolvent Jr∂δK of ∂δK for r is PK (see []).
Let A : K → H be a nonlinear mapping. The variational inequality problem is to find

x ∈ K such that

〈Ax, y – x〉 ≥  for every y ∈ K . (.)

The solution set of (.) is denoted by VI(K ,A). Some methods have been proposed to
study the variational inequality problem (see [–] and the references therein). It is easy
to see that VI(K ,A) = (A + ∂δK )–, where A is an inverse strongly monotone mapping of
K into H (for more details, see []).
We collect some useful lemmas.

Lemma . [] Let A : K →H be an α-inverse strongly monotone mapping. For all x, y ∈
K and λ > , we have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ(λ – α)‖Ax –Ay‖.

In particular, if  < λ ≤ α, then I – λA is a nonexpansive mapping.
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Lemma . [] Let {�n} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {�nj} of {�n} such that

�nj < �nj+ for all j ∈N.

Define the sequence {τ (n)}n≥n of integers as follows:

τ (n) =max
k

{k ≤ n : �k < �k+},

where n ∈N such that {k ≤ n : �k < �k+} �= ∅. Then, for all n ≥ n, the following hold:
() τ (n) ≤ τ (n + )≤ · · · and τ (n) → ∞;
() �τ (n) ≤ �τ (n)+ and �n ≤ �τ (n)+.

Lemma . [] Let B be a maximal monotone operator on H . Then the following holds:

s – t
s

〈JsBx – JtBx, JsBx – x〉 ≥ ‖JsBx – JtBx‖

for all s, t >  and x ∈H .

The following lemma is an immediate consequence of the inner product on H .

Lemma . For all x, y ∈H , the inequality ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉 holds.

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying an+ ≤ ( –
αn)an + αnβn, where

(i) {αn} ⊂ (, ),
∑∞

n= αn =∞;
(ii) lim supn→∞ βn ≤ .

Then limn→∞ an = .

3 Strong convergence theorems
In this section, a new iterative scheme for finding a common element of the fixed-point
set of a quasi-nonexpansive mapping and the zero set of the sums of maximal monotone
operators is presented.

Theorem . Let K be a nonempty closed convex subset of a real Hilbert space H . Let A :
K → H and C : K → H be α-inverse strongly monotone and γ -inverse strongly monotone,
respectively. Suppose that B and D aremaximalmonotone operators on H such that the do-
mains of B and D are contained in K and that T : K → K is a quasi-nonexpansivemapping
such that I –T is demiclosed at zero.Assume that� := Fix(T)∩ (A+B)–∩ (C+D)– �= ∅.
Let {αn} and {βn} be sequences in (, ) and let {un} be a sequence in K . Let {xn} be a se-
quence generated by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ K chosen arbitrarily,

yn = αnun + ( – αn)JλnB(xn – λnAxn),

zn = JψnD(yn –ψnCyn),

xn+ = βnxn + ( – βn)Tzn.

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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Suppose the following conditions are satisfied:
(c) limn→∞ αn =  and

∑∞
n= αn =∞;

(c) limn→∞ un = u;
(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < a ≤ λn ≤ b < α;
(c)  < c≤ ψn ≤ d < γ .

Then the sequence {xn} converges strongly to P�u.

Proof Observe that the set � is closed and convex since Fix(T), (A+B)– and (C +D)–
are closed and convex.
By Lemma ., for any p ∈ �, we have

‖zn – p‖ = ∥∥JψnD(yn –ψnCyn) – JψnD(p –ψnCp)
∥∥ ≤ ‖yn – p‖

and

‖yn – p‖ ≤ αn‖un – p‖ + ( – αn)
∥∥JλnB(I – λnA)xn – p

∥∥
≤ αn‖un – p‖ + ( – αn)‖xn – p‖.

It follows that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖zn – p‖
≤ [

 – αn( – βn)
]‖xn – p‖ + αn( – βn)‖un – p‖

≤max
{‖xn – p‖,‖un – p‖}.

The sequence {un} is bounded due to condition (c). Hence there exists a positive number
L such that supn{‖un – p‖} ≤ L. By a simple inductive process, we have

‖xn+ – p‖ ≤max
{‖x – p‖,L}

,

which shows that {xn} is bounded. So are {yn} and {zn}.
Note that

〈xn+ – xn,xn – p〉 = ‖xn+ – p‖ – ‖xn – p‖ – ‖xn+ – xn‖

and

xn+ – xn = ( – βn)(Tzn – xn).

Thus we get

‖xn+ – p‖ – ‖xn – p‖ – ‖xn+ – xn‖

= 〈xn+ – xn,xn – p〉
= ( – βn)

[‖Tzn – p‖ – ‖Tzn – xn‖ – ‖xn – p‖]

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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≤ ( – βn)
[‖zn – p‖ – ‖Tzn – xn‖ – ‖xn – p‖]

≤ αn( – βn)‖un – p‖ – ( – βn)‖Tzn – xn‖

and

‖xn+ – p‖ – ‖xn – p‖ – ( – βn)‖Tzn – xn‖

≤ αn( – βn)‖un – p‖ – ( – βn)‖Tzn – xn‖.

This implies that

( – βn)βn‖Tzn – xn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + αn( – βn)‖un – p‖. (.)

Set �n = ‖xn – p‖, where p = P�u. We divide the rest proof into two cases.
Case . Suppose that �n+ ≤ �n for all n ∈ N. In this case, the limit limn→∞ �n exists and

then limn→∞(�n+ – �n) = . We obtain

lim
n→∞‖Tzn – xn‖ = , (.)

which implies

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖Tzn – xn‖ = . (.)

Note that

∥∥JλnB(xn – λnAxn) – p
∥∥

≤ ∥∥(I – λnA)xn – (I – λnA)p
∥∥

≤ ‖xn – p‖ + λn(λn – α)‖Axn –Ap‖.

It follows that

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)
[
αn‖un – p‖ + ( – αn)

∥∥JλnB(xn – λnAxn) – p
∥∥]

≤ βn‖xn – p‖ + αn( – βn)‖un – p‖

+ ( – αn)( – βn)
[‖xn – p‖ + λn(λn – α)‖Axn –Ap‖

]
≤ ‖xn – p‖ + αn( – βn)‖un – p‖

+ ( – αn)( – βn)λn(λn – α)‖Axn –Ap‖,

which yields

( – αn)( – βn)λn(α – λn)‖Axn –Ap‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn( – βn)‖un – p‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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Therefore we get

lim
n→∞‖Axn –Ap‖ = . (.)

In a similar way, we have

lim
n→∞‖Cyn –Cp‖ = . (.)

Letting hn = JλnB(I – λnA)xn, we have

‖hn – p‖ =
∥∥JλnB(I – λnA)xn – JλnB(I – λnA)p

∥∥

≤ 〈
(I – λnA)xn – (I – λnA)p,hn – p

〉

≤ 

[‖xn – p‖ + ‖hn – p‖ –

∥∥(xn – hn) – λn(Axn –Ap)
∥∥],

from which one deduces that

‖hn – p‖ ≤ ‖xn – p‖ –
∥∥(xn – hn) – λn(Axn –Ap)

∥∥.

Using (.), we see that

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)
[
αn‖un – p‖ + ( – αn)‖hn – p‖

]
≤ βn‖xn – p‖ + αn( – βn)‖un – p‖

+ ( – αn)( – βn)
(‖xn – p‖ – ‖xn – hn‖ + λn〈Axn –Ap,xn – hn〉

)
≤ ‖xn – p‖ + αn( – βn)‖un – p‖

– ( – αn)( – βn)‖xn – hn‖ + ( – αn)( – βn)λn〈Axn –Ap,xn – hn〉.

Thus,

( – αn)( – βn)‖xn – hn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn( – βn)‖un – p‖

+ ( – αn)( – βn)λn〈Axn –Ap,xn – hn〉.

It follows from (.) that

lim
n→∞‖xn – hn‖ = . (.)

This implies that

lim
n→∞‖xn – yn‖ = . (.)

By (.), a similar argument shows that

lim
n→∞‖yn – zn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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As

‖Tzn – zn‖ ≤ ‖Tzn – xn‖ + ‖xn – yn‖ + ‖yn – zn‖,

combining (.), (.) and (.) gives

lim
n→∞‖Tzn – zn‖ = . (.)

Next we prove that

lim sup
n→∞

〈u – p, yn – p〉 ≤ . (.)

To show this inequality, we choose a subsequence {ynj} of {yn} such that

lim sup
n→∞

〈u – p, yn – p〉 = lim
j→∞〈u – p, ynj – p〉. (.)

In view of the boundedness of {ynj}, without loss of generality, we assume that ynj ⇀ ω.
Now we show that ω ∈ �. According to the fact that {yn} is contained in K and K is a
closed convex set, one has ω ∈ �.
Note that the expressions (.) and (.) yield xnj ⇀ ω and znj ⇀ ω. By the fact that I –T

is demiclosed at zero, the expression (.) implies ω ∈ Fix(T).
We prove that ω ∈ (A+B)–. Due to (c), there is a subsequence {λnji

} of {λnj} such that
λnji

→ λ ∈ [a,b]. Without loss of generality, we assume that λnj → λ. Observe that

∥∥xnj – JλB(I – λA)xnj
∥∥

≤ ‖xnj – ynj‖ +
∥∥ynj – [

αnjunj + ( – αnj )JλB(I – λA)xnj
]∥∥

+
∥∥αnjunj + ( – αnj )JλB(I – λA)xnj – JλB(I – λA)xnj

∥∥
≤ ‖xnj – ynj‖ + ( – αnj )

∥∥Jλnj B(I – λnjA)xnj – JλB(I – λA)xnj
∥∥

+ αnj
∥∥unj – JλB(I – λA)xnj

∥∥
≤ ‖xnj – ynj‖ + ( – αnj )

[∥∥Jλnj B(I – λnjA)xnj – JλB(I – λnjA)xnj
∥∥

+
∥∥JλB(I – λnjA)xnj – JλB(I – λA)xnj

∥∥]
+ αnj

∥∥unj – JλB(I – λA)xnj
∥∥

≤ ‖xnj – ynj‖ + ( – αnj )
[ |λ – λnj |

λ

∥∥JλB(I – λnjA)xnj – (I – λnjA)xnj
∥∥

+ |λnj – λ|‖Axnj‖
]
+ αnj

∥∥unj – JλB(I – λA)xnj
∥∥.

Hence,

lim
j→∞

∥∥xnj – JλB(I – λA)xnj
∥∥ = . (.)

Since JλB(I – λA) is nonexpansive, the demiclosedness for a nonexpansive mapping im-
plies that ω ∈ Fix(JλB(I – λA)), that is, ω ∈ (A + B)–.

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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Note that

∥∥yni – JψD(I –ψC)yni
∥∥

≤ ‖yni – zni‖ +
∥∥JψniD(I –ψniC)yni – JψD(I –ψC)yni

∥∥
≤ ‖yni – zni‖ +

∥∥JψniD(I –ψniC)yni – JψniD(I –ψC)yni
∥∥

+
∥∥JψniD(I –ψC)yni – JψD(I –ψC)yni

∥∥.
Using a similar argument, we get ω ∈ (C +D)–. In fact, we have obtained ω ∈ �.
By (.) and (.), we have

lim sup
n→∞

〈u – p, yn – p〉 = lim
j→∞〈u – p, ynj – p〉

= 〈u – p,ω – p〉
≤ .

The inequality (.) is obtained.
Finally, we prove that xn → p. With the help of Lemma ., we obtain

‖xn+ – p‖

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖

≤ βn‖xn – p‖ + ( – βn)
[
( – αn)‖xn – p‖ + αn〈un – p, yn – p〉

]
≤ [

 – αn( – βn)
]‖xn – p‖ + αn( – βn)

(〈un – u, yn – p〉 + 〈u – p, yn – p〉
)
.

It follows from (.) and Lemma . that {xn} converges strongly to p.
Case . Suppose that there exists a subsequence {�ni} of {�n} such that

�ni < �ni+ for all i ∈N.

We define τ :N →N by

τ (n) =max{k ≤ n : �k < �k+}.

Lemma . shows that �τ (n) ≤ �τ (n)+. Therefore we have from (.)

lim
n→∞‖Tzτ (n) – xτ (n)‖ =  (.)

and

lim
n→∞‖xτ (n)+ – xτ (n)‖ = . (.)

As in the proof of Case , we obtain

lim sup
n→∞

〈u – p, yτ (n) – p〉 ≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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Observe that

‖xτ (n)+ – p‖

≤ [
 – ατ (n)( – βτ (n))

]‖xτ (n) – p‖

+ ατ (n)( – βτ (n))
(〈uτ (n) – u, yτ (n) – p〉 + 〈u – p, yτ (n) – p〉

)
.

It follows that

‖xτ (n) – p‖ ≤ 
(〈uτ (n) – u, yτ (n) – p〉 + 〈u – p, yτ (n) – p〉

)
, (.)

which implies that

lim sup
n→∞

‖xτ (n) – p‖ ≤ .

Thus we get

lim
n→∞‖xτ (n) – p‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xτ (n)+ – p‖ = . (.)

Lemma . implies that

lim
n→∞‖xn – p‖ = .

The proof is completed. �

The following result is a direct consequence of Theorem ..

Corollary . Let K be a nonempty closed convex subset of a real Hilbert space H . Let A
be an α-inverse strongly monotone operator of K into H and let B be a maximal monotone
operator on H such that the domain of B is contained in K . Let T : K → K be a quasi-
nonexpansive mapping such that I – T is demiclosed at zero. Assume that Fix(T) ∩ (A +
B)– �= ∅. Let {αn} and {βn} be sequences in (, ) and let {un} be a sequence in K . Let {xn}
be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K chosen arbitrarily,

yn = αnun + ( – αn)JλnB(xn – λnAxn),

xn+ = βnxn + ( – βn)Tyn.

(.)

If conditions (c)-(c) are satisfied, then the sequence {xn} converges strongly to the element
PFix(T)∩(A+B)–u.

http://www.journalofinequalitiesandapplications.com/content/2014/1/318
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Proof Letting C =  and D = ∂δK in Theorem ., the desired result follows. �

Let us consider the variational inequality problem. Recall that the subdifferential ∂δK of
δK is a maximal monotone operator and VI(K ,A) = (A + ∂δK )–, where A is an inverse
strongly monotone mapping. We obtain the following result.

Corollary . Let K be a nonempty closed convex subset of a real Hilbert space H . Let
A be an α-inverse strongly monotone operator of K into H and let T : K → K be a
quasi-nonexpansive mapping such that I – T is demiclosed at zero. Assume that Fix(T) ∩
VI(K ,A) �= ∅. Let {αn} and {βn} be sequences in (, ) and let {un} be a sequence in K . Let
{xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K chosen arbitrarily,

yn = αnun + ( – αn)PK (xn – λnAxn),

xn+ = βnxn + ( – βn)Tyn.

(.)

If conditions (c)-(c) are satisfied, then the sequence {xn} converges strongly to the element
PFix(T)∩VI(K ,A)u.

Proof Corollary . easily yields the desired result. �

Remark Corollaries . and . improve and extend Theorem . of Takahashi et al. []
and Theorem . of Takahashi and Takahashi [] in the following aspects, respectively.
() The nonexpansive mapping is extended to the quasi-nonexpansive mapping.
() The constant vector u is replaced by the variables un with limn→∞ un = u.
() The condition limn→∞(λn+ – λn) =  is removed.
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