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Abstract

In this paper, we present some results for the attractivity of solutions for a
k-dimensional system of fractional functional differential equations involving the
Caputo fractional derivative by using the classical Schauder’s fixed-point theorem.
Also, the global attractivity of solutions for a k-dimensional system of fractional
differential equations involving Riemann-Liouville fractional derivative are obtained
by using Krasnoselskii's fixed-point theorem. We give two examples to illustrate our
main results.

1 Introduction

In recent years, many researchers have been focused on investigation of fractional dif-
ferential equations which has played an important role in different areas of science (see
for example, [1-22] and the references therein). As you know, there are many practical
applications of fractional differential equations in different fields of science such as econ-
omy, biology, and the study of forced van der Pol oscillators (see for example, [23-25]
and the references therein). On the other hand, there are a few papers on the attractiv-
ity of solutions for fractional differential equations and fractional functional differential
equations (see for example, [15] and [16]). For the details of basic notions of this paper
such the standard Caputo fractional derivative, the standard Riemann-Liouville fractional
derivative, and the fractional integral of order g for a function f see [18]. In 2011, Chen
and Zhou reviewed the attractivity of solutions for the fractional functional differential
equation “D*x(t) = f(¢,x;) for t € (¢9,00) via the boundary value condition x(£) = ¢(¢) for
to—r <t <ty,wherety >0,r>0,0 <« <1,°Disthe standard Caputo fractional derivative,
¢ € C([to — 1, t0],R) and f : (¢p,00) x C([-r,0],R) — R a function with some properties
[16]. In 2012, Chen et al. reviewed the global attractivity of solutions for the nonlinear
fractional differential equation D*x(t) = g(¢,x(¢)) for t € (ty,00) via the boundary value
problem [D*~'x(¢)];—, = x0, where £o > 0, 0 < @ < 1, xp is a constant, D is the standard
Riemann-Liouville fractional derivative, and g : (t,00) x R — R a function with some
properties [15]. Also, they investigated the global attractivity of solutions for the nonlin-
ear fractional differential equation *D*x(z) = g(¢, x(¢)) for ¢ € (9, 00) via the boundary value
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problem x(ty) = x¢, where £y > 0, 0 < & < 1, x¢ is a constant, °D is the standard Caputo frac-
tional derivative, and g : (£, 00) X R — R a function with some properties [15].

In this paper, we investigate the attractivity of solutions for a k-dimensional system of
fractional differential equations. Also, we investigate the global attractivity of solutions for

another k-dimensional system of nonlinear fractional differential equations.

2 Preliminaries
In this paper, we investigate the attractivity of solutions for k-dimensional system of frac-
tional functional differential equations

CDalxl(t) :_fl(tvxl[:th; o ’x/([);
CDazxZ(t) :,fZ(tt xlpxzty oo ;xk[);

CDakxk(t) Zﬁ((t, x1t7x2t1 oo :xkt);

via the boundary value problems x;(¢) = ¢1(¢),x2(¢) = ¢2(2), ..., xx(£) = i (t) for to — r <
t <ty, where 0 <qa; <1fori=12,....,k ty >0, t € (¢ty,00), °D is the standard Caputo
fractional derivative, J = (£5,00), r > 0, ¢; € C([ty — . tp], R”) for i = 1,2,...,k and f; : ] x
C([-r,0],R") x C([-r,0],R") x --- x C([-r,0],R") — R” is a function satisfying some
assumptions that will be specified later for i = 1,2,..., k. If x € C([ty — r,00),R"), then x;
is defined by x,(0) = x(t + 0) for —-r <6 < 0 and t € [ty, 00). Also, we investigate the global
attractivity of solutions for the k-dimensional system of nonlinear fractional differential
equations

Dalxl(t) = gl(trxl(t)’xQ(t)! e ,Xk(t)),

D*2x5(t) = go (£, %1 (2), %2(2), .. ., %4 (2)),
(2.2)

Dakxk(t) = gk(t’ xl(t)er(t)! “o 7xk(t))7

via the boundary value problems [D*~1x;(£)];=s, = &7, [D*2 29 (£)] 1=ty = %9,..., [D*1 x
()] =ty = x,?, where 0 < a; <1 fori=1,2,...,k, tg > 0, t € (ty,00), D is the Riemann-
Liouville fractional derivative, J = (fy,0), x7,...,x{ are constants, and g;: ] x R” x R” x
.-+ x R” — R" is an integrable function satisfying some assumptions that will be specified
later for i = 1,2,..., k. In fact, we say that the solution (x;(£), x2(¢),...,xx(t)) of the problem
(2.1) is attractive whenever if there exists a constant b?(t) > 0 such that |¢;(s)| < b? for all
i=1,2,...,kand s € [ty — r, to], then lim;_, o x; (£, £y, ¢;) — 0. Also, the zero solution x(t) of
the problem (2.2) is said to be globally attractive whenever each solution tends to zero as
t — oo. Let X = C(J,R") be the Banach space of all continuous functions from J into R”
with the norm ||x|| = sup,, ()|, where | - | denotes a suitable complete norm on R”". It is
clear that the product space (X* = X x X x --- x X, || - ||+) is also a Banach space, where
ANl

k

1Ger, 22, .. X)L = Nl ]l + [1x2]l + -+ - + ||2k]l. We need the following Schauder fixed-point
theorem and improvement of a fixed-point theorem of Krasnoselskii due to Burton, which
one can find in [14, 17] and [19].

Theorem 2.1 If U is a nonempty, closed, bounded, and convex subset of the Banach space
X and T : U — U is completely continuous, then T has a fixed point.
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Theorem 2.2 Let S be a nonempty, closed, convex, and bounded subset of the Banach space
X, A: X — X a contraction with constant | <1, B: S — X a continuous map which B(S)
resides in a compact subset of X and x = Ax + By and y € S implies x € S. Then the operator
equation Ax + Bx = x has a solution in S.

3 Main results

First, we investigate attractive solutions of the problem (2.1). In this way, suppose that
1l = sup_, g [%(t + 8)| for ¢ € . We assume that fi(t,x1,,%3,,...,%%,) is Lebesgue mea-
surable with respect to ¢ on [£y, 00) and fi(£, ¢1, 2, ..., @) is continuous with respect to ¢;
on C([-r,0],R") for i,j =1,2,..., k. Note that the problem (2.1) is equivalent to the system
of equations

. I R
xi(t) _ {¢1(t0) + T(a;) fto(t S) ﬁ(S,xls,?Qs,...,xks)dS, t > to,

oi(t), telty-rto]
or
t L . oy
xi(t) = e Joy € = 0 [ 5 = 00) 0 4 fils, 1000, o) s, £> 0,
@i(t), t e[ty —r,t]

fori=1,2,...,k. Define the operator T : Xk x*k by

Tl(xlﬁxZ) o ,Xk)(t)

Tz(xl;xz; o ka)(t)
T(x1,%2,...,%) (&) = | . ’

Ti(x1, %2, - ., x1)(2)

where

t P,
¢i(t0) + %‘)‘i) ft() (t - S)a’ 1ﬁ($,9€1s,x25, vee ,st)ds, t > ty,

Ti(xl,xg,...,xk)(t) = {¢z’(t): telty—r tol

fori=1,2,...,k. Itis easy to check that (x1(¢),x2(£),...,xx(¢)) is a solution of the problem
(2.1) if and only if (x1(£), x2(2), ..., % (¢)) is a fixed point of the operator T

Theorem 3.1 Suppose that for each i € {1,2,...,k} there exist ya > 0 and oy € (0,;) such
that

t
‘ff’i(to) . ﬁ / (= 8 (5, 1,0, oric) | < (£ — o)
i to

1
forallt € J and f; € L (J x C([-r,0],R") x C([-r,0],R") x --- x C([-r,0],R"),R"). Then
the problem (2.1) has at least one attractive solution (x1,%s,...,xx) such that x; € C([to —
r,00),R") foralli=1,2,...,k.

Proof Consider the set

Sl = {(xl,xg,...,xk) X € C([t() ) OO),R"),

xi(t)| < (t-to) "

foralli:1,2,...,kandt22>t0},

Page 3 of 14
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where f is a constant. It is easy to check that S; is a closed, bounded, and convex
subset of R” x R” x --- x R". We show that the operator T has a fixed point in ;.

This implies that thke problem (2.1) has a solution. Note that |T;(xy,%2,...,x1)(2)| < (¢ -
to)™" for all i = 1,2,...,k and so T(S;) C S;. Now, we show that T is continuous. Let
O xy), (K1, %2, . .,%x) € St for all m > 1 and limy,— o [%]7(£) — x;(£)| = O for all
i=12,...,k. Then, we have limm%ooﬁ(t,x{’t’,xg’;,...,x;‘:) = fi(t, %1, %2,5 ..., %k,) for all i =
1,2,...,k and ¢ > £. Let € > 0 be given. Choose T > to such that ¢ > T implies that
(t- to) it < £, Letvy = =1,2,...,k. Also, we have

|T,(x{",x§", ’xk)(t) (xlyx2) ’xk)(t)|

—_ )al llf S, xl ’xz ’. ’x];g) _ﬁ(s,xls,xzs,...,st)| dS
F(az)

1 v lbl I-ap
—r<a,~>{/m[(t_s) ] ds}

t
x |:/ Ifi (s, 8,5 ) = fils, 20, %0y Kky)
to

1 1 T+v;\ -
< t—t
- F(ai)<1+vi1( 0) )

T 1 il
X |;/ [ﬁ(s,xﬁ‘,x;’;,...,xfs‘) — (8, %155 X0y K )| ¥ ds:|
to

1 ajl
o] ds:|

1 " T+ \ - _
—(T' - to) ) (T - o)™

xsup [fi(s,a,ah .8 = fils, %1, %0 Kky)
t()SSST

for ty < ¢ < T. Thus, limy_ | T (", x5 ) () — Tixa, %0, ..., %) (2)] = 0 for all £y <
t < T. Also, we have

|Tvl(x;n’x£n, ’xk)(t) (xl’xZ) ’xk)(t)‘

t
= (£ = )% Yi(s, 27, &7, ..., x") ds
’F(ai) /to W {CEHE RN

t
- (t — )7V fils, %1, %, . ., Xy, ) S
T(e) / o

=2(t-t) " <€

for t > T. Hence, lim,,,_, o | T (s (E) — Tilxe, %2, .., 1) (£)] = O for £ > to. This im-
plies that T; is continuous for i = 1,2,...,k and so T is continuous. Now, we show that the
set T(S;) is equi-continuous. Let € > 0. Since lim;_, oo (£ — £o) "1 =0 for i = 1,2,..., k, there
isa T’ > ty such that (£ — t5) 71 < 5 forallt > T'andi=1,2,...,k. Let i, 6 > to and t5 > t;.
If f1, € (f9, T'], then

’:ri(xl’xZI .. "xk)(tZ) - :ri(xler’ .. 'rxk)(tl)|

1 t
< ‘ / (t2 — ) fi(s, 21, %2, . ., X, ) S
F(al) to
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13}
/ (b — 5 (5,0, 52 r )
to

()
=< 1 /tl [(t1 — )% (4 —S)arl]vi(sxxl 1%25 00 Kk )| ds
(o) Jg o |
1 (" o1
r(ai)/ﬁ (2 = )" il 020,21 s
1 . - 1 -0
S F(ai){/to [t =) = (tp — )% e a,’s}

t 1 il
X |;/ [ﬁ(s,xls,xzs,...,xks) @il ds]
to

1 ty 1-aj
F(o{) |: (lfg —S)1 0(,1 dSi| [/ V 83 X159 K250+ :xk)
i t

i1
D‘tl d S:|
]

1 1\l oL -
< fy— to) L 4 (b — ty) ™ — (¢t — ) i 1]
< F(ai)<1+vil) [(t1 - to) (b — )" — (& — ) g

T 1 a1
[/ m(s)xlsyxZS)u-yxks) il dsi|
to
T

L 1m[(t ) ]1 “n /T Ifi( )
)@ (8, %1,%2 5.0y X
F(Oll') 1+ Vi 2 1 . i 15 A2 ks

1 1 1-aj T’
< (S, X1, %0 00 X
- r ai)(1+vil) [ t lfl( b )

and so limy, ., | T;(%1,%2, ..., %) (£2) — Ti(1, %2, ..., w0) (1) = 0. If 1y, £ > T’, then

X

1 ajl
1 s

1 ol o
41 ds (tz — tl)"‘z_“zl

|Ti(x1, %2, ..., ) (82) = Ti(o1, %3, ..., 20 (81)]
‘F(a,) / (t — )™ (s K1) K25 .o Xi) AS
- m/to (th — )™ f(s,xls,xgs,...,xks)ds
S(ta—to) "M+ (i —to) "™ <e.
Now, let t < ; < T’ < t5. Since

’n(xlrxb .. 'rx/()(tZ) - Ti(xlrx2’ .. ka)(tl)’
< ‘T,'(xl,x2,...,xk)(t2) — Ti(xl,XQ,...,Xk)(T/)’

+ | Tien, %2, ..o ) (T7) = Tiloa, %, ..

we get limy, ., | Ti(%1, %2, ..., %%)(t2) — Ti(x1, %2, ..., 2%)(£1)] = 0 in all cases. This implies that
the set T'(S1) is equi-continuous. Since T'(S;) C S; is uniformly bounded, T'(S) is relatively
compact. Now by using Theorem 2.1, T has a fixed point in S; which is a solution of the
problem (2.1). Since x(¢) = (x(£), x2(2), ..., x(¢)) € Sy, lim;_, oo x(£) = 0. Thus, x(¢) is an at-
tractive solution for the problem (2.1). |
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Theorem 3.2 Suppose that for each i € {1,2,...,k} there exist vy >0, ap € (0,0;) and
a1
l; € Lé2 (J,R*) such that —r(l ftg (1 = s)* Hi(s)(s — to) V2 ds < (t — ty) "2 and

;)

i(4 -
1—‘(8(7_:){1')@._ tO) a; +fi(t’x1t,x2t,...,xkz) < li(t)”xit”

foralli=1,2,...,k,t €] and x; € C([to —r,00), R"). Then the problem (2.1) has at least one
attractive solution (x1,%,,...,xx) such that x; € C([ty —r,00),R”) forall i=1,2,...,k.

Proof 1t is sufficient we consider the set

Sy = {1, %2, m) 12 € C([to — 7,00), R"), ||y, || < (£ = t0) 7"

foralli=1,2,...,kand t > 7>t}

where 7 is a constant. By using a similar techniques and proof in Theorem 3.1, one can
show that T'(S;) C Sy, T is continuous and T'(S;) is relatively compact. Now by using
Theorem 2.1, T has a fixed point in S, which is a solution of the problem (2.1). Since
x(t) = (x1(8), x2(2), ..., x%(2)) € S, lim;_, o x(¢) = 0. Thus, x(f) is an attractive solution for
the problem (2.1). O

Theorem 3.3 Suppose that for each i € {1,2,...,k} there exists B € («;,1) such that

i o N'l+o;-pB;
G fi( 30, %oy 0| < %ﬁﬁ”

_+) B
T —c) (t—to)

forall t € ]. Then the problem (2.1) has at least one attractive solution (x1,%a,...,xx) such
that x; € C([ty —r,00),R") foralli=1,2,...,k.

Proof 1t is sufficient we consider the set

Sg = {(xl,XQ,...,JCk) X € C([to -7, OO),]R”),

xi(0)] < (¢~ to)Pn 7

foralli=1,2,...,kand ¢t > 7>t}

where 7 is a constant. By using a similar techniques and proof in Theorem 3.1, one can
show that T'(S3) C S3, T is continuous and T'(S3) is relatively compact. Now, by using
Theorem 2.1, T has a fixed point in S3 which is a solution of the problem (2.1). Since
x(t) = (x1(28), x2(2),...,x%(¢)) € S3, lim;_, .o x(¢) = 0. Thus, x(f) is an attractive solution for
the problem (2.1). O

Here, we are going to investigate global attractivity of solutions of the problem (2.2). We

assume that g;(¢,x1(£), x2(¢), ..., xx(¢)) is Lebesgue measurable with respect to ¢ on [y, 00)
1

and there exists a constant o; € (0, ;) such thatg; € L0 (J x R” x R” x --- x R",R”) and

i(t, x1(2), %2(t), ..., xk(2)) is continuous with respect to x; on [ty,00) for all i,j =1,2,...,k.

Note that the problem (2.2) is equivalent to the system of equations

0 t
x,(£) = Ff;i) (£ =0+ & (lai) /to (= 9)* " gi(s, x1(5), %2(5), ..., Xk (s)) s
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forall t >ty and i = 1,2,...,k. Define the operator T : X¥ — X* by

Tl(xl,xb oo ,xk)(t)

TZ(xlerr “oe )xk)(t)
T (x1,%0,...,%6)() = | . ,

Tk(xl)xZ; cen )xk)(t)

where

0
Ti(xhx2; e )xk)(t) =

a0 Ty

/(t 8)%~ gl(s,xl(s) %2(8), ..., %(s)) ds

foralli=1,2,...,k. Now, define

Al(xl’xQ; .o ’xk)(t)

Ao (X1, %2, .., 1) ()
A(xlyxZ,u"xk)(t) =1. »

Ak(‘xl)ny o )xk)(t)

0
where A;(x1, %2, ...,%)(f) = e )(t —to)% L foralli=1,2,...,k. Finally, define
By (x1,%2, ..., x1)(2)

BZ(x1;x2) .. ~;xk)(t)
B(x1,%0,...,x)() = | . ,

Bk(xth; . uxk)(t)

where B;(x1,%2,...,%¢)(t) = %a,) ftg (t—5)%Lgi(s,21(5),%2(5), ..., xx(s)) ds forall i = 1,2,..., k.
It is easy to check that (x1(2), x2(£), . .., xx(2)) is a solution of the problem (2.2) if and only if
it is a fixed point of the operator 7. Note that A is a contraction with constant 0.

Theorem 3.4 Suppose that for each i € {1,2,...,k} there exist a; < B}, <1 and M; > 0 such
that |g;(¢,%1(£), %2(t), ..., x())] < M;(t - to)‘ﬂt{l forallt € J and xi,...,x¢ € C((ty, 00),R").
Then the zero solution of the problem (2.2) is globally attractive.

Proof Consider the set

Si = {(xl:xZ; .. ka) 1X € C((tO: OO), Rn); (t)| = (t - tO)_Vi/1

foralli=1,2,...,kand t >ty + Tl},
where ) = 3 (B} — o) ‘ T2 7%1:;_%1) T, B (Fy-a) <1for
alli=1,2,..., k. First, we show that B maps S] into S’. It is easy to check that S} is a closed,
bounded, and convex subset of R” x R” x - -- x R”. Note that

|Bi(y1,y25 - 310 (8)|

=

(1Oli) /t:(t —8) 7 gi(s, 21(5), %2(5), . .., () | ds

Page 7 of 14
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1
I'(a;)

_ M- By
TTQ+a;-Bh)

=

t

/ (t — ) Mi(s — to) P ds
to

(t— to)*(/s,'/l*ai)

M;r(1-g)
and T(ira-B))
Thus,

M-8
F(lﬂxi’ﬂ,{l)

1
7B«

(t—to)’%(ﬂgl’“i) < Tl_ 0 <1foralli=1,2,...,kand t >ty + T3.

ML’F(I - 18;1)

1/p/ 1 g /
By, y2, - i) (0)] < | ———— L (£ — 1) 2B (£ — £o) 2P < (£ — go)
1B:(y1,9: yk)()|_[r(1+ai_ﬂ;1)( o) (t-t) <(t-t)

foralli=1,2,...,kand ¢ > #, + T;. Hence, B(S}) C S;. Now, we show that B is continuous
on [tg + Tl,oo). Let (07,95 90 L ¥2, -5 9k) € §; for all m > 1 and limy,—, [y*(£) -
¥i()] = 0. Then, one can get lim,,,_, oo gi(£, 31" (£), 5" (£), ..., ¢ (£)) = gi(t; 1 (£), y2(2), ..., Y& (2))

forall >ty + T}. Let € > 0 be given. Choose T > £y + T} such that Mir(l_ﬁ“)) (T — o)) <
1

I(1+a;-pB.

i

Sforallt>T. Letv) = 0”';,1 fori=1,2,...,k Then, we have
il

1

|Bi (77, 95" Y ) (&) = Biyr, 92, yi0) ()|
1

- / (t - S)ai_l ‘gi(s’y;n(s)rygn(s)r e ;J’Zn(s)) —gi(S:yl(S):J/z(S): oo 'yk(s)) | dS

1 t w1 T Ly
5r<ai>{/to[(t‘s) ] 'ds}

1 1 L\
< — ARt |
- F(ai)<1+v;1( 0) )

T 1 %
X |:/ ’gi(s,y{”(s),ygn(s),...,y,’(”(s)) —g,'(s,yl(s),yz(s),...,yk(s))’“z{1 ds]

< 1 1 (T £ )1+v’,1 l_a;I(T £ )a{l
= T(a) \1+ ] 0 0

Vi
X sup lgi (8, 7 (), 5355 -, 7 (5)) = &8, ¥1(5) 72(8), ... 3 ()|

to<s<T

forall zo + T3 < ¢ < T. Hence, lim,,, o By 95 VE(E) = Bi(y1, 2, . .., yi)(£)] = 0 for all
to + Tl <t< T Also,

|Bi (77 955 V) (©) = Biyn, 92, - yi0) ()|

1
()

=

/ (= 9% gi (s, 97 (9), 5°(8), .., ¥ (5)) = &i(,1(8),92(5)s .. ., ¥k () | ds

=

@) /t 0 (¢ =) [|@i(5, 975, 75" (8), ., 77 (9)) | + [@i(5,71(8), 72(5), ..., 3 (5)) |] s

1
()

=

/ t(t — 5)4 [ 2My(s — to) ] ds

Page 8 of 14
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_2MI (- B)
“Tl+o-BL)
_2MT(1-By)
TTIl+a;-B))

(t _ to)*(/sl‘/l*ai)
(T t ) (5L1—Ulz <e

forall £ > T. Thus, limy— o |B:(V7, 95, 97) () = Bi(y1, 92, -, ) ()| = O for all £ > £ + T
This implies that B; is continuous on [£y + T, o0) fori=1,2,...,k and so B is continuous
on [ty + T1,00). Now, we show that B(S]) is equi-continuous. Let € > 0 be given. Since
limy—, oot — £)™71 = 0, there exists T’ > to + T such that (¢ — £) ™7 < 5 for ¢ > T'. Let
fty>to+Thand ty > 1. If 1, 85 € [to + T3, T'], then we have

|Bi(y1)y2; v ’yk)(tZ) - Bi(yl;yz’ v 7yk)(t1)|

= ‘ o) /toz(tz =) gi(5,21(5),72(5), ..., Y (5)) s

_ ﬁ /L l(L‘l - 5) 7 gi(5,31(),92(5), -, 9k (5)) s

0

= Tl / [0 =977 = (b= 9" le(5,91(6),92(5), -, 4(5) | s
+ ﬁ / 2(t2 —8)% 7 gi(8,71(5), 72(8), ..., yi(8)) | ds
5] 1 l—alfl

|:/ |gz $,91(8), y2(5); .. ,yk(s))| i ds:| !

= [ f (ty— )" = ds:| o [ /: |8i(5,71(5), 72(5), .., x(9)) | 0 “ STH

1 1 all / /N 1o
< ; (11— 1)1 = (85 — t0)*"0 + (£ — &)1 ") ™0
Co) \1+vj;
1 @)
o ds]

1 1 l—al{l , o T’ L/ 0‘1{1
F(ozi)( /> ((tz—tl)lwu)l ,1[/m |gi(S,y1(s),y2(s) ,yk(s))|l ]

1+v,

2 1 o\ear 7 1 e »
< < - ) [/ |gi(5,71(5) 72(8), ..., yi(9)) | “a ds} (ta — )" ™%
r ai) to

1+v;

T/
x [/ |gi (s 71(5), 72(8); - .., ()

to

and so 1imt2~>t1 |Bi()/1;y2; .. »,J’k)(tz) —Bi(J’I;}Q, .. ;J/k)(tl)| =0.1If bty > T/! then

|Biy1,925 -, 3i)(82) = Bi(y1, 325 -, ) (1)

e l)/ (t2 = )7 |gi(s,21(8),72(8), ..., yk(5)) | ds

m ftol(tl = 9 g (5,31(5),32(5) o 3(5)) | i

<(ts—to) "0 + (b —to) 71 <e.
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Iftg+ Ty < f < T' < ty, then we have

|Biy1y25 - 310)(£2) = Biyr, ¥2, . i) (1) |
< [Biy1,y2 - 9) &) = Biyn,y2s - 9 (T) |
+ |Bi(ylry2r e ;yk)(T/) - Bi(ylryZ’ e )yk)(t1)|
and so limy, 4, |Bi(y1,¥2, ..., ¥k)(&2) — Bi(y1,¥2,- .., ¥1)(t1)| = 0. Thus, B(S}) is equi-contin-
uous. Since B(S}) C S} is uniformly bounded, B(S]) is relatively compact. Now, sup-

pose that x = (xlﬁer--nxk) € C((tO’OO)ar) X C((to,OO),]Rn) X e X C((to,OO),Rn), y=
1,¥2,---,9k) € S; and x = Ax + By. Then,

|x:(6)] < |Ai(xr, %2, %) (@) + | Biyr, y2s - i) (8)]

< Lty / (= 5 g (516 ya 6 (5))
“ T T(@) Jy, ARILERI D

|x?| ;-1 er(l B lBt/l) —(B—)
< F(ai)(t_t()) + 7I‘(l+ai—ﬂjl)(t_t0)

foralli=1,2,...,k.Since 0 <a; < By <1fori=1,2,...,k we get

0

il goyban M= Bo)

Ia;) Fd+a;-pj)

(j-1) MT(1- ,3,/1) T*%(ﬁ,{fai)
F(l +o; — ,3:1) !

(t _ to)_%(ﬂl&_ai)

<1

)| L) , MiT(-p})
Thus; |x,(t)| < [F(oti) (t - to)z @ + m

all t >ty + 71 and i = 1,2,...,k. This implies that x(t) = (x1(£), %2(£), ..., xx(t)) € S; for all
t > to + T1. Therefore, by using Theorem 2.2 T has a fixed point in S| which is a solution

1 ’ ’
(t — o) 280D (t — to) "1 < (t — to) "1 for

of the problem (2.2). Since all elements of the set S} tend to 0 as ¢ — 00, the zero solution

of the problem (2.2) is globally attractive. O
Theorem 3.5 Suppose that for each i € {1,2,...,k} there exist o; < By < %(1 + ;) and
l; > 0 such that |gi(t, x1(t), %2(), ..., xx(£))]| < Li(¢ - l‘o)‘ﬁt‘/2 |x;(t)| forall t € ] and xy,...,xx €
C((29,00), R"). Then the zero solution of the problem (2.2) is globally attractive.

Proof 1t is sufficient to consider the set

5/2 = {(xl,er cee ,xk) (X € C((tO, OO), Rn); xl(t)| = (t - tO)_yl‘/2

foralli=1,2,...,kand t > ¢y + Tz},

~ 01 ~ Lig;-1
where y;, = %(1 —a;) and T, is chosen such that Flfjx‘) Ty @=D +

lir(l—ﬂfz—yi/z) T‘(ﬂl{g_ai)
F(1+ai—/3,{2—)/,"2) 2
foralli=1,2,...,k. Similar to the proof of Theorem 3.4, one can show that S}, is a closed,

<1

bounded, and convex set, B maps S}, into S), B(S,) is relatively compact, and B is continu-
ous on [ty + T, 00). Now, suppose that x = (x1,%,...,%x) € C((fo,00), R") x C((to, 00), R") x
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C((to,00), R™), y = (y1,%2,...,¥k) €Sy and x = Ax + By. Then,

|xi(t)| < |A,'(x1,x2,...,xk)(t)| + |Bi(yl,y2,...,yk)(t)\
< r"(“zi)(t—to)“” " e ft:u—s)“fl 61(5,71(5), 356, -, 31() | ds
< F'( l)( ~ o)t — 95 (s — to) PV ds

foralli=1,2,...,k.Since O <a; < B, < 5(1+ ;) <1fori=1,2,...,k, we get

|x?| (t— to)%(a 1) LI (1~ /31/2 - Vi/z) (t - to)—(ﬁfz—ai)
[(c;) P +ei =B —vin)
- ] sd@-n LD =B —vh) FBame) _
~ Ia;) 2 Tl +o; =By =) ? B
Thus, |x;(£)] < [ ( —to)2l@iD W(t t) P (t — to) "2 < (t — to) "2 for
o, 'BtZ Vt

allt > t9 + T and i=1,2,...,k. This implies that x(¢) = (x1(¢),x2(¢),...,xx(£)) € So, for ¢ >
to+ T». Since all elements of the set S}, tend to 0 as £ — 00, the zero solution of the problem
(2.2) is globally attractive. g

4 Examples

Here, we give an example to illustrate our results.

Example 4.1 Consider the 3-dimensional system of fractional functional differential

equations
1 _ r() 3 sin? (x1 (£-1)) x3(t-1)

‘D2x(t) = rz)(t +3)% PN 1+\§C3(t—1)\’ t>0,
cph M@ 3 F s (6-1)
Dix(8) = e+ 2) oG- D L0
cpl ) G (t-1)*
D3X3(t) ﬁ(t‘l'l) T (=1)) 46l (DB’ t>0,
x(t)=t, i=1,2,3,te[-1,0].

Define the maps

3 sin®(x (¢ — 1))

(%) 2 x3(t—1)
Silts x4, 20,5 %3,) = (}L)(t+3) 1+ (wo(t—1))2

L+ (¢ = 1)1

ré)
Solt, 1,5 %0,5%3,) = —3 | £+

3)87 cos*(x;(t — 1))

PE\2) el -1) + o - DI’
2 _ 4
Folt R0, %2,083,) = —22(E+1)7 (%1 (£ -1))

N

L+ (@ (£=1)* + 6loa(t — 1P
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§ 3 _ 5 _

and put m(t) = ;* (t+3)F, my®) = "2t + 3)F and ms(t) = “E(¢ + 1)7. It is easy
I'(z) I'(g) 2 v

to check that |fi(f,x1,,%2,,%3,)| < mi(£), |fa(t, %1,,%2,,%3,)] < ma(t) and |fs(¢, x1,,%0,,%3,)| <

ms3(t). Since

1 £ -1 B 1 ¢ ol ()
F(al)/t(t_s) ml(s)ds—r(%)/o(t §)72 x )

0
/(t—s) dsids=t 4

—
LSS

(s+ 3)_% ds

-

)F( )
‘r( )r /(t o dstds= o
and
F(ag)/ (E=5)* " m(s)ds = 55 /(t 573 x )(s+1)‘7 ds

F(é) ‘-3 tds= b
Swfo(t—s) s2ds=t"%6,

1 ¢ -4 _5
|r;2 INGE)! 4ﬁ(s,xls,xzs,xgs)d3|§t 8

1 t _l _
we get |l"(a1 Jo € =) 2fi(s, %1, %2, %3,) ds| <
Now, let g1 = 4, 0y = ¢ and o031 = £ Then,

and |r fo(t s) Bﬁ(s,xls,xzs,xgs)dﬂ <t’s

00 1 00 N
f Vl(t)xlpxzt,xgt){“ﬂ dt 5/ (Wll(t)) a1
to

to

e __T
_/o [ TR
L(E <i>)

S 18\r(d)

/ ot 01 3,03, | 0 dlt < / (male)) 1 dit
to

oo 3 —% 8
[ Tro(3) T
o LI'(E) 2
-(7)(55)
S \37JAr)
and
f lﬁ; t xl[,xZ[,xgt)|$ dt ff (ng(t)) @31t
00 5 6
=/0 r;;;_)(t+1) 7] dt
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Thus, all conditions of Theorem 3.1 hold and so this system of fractional functional dif-
ferential equations has an attractive solution.

Example 4.2 LetO<a; <1, M;>0,a; < B <land x? be a constant for i = 1,2, 3. Consider
the 3-dimensional system of fractional differential equations

o _ Myxp(#)sin® (x3(£) _ B
Dal®) = 5 oo C 97 >4

% - Mot* (1 (1) _\-p
D0 (t) = Grsmmam P mon E a7 t>a,

" _ MycosP @@ ) (p -
D*x3(t) = 8+3(02(0) 2+ a3 (O3 (t-a)y™, t>a,

[D“ ' %i(8)] 1 =%, i=1,2,3.

Define the maps
_ Mixo(2) sin®(x3(2)) i
gl(t¢x1(t)rx2(t):“’)xk(t)) = % + |x2(t)| + |.X3(t)| (t "Z) )
2 2
@ (650,000, .., 1(0) = Myt (1 (0) (t—a)Pn

T (7 +52)(1+ 2(x1(8)? + (x3(2))%)
and

_ M3 cos® (%(8)) (x3(2)°

s
"84 3m0r + mep Y

& (6w (@), %2(0), ..., 3 (0))

Thus, one can check that all conditions of Theorem 3.4 hold and so this system of frac-
tional differential equations has a globally attractive solution.

5 Conclusions

Investigating the attractive solutions of the problems is an interesting topic within the
fractional calculus. In this manuscript, we focus on the attractivity of solutions for two
k-dimensional systems of fractional differential equations. Two illustrative examples show
the applicability of the proposed methods. The techniques of the reported results can be
applied for investigating the attractivity and global attractivity of solutions of different
systems of (singular) fractional differential equations. Also, it is an interesting issue to
investigate the attractivity and global attractivity of solutions of some systems of fractional
differential inclusions.

Competing interests
The authors declare that they have no competing interests regarding the publication of this article.

Authors’ contributions
All authors read and approved the final version of this manuscript.

Author details

'Department of Mathematics, Cankaya University, Ogretmenler Cad. 14, Balgat, Ankara, 06530, Turkey. ?Institute of Space
Sciences, Magurele, Bucharest, Romania. *Department of Chemical and Materials Engineering, Faculty of Engineering,
King Abdulaziz University, PO. Box 80204, Jeddah, 21589, Saudi Arabia. “Department of Mathematics, Azarbaijan Shahid
Madani University, Azarshahr, Tabriz, Iran.

Acknowledgements
Research of the second and third authors was supported by Azarbaijan Shahid Madani University. Also, the authors

express their gratitude to the referees for their helpful suggestions which improved the final version of this paper.

Received: 16 September 2013 Accepted: 27 December 2013 Published: 24 Jan 2014


http://www.journalofinequalitiesandapplications.com/content/2014/1/31

Baleanu et al. Journal of Inequalities and Applications 2014, 2014:31
http://www.journalofinequalitiesandapplications.com/content/2014/1/31

References

1.

14.
15.

16.

18.

20.

21.

22.

23.

24.
25.

Ahmad, B: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations.
Appl. Math. Lett. 23,390-394 (2010)

. Ahmad, B, Nieto, JJ: Existence results for a coupled system of nonlinear fractional differential equations with

three-point boundary conditions. Comput. Math. Appl. 58, 1838-1843 (2009)

Ahmad, B, Sivasundaram, S: Existence results for nonlinear impulsive hybrid boundary value problems involving
fractional differential equations. Nonlinear Anal. 3, 251-258 (2009)

Ahmad, B, Sivasundaram, S: Existence of solutions for impulsive integral boundary value problems of fractional order.
Nonlinear Anal. 4, 134-141 (2010)

. Agarwal, RP, Andrade, B, Cuevas, C: Weighted pseudo-almost periodic solutions of a class of semilinear fractional

differential equations. Nonlinear Anal. 11, 3532-3554 (2010)

Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear
fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)

Agarwal, RP, Lakshmikantham, V, Nieto, JJ: On the concept of solution for fractional differential equations with
uncertainty. Nonlinear Anal. 72, 2859-2862 (2010)

Balachandran, K, Kiruthika, S: Existence of solutions of abstract fractional impulsive semilinear evolution equations.
Electron. J. Qual. Theory Differ. Equ. 2010, 4 (2010)

. Bai, C: Existence of positive solutions for boundary value problems of fractional functional differential equations.

Electron. J. Qual. Theory Differ. Equ. 2010, 30 (2010)
Baleanu, D, Agarwal, RP, Mohammadi, H, Rezapour, S: Some existence results for a nonlinear fractional differential
equation on partially ordered Banach spaces. Bound. Value Probl. 2013, 112 (2013)

. Baleanu, D, Mohammadi, H, Rezapour, S: Positive solutions of an initial value problem for nonlinear fractional

differential equations. Abstr. Appl. Anal. 2012 Article ID 837437 (2012)

Baleanu, D, Mohammadi, H, Rezapour, S: Some existence results on nonlinear fractional differential equations. Philos.
Trans. R. Soc. Lond. A 371, 20120144 (2013)

Baleanu, D, Mohammadi, H, Rezapour, S: On a nonlinear fractional differential equation on partially ordered metric
spaces. Adv. Differ. Equ. 2013, 83 (2013)

Burton, TA: A fixed point theorem of Kranoselskii. Appl. Math. Lett. 11, 85-88 (1998)

Chen, F, Nieto, JJ, Zhou, Y: Global attractivity for nonlinear fractional differential equations. Nonlinear Anal. 13,
287-298 (2012)

Chen, F, Zhou, Y: Attractivity of fractional functional differential equations. Comput. Math. Appl. 62, 1359-1369 (2011)
Hale, JK: Theory of Functional Differential Equations. Springer, Berlin (1977)

Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland
Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

Kranoselskii, MA: Topological Method in the Theory of Nonlinear Integral Equations. Macmillan Co., New York (1964)
Tian, Y, Bai, Z: Existence results for the three-point impulsive boundary value problem involving fractional differential
equations. Comput. Math. Appl. 59, 2601-2609 (2010)

Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of
fractional order. Nonlinear Anal. 74, 792-804 (2011)

Zhou, Y, Jiao, F, Li, J: Existence and uniqueness for fractional neutral differential equations with infinite delay.
Nonlinear Anal. 71, 3249-3256 (2009)

Pinto, C, Machado, JAT: Forced van der Pol oscillator of complex order. In: ENOC 2011, Rome, Italy, 24-29 July (2011)
Rihan, FA: Numerical modeling of fractional order biological systems. Abstr. Appl. Anal. 2013, Article ID 816803 (2013)
Suchorsky, MK, Rand, RH: A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 69,
313-324 (2012)

10.1186/1029-242X-2014-31

Cite this article as: Baleanu et al.: Attractivity for a k-dimensional system of fractional functional differential
equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations. Journal of
Inequalities and Applications 2014, 2014:31

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 14 of 14


http://www.journalofinequalitiesandapplications.com/content/2014/1/31

	Attractivity for a k-dimensional system of fractional functional differential equations and global attractivity for a k-dimensional system of nonlinear fractional differential equations
	Abstract
	Introduction
	Preliminaries
	Main results
	Examples
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


