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Abstract
In this paper, we prove that α = 0 and β =

√
3π–4 log(2+

√
3)

(
√
2π–4) log(2+

√
3)
= 0.29758 · · · are the best

possible constants such that the double inequality

αQ(a,b) + (1 – α)T (a,b) < SCA(a,b) < βQ(a,b) + (1 – β)T (a,b)

holds for all a,b > 0 with a �= b, where Q(a,b) =
√
(a2 + b2)/2,

SCA(a,b) =
(a – b)

√
3(a2 + b2) + 2ab

2(a + b) sinh–1( (a–b)
√

3(a2+b2)+2ab
(a+b)2

)

and T (a,b) = (a – b)/[2 arctan((a – b)/(a + b))] are the quadratic, Neuman and second
Seiffert means of a and b, respectively.
MSC: 26E60

Keywords: Neuman mean; quadratic mean; second Seiffert mean

1 Introduction
For a,b >  with a �= b, the Neuman mean SCA(a,b) [, ] derived from the Schwab-
Borchardt mean [, ], the quadratic mean Q(a,b) and the second Seiffert mean T(a,b)
[] are given by

SCA(a,b) =
(a – b)

√
(a + b) + ab

(a + b) sinh–( (a–b)
√

(a+b)+ab
(a+b) )

, (.)

Q(a,b) =
√
a + b


(.)

and

T(a,b) =
a – b

 arctan( a–ba+b )
, (.)

respectively, where sinh–(x) = log(x+
√
 + x) is the inverse hyperbolic sine function. Re-

cently, theNeuman, quadratic and second Seiffertmeans have been the subject of intensive
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research. In particular, many remarkable inequalities for these means can be found in the
literature [–, –].
Let A(a,b) = (a + b)/ and C(a,b) = (a + b)/(a + b) be the arithmetic and contrahar-

monic means of a and b, respectively. Then Neuman [] proved that the inequalities

A(a,b) < T(a,b) < SCA(a,b) <Q(a,b) < C(a,b) (.)

hold for any a,b >  with a �= b.
In [, ], Neuman found that α = [

√
 – log( +

√
)]/ log( +

√
) = . · · · , β = /,

α = /, β = [log –  log(log( +
√
))]/( log) = . · · · , α =  log( +

√
)/ –  =

. · · · and β = / are the best possible constants such that the double inequalities

αC(a,b) + ( – α)A(a,b) < SCA(a,b) < βC(a,b) + ( – β)A(a,b),

Cα (a,b)A–α (a,b) < SCA(a,b) < Cβ (a,b)A–β (a,b)

and

α

A(a,b)
+

 – α

C(a,b)
<


SCA(a,b)

<
β

A(a,b)
+

 – β

C(a,b)

hold for any a,b >  with a �= b.

He et al. [] proved that α = / +
√√

/ log( +
√
) – / and β = / +

√
/ are the

best possible constants in [/, ] such that the double inequality

C
[
αa + ( – α)b,αb + ( – α)a

]
< SCA(a,b) < C

[
βa + ( – β)b,βb + ( – β)a

]

holds for any a,b >  with a �= b.
In [, ], the authors proved that the double inequalities

α

[


C(a,b) +



A(a,b)

]
+ ( – α)C/(a,b)A/(a,b)

< SCA(a,b) < β

[


C(a,b) +



A(a,b)

]
+ ( – β)C/(a,b)A/(a,b)

and

λA(a,b) + ( – λ)Q(a,b) < SCA(a,b) < μA(a,b) + ( –μ)Q(a,b)

hold for any a,b >  with a �= b if and only if α ≤ [ 
√
 log(+

√
)–

√
]

( √–) log(+
√
)

= . · · · , β ≥ /,

λ ≥ / and μ ≤
√
 log(+

√
)–

√


(
√
–) log(+

√
) = . · · · .

The main purpose of this paper is to present the best possible constants α and β such
that the double inequality

αQ(a,b) + ( – α)T(a,b) < SCA(a,b) < βQ(a,b) + ( – β)T(a,b)

holds for any a,b > with a �= b. All numerical computations are carried out usingMATH-
EMATICA software.
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2 Lemmas
In order to prove our main results, we need several lemmas, which we present in this
section.

Lemma . The double inequality

–
x


+
x


–
x


<

x
( + x) arctan x

–


arctanx
< –

x


+
x


(.)

holds for x ∈ (, .).

Proof Let

φ(x) = x –
(
 + x

)
arctanx +

(
x


–
x


+
x



)(
 + x

)
arctan x, (.)

φ(x) = x –
(
 + x

)
arctanx +

(
x


–
x



)(
 + x

)
arctan x. (.)

Then we only need to show that φ(x) >  and φ(x) <  for x ∈ (, .).
Taking the differentiation of φ(x) yields

φ() = , (.)

φ′
(x) =

 arctanx


φ∗
 (x), (.)

where

φ∗
 (x) =

(
 + x – x + x

)
arctanx – x

(
 + x – x

)
, (.)

φ∗
 () = , (.)

φ∗′
(x) =

x
 + x

φ∗∗
 (x), (.)

where

φ∗∗
 (x) = 

(
 + x + x + x

)
arctanx – x

(
 – x – x

)
. (.)

It is well known that the inequality

arctanx > x –
x


(.)

holds for all x ∈ (, ).
Equation (.) and inequality (.) lead to the conclusion that

φ∗∗
 (x) > 

(
 + x + x + x

)(
x –

x



)
– x

(
 – x – x

)

=
x


[
 + ,x + ,x + ,x

(
 – x

)]
>  (.)

for x ∈ (, .).
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Therefore, φ(x) >  for x ∈ (, .) follows easily from (.)-(.) and (.).
Differentiating φ(x) leads to

φ() = , (.)

φ′
(x) = –

 arctanx


φ∗
 (x), (.)

where

φ∗
 (x) =

(
x + x

)
–

(
 + x – x

)
arctanx. (.)

It is well known that the inequality

arctanx < x –
x


+
x


(.)

holds for all x ∈ (, ).
Equation (.) and inequality (.) lead to the conclusion that

φ∗
 (x) >

(
x + x

)
–

(
 + x – x

)(
x –

x


+
x



)

=
x


(
 – x + x

)
>  (.)

for x ∈ (, .).
Therefore, φ(x) <  for x ∈ (, .) follows from (.) and (.) together with (.).

�

Lemma . The double inequality

x√
 + x

+
x

( + x) arctan x
–


arctanx

>
x

–
x


(.)

holds for x ∈ (, .).

Proof A simple computation leads to

(
 –

x


+
x



)(
 + x

)

=  –
x



[

(√




+ x
)(√




– x
)
+ x + x

(
 – x

)]
< 

for x ∈ (, .). This implies

x√
 + x

> x –
x


+
x


(.)

for x ∈ (, .).
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From Lemma . and (.) we clearly see that

x√
 + x

+
x

( + x) arctan x
–


arctanx

>
(
x –

x


+
x



)
+

(
–
x


+
x


–
x



)

=
x

–
x


–

x


=
x

–
x


+
x



(√



+ x
)(√




– x
)
>
x

–
x



for x ∈ (, .). �

Lemma . The inequality

x
[sinh–(x

√
 + x)]

–
 + x√

 + x sinh–(x
√
 + x)

> –
x

+
x


–

x


(.)

holds for x ∈ (, ).

Proof Let

ϕ(x) = x
√
 + x –

(
 + x

)
sinh–

(
x
√
 + x

)

+
(
x

–
x


+
x



)[
sinh–

(
x
√
 + x

)]√ + x. (.)

Then we only need to show that ϕ(x) >  for x ∈ (, ).
Differentiating (.) leads to

ϕ() = , (.)

ϕ′(x) =
x sinh–(x

√
 + x)

( + x)
ϕ(x), (.)

where

ϕ(x) = – – x – x + x

+ 
(
 + x + x + x + x

) sinh–(x√ + x)
x
√
 + x

. (.)

We claim that

sinh–(x
√
 + x)

x
√
 + x

>  –
x


+
x


–
x


(.)

for x ∈ (, ). Indeed, let

ω(x) = sinh–
(
x
√
 + x

)
– x

√
 + x

(
 –

x


+
x


–
x



)
,
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then ω(x) >  for x ∈ (, ) follows from the fact that

ω() = , ω′(x) =
x


√
 + x

> .

It follows from (.) and (.) that

ϕ(x) > – – x – x + x

+ 
(
 + x + x + x + x

)(
 –

x


+
x


–
x



)

=
x


[
 + x + x +

(
 – x

)(
x + x

)]
>  (.)

for x ∈ (, ).
Therefore, ϕ(x) >  for x ∈ (, ) follows from (.) and (.) together with (.).

�

Lemma . The inequality

arctanx >
π


+
x – 


–
(x – )


>

π


+
(x – )


(.)

holds for x ∈ [., ).

Proof Let

ν(x) = arctanx –
[

π


+
x – 


–
(x – )



]
. (.)

Then simple computations lead to

ν(.) = . · · · , ν() = , (.)

ν ′(x) =
ν(x)

( + x)
, (.)

ν(x) = – + x – x + x, (.)

ν(.) = ., ν() = , (.)

ν ′
(x) = 

(
x –

 –
√




)(
x –

 +
√




)
. (.)

From (.) and ( –
√
)/ = . · · · < . together with . < ( +√

)/ = . · · · < , we clearly see that ν(x) is strictly decreasing on [., ( +√
)/] and strictly increasing on [(+

√
)/, ). This in conjunction with (.) im-

plies that there exists x ∈ (., ) such that ν(x) >  for x ∈ [.,x) and ν(x) <  for
x ∈ (x, ). Then equation (.) leads to the conclusion that ν(x) is strictly increasing on
[.,x] and strictly decreasing on [x, ].
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Therefore, ν(x) >  for x ∈ [., ) follows from (.) and the piecewise monotonicity
of ν(x). Moreover, the second inequality in (.) follows from

x – 


–
(x – )


>
(x – )


+
( – x)(x – )


>
(x – )


. �

Lemma . The inequality

x – arctanx <



x arctan x (.)

holds for x ∈ [., ).

Proof Let

μ(x) = x – arctanx –



x arctan x. (.)

Then it suffices to show μ(x) <  for x ∈ [., ).
Differentiating μ(x) yields

μ′(x) =
μ(x)

( + x)
, (.)

where

μ(x) = x – x arctanx –  arctan x – x arctan x. (.)

It is well known that

arctanx > x –
x


+
x


–
x


(.)

for x ∈ (, ).
For x ∈ [., .], it follows from (.) and (.) that

μ(x) < x – x
(
x –

x


+
x


–
x



)
– 

(
x –

x


+
x


–
x



)

– x
(
x –

x


+
x


–
x



)

=
x

,
μ∗(x), (.)

where

μ∗(x) = –, + ,x – ,x + ,x

+ ,x – x + x – x, (.)

μ∗(.) = –. · · · . (.)

Differentiating μ∗(x) yields

μ∗′(x) =
(
, – ,x + ,x

)
+

(
,x – ,x

)
+

(
,x – ,x

)
>  (.)

for x ∈ [., .].
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Therefore, μ∗(x) <  for x ∈ [., .] follows from (.) and (.). This in con-
junctionwith (.) and (.) implies thatμ(x) is strictly decreasing on [., .]. There-
fore, we get μ(x)≤ μ(.) = –. · · · <  for x ∈ [., .].
It follows from Lemma . that

μ(x) < x –
[

π


+
x – 


–
(x – )



]
–




[
π


+
x – 


–
(x – )



]

=
μ(x)
,

(.)

for x ∈ (., ), where

μ(x) = (, – π ) +
(
π – π – 

)
x

+ (, – π )x + (π – ,)x + x – x. (.)

Differentiating μ(x) yields

μ(.) = –. · · · , μ() = –. · · · , (.)

μ′
(x) =

(
– + π – π) + (, – π )x + (π – ,)x

+ ,x – x, (.)

μ′
(.) = –. · · · , μ′

() = . · · · , (.)

μ′′
(x) = 

(
 – π – x + πx + x – x

)
, (.)

μ′′
(.) = –. · · · , μ′′

() = . · · · , (.)

μ′′′
 (x) = 

(
π –  + x – x

)
> 

(
π –  + × . – × (.)

)
= . · · · > . (.)

It follows from (.) and (.) that there exists x ∈ (., ) such that μ′
(x) is strictly

decreasing on (.,x] and strictly increasing on [x, ). This in conjunction with (.)
implies that there exists x ∈ (., ) such that μ(x) is strictly decreasing on (.,x] and
strictly increasing on [x, ). From (.) and the piecewise monotonicity of μ(x), we
know that μ(x) <  for x ∈ (., ); this in conjunction with (.) implies μ(x) <  for
x ∈ (., ). �

Lemma . The function

σ (x) =
√
 + x arctan x – (x – arctanx)

( + x) arctan x

is strictly decreasing on [., ).Moreover, σ (x) < . for x ∈ [., ).

Proof Differentiating σ (x) yields

σ ′(x) =
σ(x)

( + x) arctan x
, (.)

where

σ(x) = (x – arctanx) + x arctanx – x arctan x – x
√
 + x arctan x. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/299
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From Lemma . and (.) we clearly see that

σ(x) < x arctanx –



x arctan x – x arctan x = x arctanxσ(x) (.)

for x ∈ [., ), where

σ(x) = x –



arctanx –  arctan x. (.)

Differentiating σ(x) leads to

σ(.) = –. · · · , σ() = –. · · · , (.)

σ ′
(x) =

σ(x)
( + x)

, (.)

σ(x) =  + x –  arctan x, (.)

σ(.) = –. · · · , σ() = . · · · , (.)

σ ′
(x) =

σ(x)
 + x

, (.)

σ(x) = x + x –  arctanx, (.)

σ(.) = –. · · · , σ() = . · · · , (.)

σ ′
(x) =

– + x + x

 + x
> . (.)

It follows from (.)-(.) that there exists x ∈ (., ) such that σ(x) is strictly de-
creasing on (.,x] and strictly increasing on [x, ). This in conjunction with (.)-
(.) implies that there exists x ∈ (., ) such that σ(x) is strictly decreasing on
(.,x] and strictly increasing on [x, ). Then from (.) we clearly see that σ(x) < 
for x ∈ (., ).
Therefore, it follows from (.) and (.) that σ (x) is strictly decreasing on [., ).

Moreover, σ (x)≤ σ (.) = . · · · < . for x ∈ [., ). �

Lemma . The function

κ(x) =
( + x) sinh–(x

√
 + x) – x

√
 + x

( + x)[sinh–(x
√
 + x)]

is strictly decreasing on [., ).Moreover, κ(x) < . for x ∈ [., ).

Proof Simple computations lead to

κ(.) = . · · · , (.)

κ ′(x) =
κ(x)

( + x)[sinh–(x
√
 + x)]

, (.)

where

κ(x) = x
(
 + x

)
– 

(
 + x

)/
sinh–

(
x
√
 + x

)
+ x

[
sinh–

(
x
√
 + x

)]. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/299


Chu et al. Journal of Inequalities and Applications 2014, 2014:299 Page 10 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/299

We claim that

√
x –

x


√

< sinh–

(
x
√
 + x

)
<

√
x (.)

for x ∈ (, ). Indeed, let

η(x) = sinh–
(
x
√
 + x

)
–

√
x +

x


√

, (.)

η(x) = sinh–
(
x
√
 + x

)
–

√
x. (.)

Then we clearly see that

η() = η() = , (.)

η′
(x) =

√
 + x

+
√



x –
√
, (.)

η′
(x) =

√
 + x

–
√
 < , (.)

η′
() = , (.)

η′′
 (x) = x

(
√

–


( + x)/

)
> . (.)

Therefore, the double inequality (.) follows easily from (.)-(.).
Equation (.) and inequality (.) imply that

κ(x) < x
(
 + x

)
– 

(
 + x

)/(√
x –

x


√


)
+ x(

√
x) =

x


κ(x), (.)

where

κ(x) = 
(
 + x

)
–

√

(
 – x

)(
 + x

)/. (.)

Let u =
√
 + x, then x = u – ,

√
 < u <

√
 and κ(x) becomes

κ̃(u) = – + u – 
√
u +

√
u. (.)

Equation (.) leads to

κ̃(
√
) = , (.)

κ̃ ′(u) = u
(
 – 

√
u + 

√
u

)
= uκ̃(u), (.)

κ̃(u) =  – 
√
u + 

√
u, κ̃(

√
) = , κ̃(

√
) = –. · · · , (.)

κ̃ ′
(u) = 

√

(
u –

√



)(
u +

√



)
. (.)

From (.) we clearly see that κ̃ ′
(u) <  for u ∈ (

√
,

√
/) and κ̃ ′

(u) >  for u ∈
(
√
/,

√
). This in conjunction with (.) implies that κ̃ ′(u) is strictly decreasing on

http://www.journalofinequalitiesandapplications.com/content/2014/1/299
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(
√
,

√
/] and strictly increasing on [

√
/,

√
). Thus κ̃ ′(u) <  for u ∈ (

√
,

√
) fol-

lows from (.) and the piecewise monotonicity of κ̃ ′(u).
Therefore, κ(x) = κ̃(u) <  follows from (.). This in conjunction with (.) and

(.) implies that κ(x) is strictly decreasing on [., ). Moreover, it follows from (.)
that κ(x)≤ κ(.) = . · · · < . for x ∈ [., ). �

Lemma . The function

τ (x) =
(x – arctanx)

( + x) arctan x
–

x( + x)
( + x)/ sinh–(x

√
 + x)

< –.

for x ∈ [., ).

Proof We first prove

√
 + x sinh–

(
x
√
 + x

)
< x +

x


(.)

for x ∈ (, ). Let

ε(x) =
√
 + x sinh–

(
x
√
 + x

)
–

(
x +

x



)
.

Then ε(x) <  follows from ε() =  and the fact that

ε′(x) =
x√

 + x
(
sinh–

(
x
√
 + x

)
– x

√
 + x

)
<

x√
 + x

(√
x – x

√
 + x

)
< ,

where the second term follows from (.).
From Lemma . and (.) we clearly see that

x – arctanx
arctan x

<
x

 arctanx
<


( – x)

(.)

for x ∈ [., ).
It follows from (.) and (.) that

τ (x) <


( + x)( – x)
–

( + x)
( + x)( + x)

=: τ(x) (.)

for x ∈ [., ).
Simple computation yields

τ(.) = –. · · · , τ() = –. · · · , (.)

τ ′
(x) =

x
(x – )( + x)( + x)( + x)

τ̃ (x), (.)

where

τ̃ (x) = –, + ,x + ,x + ,x

– x – x + x + x, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/299
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τ̃ (.) = –,. · · · , τ̃ () = ,, (.)

τ̃ ′(x) = x
(
, + ,x + ,x – ,x

– ,x + x + x
)
> . (.)

From (.)-(.) we know that there exists x ∈ (., ) such that τ̃ (x) <  for x ∈
(.,x) and τ̃ (x) >  for x ∈ (x, ). This in conjunction with (.) implies that τ(x) is
strictly decreasing on [.,x) and strictly increasing on [x, ).
Therefore, τ (x) < τ(x) ≤ max{τ(.), τ()} = –. · · · < –. follows from

(.) and the piecewise monotonicity of τ(x). �

3 Main result
Theorem . The double inequality

αQ(a,b) + ( – α)T(a,b) < SCA(a,b) < βQ(a,b) + ( – β)T(a,b) (.)

holds for all a,b >  with a �= b if and only if α ≤  and β ≥ β =
√
π– log(+

√
)

(
√
π–) log(+

√
) =

. · · · .

Proof Since the Neuman mean SCA(a,b), the quadratic mean Q(a,b) and the second Seif-
fert mean T(a,b) are symmetric and homogeneous of degree , without loss of generality,
we assume that a > b. Let v = (a – b)/(a + b) ∈ (, ), then from (.)-(.) one has

SCA(a,b) = A(a,b)
v
√
 + v

sinh–(v
√
 + v)

, (.)

T(a,b) = A(a,b)
v

arctan(v)
, Q(a,b) = A(a,b)

√
 + v. (.)

Equations (.) and (.) lead to

SCA(a,b) – T(a,b)
Q(a,b) – T(a,b)

=
v
√
+v

sinh–(v
√
+v)

– v
arctan(v)√

 + v – v
arctan(v)

. (.)

It is easy to find that

lim
v→+

v
√
+v

sinh–(v
√
+v)

– v
arctan(v)√

 + v – v
arctan(v)

= , (.)

lim
v→–

v
√
+v

sinh–(v
√
+v)

– v
arctan(v)√

 + v – v
arctan(v)

= β. (.)

We investigate the difference between the convex combination of Q(a,b), T(a,b) and
SCA(a,b) as follows:

pQ(a,b) + ( – p)T(a,b) – SCA(a,b)

= A(a,b)
[
p
√
 + v + ( – p)

v
arctan(v)

–
v
√
 + v

sinh–(v
√
 + v)

]
. (.)
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Let

Dp(v) = p
√
 + v + ( – p)

v
arctan(v)

–
v
√
 + v

sinh–(v
√
 + v)

. (.)

Then simple computations lead to

Dp
(
+

)
= , Dp

(
–

)
= p

(√
 –


π

)
+

π

–
√


log( +
√
)
, Dβ

(
–

)
= , (.)

D′
p(v) = p

[
v√
 + v

+
v

( + v) arctan v
–


arctan v

]
+

v
(sinh–(v

√
 + v))

–
 + v√

 + v sinh–(v
√
 + v)

–
v

( + v) arctan v
+


arctan v

, (.)

D′′
p(v) = p

√
 + v arctan v – (v – arctan v)

( + v) arctan v

+
( + v) sinh–(v

√
 + v) – v

√
 + v

( + v)(sinh–(v
√
 + v))

+
(v – arctan v)

( + v) arctan v
–

v( + v)
( + v)/ sinh–(v

√
 + v)

= pσ (v) + κ(v) + τ (v), (.)

where σ (x), κ(x) and τ (x) are defined as in Lemmas ., . and ., respectively.
From Lemmas .-. and (.) we clearly see that

D′
β (v) > β

(
v

–
v



)
–
v

+
v


–

v


+
v


–
v



=
v


[
( + β) – ( + β)v – v

]

>
v


[
( + .) – ( + × .)× (.) – × (.)

]

=
v


× . · · · >  (.)

for v ∈ (, .].
It follows from Lemmas .-. and (.) that

D′′
β (v) = βσ (v) + κ(v) + τ (v) < .β + . – . = –. · · · (.)

for v ∈ [., ). Then from D′
β
(.) = . · · · and D′

β
() = –. · · · we

know that there exists v ∈ (., ) such that D′
β
(v) >  for v ∈ [., v) and D′

β
(x) < 

for v ∈ (v, ). This in conjunction with (.) leads to the conclusion that Dβ (v) is strictly
increasing on [., v] and strictly decreasing on [v, ).
Therefore, Dβ (v) >  for v ∈ (, ) follows from (.) and the monotonicity of Dβ (v). In

other words, we obtain

βQ(a,b) + ( – β)T(a,b) > SCA(a,b) (.)

for a,b >  with a �= b.
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Obviously, if α = , then (.) gives

T(a,b) < SCA(a,b) (.)

for a,b >  with a �= b.
Therefore, Theorem . follows from (.) and (.) together with the following state-

ments:
• If α > , then (.) and (.) imply that there exists δ ∈ (, ) such that
SCA(a,b) < αQ(a,b) + ( – α)T(a,b) for all a,b >  with (a – b)/(a + b) ∈ (, δ).

• If β < β, then (.) and (.) imply that there exists δ ∈ (, ) such that
SCA(a,b) > βQ(a,b) + ( – β)T(a,b) for all a,b >  with (a – b)/(a + b) ∈ ( – δ, ). �
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