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1 Introduction
The split feasibility problem (SFP) was proposed by Censor and Elfving in []. It can be
formulated as the problem of finding a point x satisfying the property

x ∈ C, Ax ∈Q, (.)

where A is a givenM ×N real matrix, C and Q are nonempty, closed and convex subsets
in R

N and R
M , respectively.

Due to its extraordinary utility and broad applicability in many areas of applied mathe-
matics (most notably, fully-discretized models of problems in image reconstruction from
projections, in image processing, and in intensity-modulated radiation therapy), algo-
rithms for solving convex feasibility problems continue to receive great attention (see, for
instance, [–] and also [–]).
We assume that SFP (.) is consistent, and let � be the solution set, i.e.,

� = {x ∈ C : Ax ∈Q}.

It is not hard to see that � is closed convex and x ∈ � if and only if it solves the fixed-point
equation

x = PC
(
I – γA∗(I – PQ)A

)
x, (.)
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where PC and PQ are the orthogonal projections onto C and Q, respectively, γ >  is any
positive constant and A∗ denotes the adjoint of A.
To solve (.), Byrne [] proposed his CQ algorithm which generates a sequence {xn}

by

xn+ = PC
(
xn – τnA∗(I – PQ)Axn

)
, (.)

where τn ∈ (, 
‖A‖ ).

The CQ algorithm (.) can be obtained from optimization. In fact, if we introduce the
convex objective function

f (x) =


∥∥(I – PQ)Ax

∥∥, (.)

and analyze the minimization problem

min
x∈C f (x), (.)

then the CQ algorithm (.) comes immediately as a special case of the gradient projec-
tion algorithm (GPA). Since the convex objective function f (x) is differentiable and has a
Lipschitz gradient, which is given by

∇f (x) = A∗(I – PQ)Ax, (.)

the GPA for solving the minimization problem (.) generates a sequence {xn} recursively
as

xn+ = PC
(
xn – τn∇f (xn)

)
, (.)

where τn is chosen in the interval (, L ), and L is the Lipschitz constant of ∇f .
Observe that in algorithms (.) and (.) mentioned above, in order to implement the

CQ algorithm, one has to compute the operator norm ‖A‖, which is in general not an easy
work in practice. To overcome this difficulty, some authors proposed different adaptive
choices of selecting the τn (see [–]). For instance, López et al. introduced a new way
of selecting the stepsize [] as follows:

τn :=
ρnf (xn)

‖∇f (xn)‖ ,  < ρn < . (.)

The computation of a projection onto a general closed convex subset is generally diffi-
cult. To overcome this difficulty, Fukushima [] suggested the so-called relaxed projection
method to calculate the projection onto a level set of a convex function by computing a
sequence of projections onto half-spaces containing the original level set. In the setting of
finite-dimensional Hilbert spaces, this idea was followed by Yang [], who introduced the
relaxed CQ algorithms for solving SFP (.) where the closed convex subsets C and Q are
level sets of convex functions.
Recently, for the purpose of generality, SFP (.) has been studied in a more general

setting. For instance, see [, ]. However, their algorithm has only weak convergence in
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the setting of infinite-dimensional Hilbert spaces. Very recently, He and Zhao [] intro-
duced a new relaxed CQ algorithm (.) such that the strong convergence is guaranteed
in infinite-dimensional Hilbert spaces:

xn+ = PCn

(
αnu + ( – αn)

(
xn – τn∇fn(xn)

))
. (.)

Motivated and inspired by the research going on in this section, the purpose of this
article is to study a two-step iterative algorithm for split feasibility problems such that
the strong convergence is guaranteed in infinite-dimensional Hilbert spaces. Our result
extends and improves the corresponding results of He and Zhao [] and some others.

2 Preliminaries and lemmas
Throughout the rest of this paper, we assume that H , H and H all are Hilbert spaces,
A is a bounded linear operator from H to H, and I is the identity operator on H , H or
H. If f : H → R is a differentiable function, then we denote by ∇f the gradient of the
function f . We will also use the following notations: → to denote the strong convergence,
⇀ to denote the weak convergence and

wω(xn) =
{
x| ∃{xnk } ⊂ {xn} such that xnk ⇀ x

}
to denote the weak ω-limit set of {xn}.
Recall that a mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈H .

T :H →H is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥, x, y ∈H .

A mapping T :H →H is said to be demiclosed at origin if for any sequence {xn} ⊂H with
xn ⇀ x∗ and lim supn→∞ ‖(I – T)xn‖ = , then x∗ = Tx∗.
It is easy to prove that if T :H → H is a firmly nonexpansive mapping, then T is demi-

closed at origin.
A function f :H →R is called convex if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ∀λ ∈ (, ),∀x, y ∈H .

A function f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x
implies

f (x)≤ lim inf
n→∞ f (xn).

Lemma . Let T :H → H be a firmly nonexpansive mapping such that ‖(I – T)x‖ is a
convex function from H to R, let A :H →H be a bounded linear operator and

f (x) =


∥∥(I – T)Ax

∥∥, ∀x ∈ H.

Then
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(i) ∇f (x) = A∗(I – T)Ax, x ∈H.
(ii) ∇f is ‖A‖-Lipschitz: ‖∇f (x) –∇f (y)‖ ≤ ‖A‖‖x – y‖, x, y ∈H.

Proof (i) From the definition of f , we know that f is convex. For any given x ∈ H and for
any v ∈ H, first we prove that the limit

〈∇f (x), v
〉
= lim

h→+

f (x + hv) – f (x)
h

exists in R̄ := {–∞} ∪R∪ {+∞} and satisfies

〈∇f (x), v
〉 ≤ f (x + v) – f (x), ∀v ∈H.

If fact, if  < h ≤ h, then

f (x + hv) – f (x) = f
(
h
h

(x + hv) +
(
 –

h
h

)
x
)
– f (x).

Since f is convex and h
h

≤ , it follows that

f (x + hv) – f (x)≤ h
h

f (x + hv) +
(
 –

h
h

)
f (x) – f (x),

and

f (x + hv) – f (x)
h

≤ f (x + hv) – f (x)
h

.

This shows that this difference quotient is increasing, therefore it has a limit in R̄ as h →
+:

〈∇f (x), v
〉
= inf

h>

f (x + hv) – f (x)
h

= lim
h→+

f (x + hv) – f (x)
h

. (.)

This implies that f is differential. Taking h =  in (.), we have

〈∇f (x), v
〉 ≤ f (x + v) – f (x).

Next we prove that

∇f (x) = A∗(I – T)Ax, x ∈H.

In fact, since

lim
h→+

f (x + hv) – f (x)
h

= lim
h→+

‖Ax + hAv – TA(x + hv)‖ – ‖(I – T)Ax‖
h

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/280
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and

∥∥Ax + hAv – TA(x + hv)
∥∥ –

∥∥(I – T)Ax
∥∥

= ‖Ax‖ + h‖Av‖ + h
〈
A∗Ax, v

〉
+

∥∥TA(x + hv)
∥∥ – ‖Ax‖ – ‖TAx‖ – 

〈
Ax,TA(x + hv) – TAx

〉
– h

〈
A∗TA(x + hv), v

〉
. (.)

Substituting (.) into (.), simplifying it and then letting h→ +, we have

lim
h→+

f (x + hv) – f (x)
h

= lim
h→+

h{〈A∗Ax, v〉 – 〈A∗TA(x + hv), v〉}
h

=
〈
A∗(I – T)Ax, v

〉
, ∀v ∈H.

It follows from (.) that

∇f (x) = A∗(I – T)Ax, x ∈H.

Now we prove conclusion (ii). Indeed, it follows from (i) that

∥∥∇f (x) –∇f (y)
∥∥ =

∥∥A∗(I – T)Ax –A∗(I – T)Ay
∥∥ =

∥∥A∗[(I – T)Ax – (I – T)Ay
]∥∥

≤ ‖A‖‖Ax –Ay‖ ≤ ‖A‖‖x – y‖, x, y ∈H.

Lemma . is proved. �

Lemma . Let T :H →H be an operator. The following statements are equivalent.
(i) T is firmly nonexpansive.
(ii) ‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, ∀x, y ∈H .
(iii) I – T is firmly nonexpansive.

Proof (i) ⇒ (ii): Since T is firmly nonexpansive, we have, for all x, y ∈H ,

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥ = ‖x – y‖ – ∥∥(x – y) – (Tx – Ty)

∥∥

= ‖x – y‖ – ‖x – y‖ – ‖Tx – Ty‖ + 〈x – y,Tx – Ty〉
= 〈x – y,Tx – Ty〉 – ‖Tx – Ty‖,

hence

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, ∀x, y ∈H .

(ii) ⇒ (iii): From (ii) we know that for all x, y ∈H ,

∥∥(I – T)x – (I – T)y
∥∥ =

∥∥(x – y) + (Tx – Ty)
∥∥

= ‖x – y‖ – 〈x – y,Tx – Ty〉 + ‖Tx – Ty‖
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≤ ‖x – y‖ – 〈x – y,Tx – Ty〉
=

〈
x – y, (I – T)x – (I – T)y

〉
.

This implies that I – T is firmly nonexpansive.
(iii) ⇒ (i): From (iii) we immediately know that T is firmly nonexpansive. �

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnσn, n = , , , . . . ,

where {γn} is a sequence in (, ), and {σn} is a sequence in R such that
(i)

∑∞
n= γn =∞;

(ii) lim supn→∞ σn ≤ , or
∑∞

n= |γnσn| < ∞.
Then limn→∞ an = .

Lemma . [] Let X be a real Banach space and J : X → X∗ be the normalized duality
mapping, then, for any x, y ∈ X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x, y).

Especially, if X is a real Hilbert space, then we have

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

3 Main results
In this section, we shall prove our main theorem.

Theorem . Let H, H be two real Hilbert spaces, A : H → H be a bounded linear
operator. Let S : H → H be a firmly nonexpansive mapping, T,T : H → H be two
firmly nonexpansive mappings such that ‖(I – Ti)x‖ (i = , ) is a convex function from
H to R with C := F(S) �= ∅ and Q := F(T) ∩ F(T) �= ∅. Let u ∈ H and {xn} be a sequence
generated by

⎧⎪⎨
⎪⎩
x ∈H chosen arbitrarily,
xn+ = S(αnu + ( – αn)(yn – ξn∇g(yn))),
yn = βnu + ( – βn)(xn – τn∇f (xn)),

(.)

where

f (xn) =


∥∥(I – T)Axn

∥∥, ∇f (xn) = A∗(I – T)Axn, τn =
ρnf (xn)

‖∇f (xn)‖

and

g(yn) =


∥∥(I – T)Ayn

∥∥, ∇g(yn) = A∗(I – T)Ayn, ξn =
ρng(yn)

‖∇g(yn)‖ .

If the solution set� of SPF (.) is not empty, and the sequences {ρn} ⊂ (, ) and {αn}, {βn} ⊂
(, ) satisfy the following conditions:

http://www.journalofinequalitiesandapplications.com/content/2014/1/280
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(i) limn→∞ αn = , limn→∞ βn = ,
(ii) the sequence { αn

βn
} is bounded and ∞

n=βn =∞,
then the sequence {xn} converges strongly to P�u.

Proof Since� ( �= ∅) is the solution set of SPF (.),� is closed and convex. Thus, themetric
projection P� is well defined. Letting p = P�u, it follows from Lemma . that

‖yn – p‖ = ∥∥βnu + ( – βn)
(
xn – τn∇f (xn)

)
– p

∥∥

≤ ( – βn)
∥∥xn – τn∇f (xn) – p

∥∥ + βn〈u – p, yn – p〉. (.)

Since p ∈ � ⊂ C,∇f (p) = .Observe that I–T is firmly nonexpansive, fromLemma.(ii)
we have that

〈∇f (xn),xn – p
〉
=

〈
(I – T)Axn,Axn –Ap

〉
≥ ∥∥(I – T)Axn

∥∥ = f (xn),

which implies that

∥∥xn – τn∇f (xn) – p
∥∥ = ‖xn – p‖ + ∥∥τn∇f (xn)

∥∥ – τn
〈∇f (xn),xn – p

〉
≤ ‖xn – p‖ + τ 

n
∥∥∇f (xn)

∥∥ – τnf (xn)

= ‖xn – p‖ – ρn( – ρn)
f (xn)

‖∇f (xn)‖ .

Thus, we have

‖yn – p‖ ≤ ( – βn)
∥∥xn – τn∇f (xn) – p

∥∥ + βn〈u – p, yn – p〉
≤ ( – βn)‖xn – p‖ + βn〈u – p, yn – p〉

– ( – βn)ρn( – ρn)
f (xn)

‖∇f (xn)‖ , (.)

and so we have

‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn

〈
(u – p),

(yn – p)


〉

≤ ( – βn)‖xn – p‖ + 


βn‖yn – p‖ + βn‖u – p‖. (.)

Consequently, we have

‖yn – p‖ ≤  – βn

 – 
βn

‖xn – p‖ +

βn

 – 
βn




‖u – p‖.

It turns out that

‖yn – p‖ ≤max

{
‖xn – p‖, 


‖u – p‖

}
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/280
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and inductively

‖yn – p‖ ≤max

{
‖x – p‖, 


‖u – p‖

}
.

This implies that the sequence {yn} is bounded. Since the mapping S is firmly nonexpan-
sive, it follows from Lemma . that

‖xn+ – p‖ = ∥∥S(αnu + ( – αn)
(
yn – ξn∇g(yn)

))
– p

∥∥

≤ ∥∥αn(u – p) + ( – αn)
(
yn – ξn∇g(yn) – p

)∥∥

≤ ( – αn)
∥∥yn – ξn∇g(yn) – p

∥∥ + αn〈u – p,xn+ – p〉.

Since p ∈ � ⊂ C, ∇g(p) = . Observe that I –T is firmly nonexpansive, it is deduced from
Lemma .(ii) that

〈∇g(yn), yn – p
〉
=

〈
(I – T)Ayn,Ayn –Ap

〉 ≥ ∥∥(I – T)Ayn
∥∥ = g(yn),

which implies that

∥∥yn – ξn∇g(yn) – p
∥∥ = ‖yn – p‖ + ∥∥ξn∇g(yn)

∥∥ – ξn
〈∇g(yn), yn – p

〉
≤ ‖yn – p‖ + ξ 

n
∥∥∇g(yn)

∥∥ – ξng(yn)

= ‖yn – p‖ – ρn( – ρn)
g(yn)

‖∇g(yn)‖ .

Thus, we have

‖xn+ – p‖ ≤ ( – αn)
∥∥yn – ξn∇g(yn) – p

∥∥ + αn〈u – p,xn+ – p〉
≤ ( – αn)‖yn – p‖ + αn〈u – p,xn+ – p〉

– ( – αn)ρn( – ρn)
g(yn)

‖∇g(yn)‖ (.)

and

‖xn+ – p‖ ≤ ( – αn)‖yn – p‖ + αn〈u – p,xn+ – p〉

≤ ( – αn)‖yn – p‖ + 


αn‖xn+ – p‖ + αn‖u – p‖.

Consequently, we have

‖xn+ – p‖ ≤  – αn

 – 
αn

‖yn – p‖ +

αn

 – 
αn




‖u – p‖.

It turns out that

‖xn+ – p‖ ≤max

{
‖yn – p‖, 


‖u – p‖

}
.
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Since {yn} is bounded, so is {xn}. Since limn→∞ αn =  and limn→∞ βn = , without loss
of generality, we may assume that there is σ >  such that

ρn( – ρn)( – αn)( – βn) > σ , ∀n≥ .

Substituting (.) into (.), we have

‖xn+ – p‖ ≤ ( – βn)‖xn – p‖ + βn〈u – p, yn – p〉

+ αn〈u – p,xn+ – p〉 – σ f (xn)
‖∇f (xn)‖ –

σ g(yn)
‖∇g(yn)‖ . (.)

Setting sn = ‖xn – p‖, we get the following inequality:

sn+ – sn + βnsn +
σ f (xn)

‖∇f (xn)‖ +
σ g(yn)

‖∇g(yn)‖
≤ αn〈u – p,xn+ – p〉 + βn〈u – p, yn – p〉. (.)

Now, we prove sn → . For the purpose, we consider two cases.
Case : {sn} is eventually decreasing, i.e., there exists a sufficiently large positive integer

k ≥  such that sn > sn+ holds for all n≥ k. In this case, {sn} must be convergent, and from
(.) it follows that

σ f (xn)
‖∇f (xn)‖ +

σ g(yn)
‖∇g(yn)‖ ≤ (sn – sn+) + (αn + βn)M, (.)

where M is a constant such that M ≥ (‖xn+ – p‖ + ‖yn – p‖)‖u – p‖ for all n ∈ N. Using
condition (i) and (.), we have that

f (xn)
‖∇f (xn)‖ +

g(yn)
‖∇g(yn)‖ →  (n→ ∞).

To verify that f (xn) →  and g(yn) → , it suffices to show that {‖∇f (xn)‖} and {‖∇g(yn)‖}
are bounded. In fact, it follows from Lemma .(ii) that for all n ∈N,

∥∥∇f (xn)
∥∥ =

∥∥∇f (xn) –∇f (p)
∥∥ ≤ ‖A‖‖xn – p‖

and

∥∥∇g(yn)
∥∥ =

∥∥∇g(yn) –∇g(p)
∥∥ ≤ ‖A‖‖yn – p‖.

These imply that {‖∇f (xn)‖} and {‖∇g(yn)‖} are bounded. It yields f (xn) →  and
g(yn) → , namely

∥∥(I – T)Axn
∥∥ → ,

∥∥(I – T)Ayn
∥∥ → . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/280
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From (.) we have

‖xn – yn‖ =
∥∥βnu + ( – βn)

(
xn – τn∇f (xn)

)
– xn

∥∥
=

∥∥βn
(
u – xn + τn∇f (xn)

)∥∥
= βn

∥∥u – xn + τn∇f (xn)
∥∥.

Noting that {xn}, {‖∇f (xn)‖} are bounded and βn → , τn → , we get

‖xn – yn‖ →  (n→ ∞). (.)

For any x∗ ∈ wω(xn), and {xnk } is a subsequence of {xn} such that xnk ⇀ x∗ ∈ H, then it
follows from (.) that ynk ⇀ x∗. Thus we have

Axnk ⇀ Ax∗, Aynk ⇀ Ax∗. (.)

On the other hand, from (.) we have

∥∥(I – T)Axnk
∥∥ → ,

∥∥(I – T)Aynk
∥∥ → . (.)

Since T, T are demiclosed at origin, from (.) and (.) we have that Ax∗ ∈ F(T) ∩
F(T), i.e., Ax∗ ∈Q.
Next, we turn to prove x∗ ∈ C. For convenience, we set vn := αnu+(–αn)(yn–ξn∇g(yn)).

Since S is firmly nonexpansive, it follows from Lemma . that

‖xn+ – p‖ = ‖Svn – Sp‖ = ‖Svn – Syn + Syn – Sp‖

≤ ‖Syn – Sp‖ + 〈Svn – Syn,xn+ – p〉
≤ ‖Syn – p‖ + ‖Svn – Syn‖‖xn+ – p‖
≤ ‖yn – p‖ – ∥∥(I – S)yn

∥∥ + ‖vn – yn‖‖xn+ – p‖. (.)

In view of the definition of vn, we have

‖vn – yn‖ ≤ αn‖yn – u‖ + ξn
∥∥∇g(yn)

∥∥ = αn‖yn – u‖ + ρng(yn)
‖∇g(yn)‖ . (.)

From (.), (.) and (.), we have

‖xn+ – p‖ ≤ ( – βn)‖xn – p‖ + 


βn‖yn – p‖ + βn‖u – p‖

–
∥∥(I – S)yn

∥∥ +
(

αn +
g(yn)

‖∇g(yn)‖
)
N , (.)

where N ≥ ‖xn+ – p‖(‖yn – u‖ + ρn) is a suitable constant. Clearly, from (.) we have

∥∥(I – S)yn
∥∥ ≤ sn – sn+ +




βn‖yn – p‖ + βn‖u – p‖

+
(

αn +
g(yn)

‖∇g(yn)‖
)
N . (.)
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Thus, we assert that ‖(I – S)yn‖ → . In view of ynk ⇀ x∗ and S is demiclosed at origin, we
get x∗ ∈ F(S), i.e., x∗ ∈ C. Consequently, ww(xn) ⊂ �. Furthermore, we have

lim sup
n→∞

〈u – p,xn – p〉 = max
w∈ww(xn)

〈u – P�u,w – P�u〉 ≤ 

and

lim sup
n→∞

〈u – p, yn – p〉 = max
w∈ww(yn)

〈u – P�u,w – P�u〉 ≤ .

From (.) we have

sn+ ≤ ( – βn)sn + αn〈u – p,xn+ – p〉 + βn〈u – p, yn – p〉

= ( – βn)sn + βn

(
αn

βn
〈u – p,xn+ – p〉 + 〈u – p, yn – p〉

)
. (.)

From condition (ii) and Lemma ., we obtain sn → .
Case : {sn} is not eventually decreasing, that is, we can find a positive integer n such

that sn ≤ sn+. Now we define

Un := {n ≤ k ≤ n : sk ≤ sk+}, n > n.

It easy to see that Un is nonempty and satisfies Un ⊆Un+. Let

ψ(n) :=maxUn, n > n.

It is clear that ψ(n) → ∞ as n → ∞ (otherwise, {sn} is eventually decreasing). It is also
clear that sψ(n) ≤ sψ(n)+ for all n > n. Moreover, we prove that

sn ≤ sψ(n)+, ∀n > n. (.)

In fact, if ψ(n) = n, then inequality (.) is trivial; if ψ(n) < n, from the definition of ψ(n),
there exists some i ∈N such that ψ(n) + i = n, we deduce that

sψ(n)+ > sψ(n)+ > · · · > sψ(n)+i = sn,

and inequality (.) holds again. Since sψ(n) ≤ sψ(n)+ for all n > n, it follows from (.)
that

σ f (xψ(n))
‖∇f (xψ(n))‖ +

σ g(yψ(n))
‖∇g(yψ(n))‖ ≤ (αψ(n) + βψ(n))M → .

Noting that {‖∇f (xψ(n))‖} and {‖∇g(yψ(n))‖} are both bounded, we get

f (xψ(n)) → , g(yψ(n)) → .

By the same argument to the proof in case , we have ww(xψ(n))⊂ � and

‖xψ(n) – yψ(n)‖ → . (.)
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On the other hand, noting sψ(n) ≤ sψ(n)+ again, we have from (.) and (.) that

∥∥xψ(n)+ – yψ(n)
∥∥

=
∥∥Svψ(n) – Syψ(n) + Syψ(n) – yψ(n)

∥∥
≤ ∥∥Svψ(n) – Syψ(n)

∥∥ +
∥∥Syψ(n) – yψ(n)

∥∥
≤ ‖vψ(n) – yψ(n)‖ +

∥∥(I – S)yψ(n)
∥∥

≤ αψ(n)‖yψ(n) – u‖ + ρψ(n)g(yψ(n))
‖∇g(yψ(n))‖

+

√



βψ(n)‖yψ(n) – p‖ + βψ(n)‖u – p‖ +
(

αψ(n) +
g(yψ(n))

‖∇g(yψ(n))‖
)
N . (.)

Letting n → ∞, we get

‖xψ(n)+ – yψ(n)‖ → . (.)

From (.) and (.), we have

‖xψ(n) – xψ(n)+‖ ≤ ‖xψ(n) – yψ(n)‖ + ‖yψ(n) – xψ(n)+‖ →  (n→ ∞). (.)

Furthermore, we can deduce that

lim sup
n→∞

〈u – p,xψ(n)+ – p〉 = lim sup
n→∞

〈u – p,xψ(n) – p〉

= max
w∈ww(xψ(n))

〈u – P�u,w – P�u〉 ≤  (.)

and

lim sup
n→∞

〈u – p, yψ(n) – p〉 = max
w∈ww(yψ(n))

〈u – P�u,w – P�u〉 ≤ . (.)

Since sψ(n) ≤ sψ(n)+, it follows from (.) that

sψ(n) ≤ 〈u – p, yψ(n) – p〉 + αψ(n)

βψ(n)
〈u – p,xψ(n)+ – p〉, n > n. (.)

Combining (.), (.) and (.), we have

lim sup
n→∞

sψ(n) ≤ , (.)

and hence sψ(n) → , which together with (.) implies that

√sψ(n)+ ≤ ∥∥(xψ(n) – p) + (xψ(n)+ – xψ(n))
∥∥

≤ √sψ(n) + ‖xψ(n)+ – xψ(n)‖ → . (.)

Noting inequality (.), this shows that sn → , that is, xn → p. This completes the proof
of Theorem .. �
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