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1 Introduction
Let {Xn,n≥ } be a sequence of independent and identically distributed random variables
with marginal cumulative distribution function (cdf ) Fv following the general error distri-
bution (Fv ∼GED(v) for short), and letMn =max≤k≤n Xk denote the partial maximum of
{Xn,n≥ }. The probability density function (pdf ) of GED(v) is given by

fv(x) =
v exp(–(/)|x/λ|v)

λ+/v�(/v)
, x ∈ R,

where v >  is the shape parameter, λ = [–/v�(/v)/�(/v)]/ and �(·) denotes the
Gamma function (Nelson []). Note that GED() reduces to the standard normal distri-
bution.
Recently, several contributions investigated asymptotic behaviors of normalized max-

ima from the GED(v). It is well known that the limiting distribution of extremes from the
GED(), i.e., the normal distribution, is a Gumbel extreme value distribution, see Lead-
better et al. [] and Resnick []. Peng et al. [] established the Mills type ratio of GED(v)
and proved that there exist normalizing constants an >  and bn ∈R such that

lim
n→∞P(Mn ≤ anx + bn) = lim

n→∞Fn
v (anx + bn) = �(x) = exp

(
– exp(–x)

)
, x ∈R,

i.e., Fv is in the domain of attraction of �, which we denote by Fv ∈D(�). For the uniform
convergence rate of normalizedmaxima from theGED(v), Hall [] established the optimal
uniform convergence rate as v = , i.e., the normal case; Peng et al. [] extended the result
to the case of v > . Both studies show that the optimal convergence rate of extremes from
the GED(v) is proportional to / logn.
For more informative studies of extremes from the GED, Nair [] considered higher-

order expansions for distribution and moments of normalized maxima from the GED()
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under optimal normalizing constants. Let �(x) denote the distribution function of the
standard normal distribution GED(), Nair [] proved that

b̃n
[
b̃n

(
�n(ãnx + b̃n) –�(x)

)
– k̃(x)�(x)

] →
(
w̃(x) +



k̃(x)

)
�(x) (.)

as n→ ∞, where the optimal normalizing constants ãn and b̃n are given by

 –�(b̃n) = n–, ãn = b̃–n .

Here, k̃(x) and w̃(x) are, respectively, of the following form:

k̃(x) = –
(
x + x

)
e–x

and

w̃(x) = ––
(
x + x + x + x

)
e–x.

In this short note, the aim is to establish a higher-order expansion for the distribution
of normalized maxima from the GED(v) for v > . For some recent related work on uni-
form convergence rates and higher-order expansions of extremes for given distributions,
see Liao and Peng [] for the log-normal distribution, and Liao et al. [, ] for skew dis-
tributions.
In order to derive the higher-order expansions of extremes from the GED(v), we cite

some results from Peng et al. [, ]. The followingMills ratio of the GED(v) is due to Peng
et al. []:

 – Fv(x)
fv(x)

∼ λv

v
x–v as x → ∞, (.)

which deduces the following distributional tail representation of GED(v):

 – Fv(x) = c(x) exp
(
–

∫ x

λ

g(t)
f (t)

dt
)

for large x > , where

c(x) → exp(–/)
/v�(/v)

as x→ ∞

and

f (t) = v–λvt–v, g(t) =  + (v – )v–λvt–v. (.)

Noting that f ′(t) →  and g(t) → , we may choose normalizing constants an and bn sat-
isfying the following equations:

 – Fv(bn) = n–, an = f (bn). (.)
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Under these normalizing constants, we have

lim
n→∞Fn

v (anx + bn) = �(x).

This paper is organized as follows. Section  provides the main results. Some auxiliary
results and the proofs of the main results are given in Section .

2 Main result
In this section, we provide asymptotic expansions of a distribution for the partial maxi-
mum of the GED with normalizing constants an and bn given by (.).

Theorem  Let Fv(x) denote the cdf of GED(v) with v > . Then:
(i) For v 	= , with normalizing constants an and bn given by (.), we have

bvn
[
bvn

(
Fn
v (anx + bn) –�(x)

)
– kv(x)�(x)

] →
(
wv(x) +

kv (x)


)
�(x) (.)

as n → ∞, where kv(x) and wv(x) are, respectively, given by

kv(x) =
(
 – v–

)
λv(x + x

)
e–x

and

wv(x) =
(
v– – 

)
λv

[
x + x +



(
 – v–

)
x +



(
 – v–

)
x

]
e–x.

(ii) For v = , with normalizing constants an = –/ and bn = –/(logn – log), we have

e
√
bn

[
e
√
bn

(
Fn
 (anx + bn) –�(x)

)
– k(x)�(x)

] →
(
w(x) +

k (x)


)
�(x) (.)

as n → ∞, where k(x) and w(x) are, respectively, given by

k(x) = –


e–x, w(x) = –




e–x.

Remark  Themain result coincides with (.) as theGED reduces to the standard normal
distribution GED().

Remark  From (.) and (.), it is easy to check that bvn = O(logn). Hence, for v 	= ,
Theorem (i) shows that the convergence rate of Fn

v (anx+bn) to its ultimate extreme value
distribution�(x) is proportional to / logn, while for the case of v = , Theorem (ii) shows
that the convergence rate is proportional to /n.

3 The proofs
In order to prove the main results, we need some auxiliary lemmas. The first lemma deals
with a decomposition of the distributional tail representation of GED(v).
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Lemma  Let Fv(x) and fv(x), respectively, denote the cdf and pdf of GED(v) with v 	= ; for
large x > , we have

 – Fv(x) =
exp(–/)
/v�(/v)

[
 + 

(
v– – 

)
λvx–v

+ 
(
v– – 

)(
v– – 

)
λvx–v +O

(
x–v

)]
exp

(
–

∫ x

λ

g(t)
f (t)

dt
)

(.)

with f (t) and g(t) given by (.).

Proof Using integration by parts we have

 – Fv(x)

=
v

+/v�(/v)

∫ ∞

x/λ
exp

(
–
tv



)
dt

= fv(x)
λv

v
x–v

[
 + 

(
v– – 

)
λvx–v

+ 
(
v– – 

)(
v– – 

)
λvx–v + 

(
v– – 

)(
v– – 

)(
v– – 

)
λvx–v

]
+

v
+/v�(/v)

(
v– – 

)(
v– – 

)(
v– – 

)(
v– – 

)∫ ∞

x/λ
exp

(
–
tv



)
t–v dt. (.)

An application of L’Hospital’s rule shows that

lim
x→∞

∫ ∞
x/λ exp(–

tv
 )t

–v dt
exp(– xv

λv )x–v
= . (.)

Combining the latter with (.), (.), and (.), for large x we have

 – Fv(x) = fv(x)
λv

v
x–v

[
 + 

(
v– – 

)
λvx–v

+ 
(
v– – 

)(
v– – 

)
λvx–v +O

(
x–v

)]
=
exp(–/)
/v�(/v)

[
 + 

(
v– – 

)
λvx–v

+ 
(
v– – 

)(
v– – 

)
λvx–v +O

(
x–v

)]
exp

(
–

∫ x

λ

g(t)
f (t)

dt
)
,

which is the desired result. �

Lemma Let hv(bn;x) = n logFv(anx+bn)+e–x with normalizing constants an and bn given
by (.), then for v 	=  we have

lim
n→∞bvn

(
bvnhv(bn;x) – kv(x)

)
= wv(x), (.)

where kv(x) and wv(x) are given by Theorem .
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Proof It is well known that n( – Fv(anx + bn)) → e–x as n → ∞. By  – Fv(bn) = n–, we
know that bn → ∞ if and only if n→ ∞. The following fact holds by (.):

lim
n→∞

 – Fv(anx + bn)
b–mv
n

=  form = , . (.)

Let

Av(n,x) =
 + (–v)

vλ–v b
–v
n + (–v)(–v)

vλ–v b–vn +O(b–vn )

 + (–v)
vλ–v (anx + bn)–v + (–v)(–v)

vλ–v (anx + bn)–v +O((anx + bn)–v)
.

It is easy to check that limn→∞ Av(n,x) =  and

Av(n,x) –  =
(
 + o()

)[

( – v)

v
λvb–vn x + 

( – v)( – v)
v

λvb–vn x +O
(
b–vn

)]
.

Hence,

lim
n→∞

Av(n,x) – 
b–vn

=  (.)

and

lim
n→∞

Av(n,x) – 
b–vn

= 
(
v– – 

)
λvx. (.)

By (.) we have

 – Fv(bn)
 – Fv(anx + bn)

e–x

= Av(n,x) exp
[∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

]

= Av(n,x)
{
 +

∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

+



[∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

](
 + o()

)}
. (.)

It follows from (.)-(.) that

lim
n→∞bvnhv(bn;x)

= lim
n→∞

logFv(anx + bn) + n–e–x

n–b–vn

= lim
n→∞

[–( – Fv(anx + bn)) – 
 ( – Fv(anx + bn))( + o())
n–b–vn

+
( – Fv(bn))e–x

n–b–vn

]

= lim
n→∞

( – Fv(anx + bn))
n–

( –Fv(bn)
–Fv(anx+bn)e

–x – )
b–vn

= e–x lim
n→∞

[Av(n,x)[
∫ x
 (

(v–)an
bn+ant +

van(bn+ant)v–
λv – )dt]( + o())

b–vn
+
Av(n,x) – 

b–vn

]
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= e–x lim
n→∞

∫ x


bvn

(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

=
(
 – v–

)
λv(x + x

)
e–x = kv(x), (.)

where the last step is due to the dominated convergence theorem since

lim
n→∞bvn

(
van(bn + ant)v–

λv – 
)
= 

(
 – v–

)
λvt (.)

and

lim
n→∞

(v – )anbvn
bn + ant

= 
(
 – v–

)
λv. (.)

By arguments similar to (.), we have

lim
n→∞bvn

(
bvnhv(bn;x) – kv(x)

)

= lim
n→∞

logFv(anx + bn) + n–e–x – n–b–vn kv(x)
n–b–vn

= lim
n→∞

[–( – Fv(anx + bn)) – 
 ( – Fv(anx + bn))( + o())
n–b–vn

+
n–e–x – n–b–vn kv(x)

n–b–vn

]

= lim
n→∞

–( – Fv(anx + bn)) + n–e–x( – kv(x)exb–vn )
n–b–vn

= lim
n→∞

 – Fv(anx + bn)
n–

–Fv(bn)
–Fv(anx+bn)e

–x( – kv(x)exb–vn ) – 
b–vn

= e–x lim
n→∞

[
Av(n,x)bvn

(∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt – kv(x)exb–vn

)

– kv(x)exAv(n,x)bvn
∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

+


(
 + o()

)
Av(n,x)bvn

(∫ x



(
(v – )an
bn + ant

+
van(bn + ant)v–

λv – 
)
dt

)

+
Av(n,x) – 

b–vn

]

=
(
v– – 

)
λv

[
x + x +



(
 – v–

)
x +



(
 – v–

)
x

]
e–x

= wv(x).

The proof is complete. �

For v = , noting that the GED() is the Laplace distribution with pdf given by

f(x) = –/ exp
(
–/|x|), x ∈R, (.)
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and the Laplace distributional tail can be written by

 – F(x) = –/f(x) = – exp
(
–/

)
exp

(
–

∫ x




f (t)

dt
)
, x > , (.)

with f (t) = –/. For the Laplace distribution, we have the following result.

Lemma  For v = , let h(bn;x) = n logF(anx + bn) + e–x with normalizing constants an =
–/ and bn = –/(logn – log). Then

lim
n→∞ e

√
bn

(
e
√
bnh(bn;x) – k(x)

)
= w(x), (.)

where k(x) and w(x) are those given by Theorem .

Proof Noting that for GED(), i.e., the Laplace distribution with pdf f(x) = –/ ×
exp(–/|x|), we have

lim
n→∞Fn

 (anx + bn) = �(x)

with normalizing constants an = –/ and bn = –/(logn – log). So, by (.) and (.),
we have

lim
n→∞ e

√
bnh(bn;x)

= lim
n→∞

logF(anx + bn) + n–e–x

n–e–
√
bn

= lim
n→∞

[–( – F(anx + bn)) – 
 ( – F(anx + bn))( + o())

n–e–
√
bn

+
( – F(bn))e–x

n–e–
√
bn

]

= lim
n→∞

– 
 ( – F(anx + bn))( + o())

n–e–
√
bn

= –


e–x = k(x) (.)

and

lim
n→∞ e

√
bn

(
e
√
bnh(bn;x) – k(x)

)

= lim
n→∞

logF(anx + bn) + n–e–x

n–e–
√
bn

– k(x)e
√
bn

= lim
n→∞

[–( – F(anx + bn)) – 
 ( – F(anx + bn)) – 

 ( – F(anx + bn))( + o())
n–e–

√
bn

+
( – F(bn))e–x

n–e–
√
bn

– k(x)e
√
bn

]

= lim
n→∞

– 
 ( – F(anx + bn))( + o())

n–e–
√
bn

= –



e–x = w(x). (.)

The proof is complete. �
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Proof of Theorem  By (.) and (.), we have

hv(bn;x) →  and

∣∣∣∣∣
∞∑
i=

hi–v (bn;x)
i!

∣∣∣∣∣ < exp
(∣∣hv(bn;x)∣∣) →  (.)

as n→ ∞. For the case of v 	= , by Lemma  and (.), we have

bvn
[
bvn

(
Fn
v (anx + bn) –�(x)

)
– kv(x)�(x)

]
= bvn

[
bvn

(
exp

(
hv(bn;x)

)
– 

)
– kv(x)

]
�(x)

=

[
bvn

(
bvnhv(bn;x) – kv(x)

)
+ bvn hv(bn;x)

(


+ hv(bn;x)

∞∑
i=

hi–v (bn;x)
i!

)]
�(x)

→
(
wv(x) +



kv (x)

)
�(x)

as n→ ∞. Similarly, by Lemma  and (.), we get

e
√
bn

[
e
√
bn

(
Fn
 (anx + bn) –�(x)

)
– k(x)�(x)

] →
(
w(x) +



k (x)

)
�(x)

as n→ ∞.
The proof is complete. �
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