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Abstract

In this paper, we establish several new inequalities for twice differentiable mappings
that are connected with the celebrated Hermite-Hadamard integral inequality.
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1 Historical background and introduction

The following double inequality is well known in the literature as Hadamard’s inequality:
Letf:I € R — R be a convex function defined on an interval / of real numbers, a,b € I

and a < b, we have

f<a+b)__/ F)dx <foz)+f(b) (L.1)

2

Both inequalities hold in the reversed direction if f is concave.

It was first discovered by Hermite in 1881 in the Journal Mathesis (see [1]). Inequality
(1.1) was nowhere mentioned in the mathematical literature until 1893. Beckenbach, a
leading expert on the theory of convex functions, wrote that inequality (1.1) was proven
by Hadamard in 1893 (see [2]). In 1974 Mitrinovi¢ found Hermite’s note in Mathesis. That
is why, inequality (1.1) was known as the Hermite-Hadamard inequality.

A function f : [a4,b] C R — R is said to be convex if whenever x,y € [4,b] and ¢ € [0,1],
the following inequality holds:

flex+ @ -t)y) <tf(x) + A= )f (7).

We say that f is concave if (—f) is convex. This definition has its origins in Jensen’s results
from [3] and has opened up the most extended, useful and multi-disciplinary domain of
mathematics, namely, convex analysis. Convex curves and convex bodies have appeared
in mathematical literature since antiquity and there are many important results related to
them.

In [4], Mihesan introduced the class of (o, m)-convex functions in the following way:
The function f : [0, b] — R is said to be (e, m)-convex, where (a, m) € [0,1]%, if for every
%,y € [0,b] and ¢ € [0,1], we have

f(tx +m(l - t)y) <tf(x) + m(l —t)f (y).
This class is usually denoted by K7, (b).
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In [5], the concept of geometrically convex functions was introduced as follows.

Definition1 A function f: I C R, — R, is said to be a geometrically convex function if

Sy <@ o)™
forallx,yeIand t € [0,1].
In [6], the definition of m- and («, m)-geometric convexity was introduced as follows.

Definition 2 Let f(x) be a positive function on [0, 5] and m € (0,1]. If

f(xtym(l—t)) < [f(x)]t[f(y)]m(l_t)

holds for all x,y € [0,b] and t € [0,1], then we say that the function f(x) is m-geometrically
convex on [0, b].

It is clear that when m = 1, m-geometrically convex functions become geometrically

convex functions.

Definition 3 Let f(x) be a positive function on [0, b] and (&, m) € (0,1] x (0,1]. If

f(xtym(l—t)) < Lf(x)]ta[f(y)]ma—ta)

holds for all x,y € [0,b] and ¢ € [0,1], then we say that the function f(x) is (o, m)-
geometrically convex on [0, b].

If @ = m =1, the («, m)-geometrically convex function becomes a geometrically convex
function on [0, b].

Lemmal Forx,y € [0,00) and m,t € (0,1], ifx <y and y > 1, then
xtym(l—t) <tx+ (1 _ l’)y. (1.2)
For some recent results connected with geometrically convex functions, see [5-9].

Definition 4 Leta,b € R, a,b # 0 and |a| # |b|. Logarithmic mean for real numbers was
introduced as follows:

a-b

L@ b) = Tl

Theorem 1 (see [10]) Let f,g: [a,b] — R be integrable functions, both increasing or both
decreasing. Furthermore, let p : [a,b] — R, be an integrable function. Then

b b b b
/p(x)f(x)dx/ p(x)g(x)dxf/ p(x)dx/ p)f(x)g(x) dx. (1.3)

Ifone of the functions f or g is nonincreasing and the other nondecreasing, then the inequal-
ity in (1.3) is reversed. Inequality (1.3) is known in the literature as the Chebyshev inequality
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and so are the following special cases of (1.3):

b b b
ﬁ/ f(x)dx/ g(x)dxf/ fx)g(x)dx

and

1 1 1
d. d. dx.
/0 Fdx /0 g dx < /O Flg)dx

In order to prove our main results, we need the following lemma (see [11]).

Lemma?2 Letf:I C R — R bea twice differentiable function on I°, a,b € I with a < b and
f" € Li[a, b]. Then the following equality holds:

B 1 [t b-a)* [
f(ﬂ);f()_b_a[;f(x)dx:( 2“) /Ot(l—t)f”(tﬂ+(1_t)b)dt'

In [12], some inequalities of Hermite-Hadamard type for differentiable convex mappings

were proven using the following lemma.

Lemma 3 Letf:1 C R — R be a twice differentiable function on I°, a,b € I° with a < b. If
f" € Li[a,b], then

1 b a+b
m/ﬂf(x)dx—f( 3 >

1
g / m(@)[f" (ta + (1= 6)b) + (A - D)a + th)] dt,
0
where
B £2, te [O,% )
m(t) = {(1 _ t)z’ te [%’1].

In this paper, we establish some integral inequalities of Hermite-Hadamard type related
to geometrically convex functions and («, m)-geometrically convex functions.

2 Results for geometrically convex functions
We will establish some new results connected with the right-hand side of (1.1).

Theorem2 Letf:I C R, — R, be a twice differentiable function on 1°, a,b € I witha < b
and " € Li[a, b). If |f"|1 is geometrically convex and monotonically decreasing on [a, b] for

p>1landte€[0,1], then we have

f(a) +f(b) 1 b
LR

(b—a) (22 JaTA+p)\? 0 , ]

where L +1=1.
rq
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Proof From Lemma 2 with the properties of modulus and using the Holder inequality, we

have
b b
Wﬂ@;f()‘bia/nf“”“
_ b= a)*

1
== /Ot(l—t)[f(tm(l—t)b)\dt

b-a? ([ 2\ )‘1’( o B q )‘11
< (A(t £ dt A[f@a+u 0b)|" dt

1

N Lo g
_ (b—a)2<2 ' Zpﬁr(“p)) (/ [f”(m+(1—t)b)|th) . (2.2)
0

2 r'+p)

We used the beta and gamma functions to evaluate the integral

1 1
[ e-eya- [ ra-orar-peripe,
0 0

_THIG)

1
ﬂ(x,x):Zl_zx,B(E,x) and B(x,y) = Foty)

Thus, we have

T3 +1)

Bp+1,p+1)=2172+D
r'@+p)

(2.3)

where F(%) = 7.
Since |f”'|? is geometrically convex and monotonically decreasing on [a, b], we obtain

a'btt <ta+(1-18)b,

V‘//(ta + (1 _ t)b) ’q < lf//(atbl—t) ’q'
Therefore, we have
1
I= / If"(ta + 1 - t)b)|" dt
0
1
< / Vv//(atbl—t)|q dt
0

< [ @l ar

1
0
= L([f"@|[% [F @) (2.4)

By making use of inequalities (2.3) and (2.4) in (2.2), we obtain (2.1). This completes the
proof. g

Theorem 3 Letf:I C R, — R, be a twice differentiable function on I°, a,b € I witha < b

and " € Li[a, b). If |f"|1 is geometrically convex and monotonically decreasing on [a, b] for
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q >1andt € [0,1], then the following inequality holds:

’f(ﬂ) +f(b) /f( ) dx

where

1 1/ qt %
- ([ - )" 4)

Proof From Lemma 2 and using the well-known power-mean inequality, we have

—af (é) (5| - N6,

b
’f(a) ;f(b) _bia f )

(b_ )2 ! 1
< 2a /ot(l—t)[f (ta+ (1 -1t)b)|dt

(b_a)z ! 1_% ! 1" q %
= (/0 t(l—t)dt) (/0 tQ-t)|f" (ta+ (1-1)b)| dt)

1-1 1 %
:(b_z“)z <é) </ t(1—t)[f”(m+(1—t)b)|"dt> .
0

Since |f”|? is geometrically convex and monotonically decreasing on [a, b], we have

R~

‘f (@) +£(b)

b
-bia/ f(x)dx

b—a)* g/ ¢ -t i
s () ([ motrarrorya)
C(b-ap(1\"7,, ! @I\
" (E) V(b)|</o tu_t)(lf’/(b)I) dt)’

which completes the proof. O

1
Corollary 1 In Theorem 3, since (é)i <1, for p >1, we have

(@+f) 1 [° (b-a) ,
‘fﬂ ;f —b_a/a f(x)dx‘STaLf (b)|N(t,q).

Now, we will establish some new results connected with the left-hand side of (1.1).

Theorem 4 Letf:1 C R, — R, bea twice differentiable function on I°, a,b €  witha < b
and " € Li[a,b]. If |f"|1 is geometrically convex and monotonically decreasing on [a, b]
and t € [0,1], then we have the following inequality:

/f(x)dx f(a+b>‘< (b—a)? (@

8(2p + 1)17

@),

where L +1=1.
rq
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Proof From Lemma 3 and using the well-known Holder integral inequality, we get

o [ rse(23)
<& _4”)2 (/01|m(t)]pdt>; { (/01 " (ta + (1 t)b)|th>}1
. (/()IV”((l ~t)a + tb)|"dt> % }

Since |f”|? is geometrically convex and monotonically decreasing on [a, b], we know that
for ¢t € [0,1],

lf//(ta+ (1—t)b)|q S lf//(atbl—t)|q
{lr@|lreiy.

Hence

e [ (57)

—a)? 1 i 1 ¢ ¢ q
<M ra@frorya] [ [ irer ey a)]
16(2p +1)7 0 0

e LTI

8(2p +1)P

7

where we have used the fact that

1 1 1
1
/ |m(t)|’”dt:/2t2Pdt+/ A-OPdt=——,
0 0 ! 47 (2p +1)

which completes the proof. 0

L <1, forp>1, we have
@2p+1)P

b b\|  (b-a) .
o [ rwas-r(%50)| < S i@ e

Theorem 5 Let f :I° C R, — R, be a twice differentiable function on I°, a,b € I with
a<bandf' € Lila,b]. If |f"|1 is geometrically convex and monotonically decreasing on

Corollary 2 In Theorem 4, since

la,b] and q > 1, then we have

b\| (b—aP[1\?
/f(x)dx f(‘” )‘ R (%) (F"@]- A + [f'®)|- Be.a),

where

B 1 If" ()| qt %1 ) 1 If" ()| qt %
A“@‘<A|mm*<vwm0 @) B“”‘(ﬁ|mm*(vwm0 “)'

Page 6 of 12


http://www.journalofinequalitiesandapplications.com/content/2014/1/180

Ozdemir et al. Journal of Inequalities and Applications 2014, 2014:180
http://www.journalofinequalitiesandapplications.com/content/2014/1/180

Proof From Lemma 3 and using the well-known power-mean inequality, we get

’_/f(x)dx f(a+b>‘
G _4“)2 (fol|m(t)|cﬂ>;{(/01|m(t)|b”/(tcZ+ (l‘t)b)|th);

Since |f”|? is geometrically convex and monotonically decreasing on [a, ], we have

el re)
b [ o)

; (fol!mml[Lf”(mil‘tv’“b)‘t]”dt) |
e[ () )
([l (Fgy) @)}

where we have used the fact that

1 3 1
/|m(t)|dt:/ t2dt+/ (1-8)2dt=—
0 0 1

which completes the proof. d

QU

Corollary 3 In Theorem 5, since ( )P <1, for p > 1, we have the following inequality:

b b 2
/ f(x)dx f(‘” )‘ ( 4“) {IF'@|-At.g) + [f'®)] - Be. ).

3 Results for (¢, m)-geometrically convex functions

Theorem 6 Let [ : [0,b] — R, be a twice differentiable function, a € [0,b] and f' €
Lila,b]. If [f"|1 is (o, m)-geometrically convex and monotonically decreasing on [a, b] for
b>1,p>1, (a,m) e (0,1]% and t € (0,1, we have

f@) ) _ (b-a (212 TTA+PNF
‘ Cb- a/f ‘ 2 ( rC+p) ) If"(®)|" M(t, q, ),

where L +1 =1 and
rq

a 1

([T @] N
Moo= [ [Lf”(b)l’”} dt) |
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Proof From Lemma 2 with the properties of modulus and using the Holder inequality, we

have
fla)+fb) 1 [*
‘ 5 - b—a/a fx)dx
(b_ )2 ! 17
== /0 (A - D)|f" (ta+ (1 - O)b)| dt

(b - a)* 1 5/ rl : :
== (/0 (t—tz)pdt> (/o [f(m+(1-r)b)|”dt)
_b-ap (2 T\ ([, Y
= < F(% ) ) (/0 [f (ta+(1—t)b)| dt) .

Since |f”|? is (&, m)-geometrically convex and monotonically decreasing on [, b], by
using (1.2) we obtain

1
1:/ If"(ta+ (1 -0)b)|" dt
0
1
5/ V”(ﬂtbm(l_t)”th
0
1 o
5/0 [V”(ﬂ)|t lf//(b)|M(1—t")]th
ma [ If"(@)] )‘ﬂ“
_ e q
-l /o(lf”(b)l’” a

So, we have

b
LETTC R AW

(b—u)2<2‘1’2”\/771“(1+p)>%( N 1( If"(a)| )‘”a )%
=2 FG+p) a /0 ror)

_ (-2l @) (r“ﬂﬁm +p)>;, ( /( " (@) )qf" dt)é
2 ré+p) o \ @) ’

which completes the proof. g

Corollary 4 In Theorem 6,
W) If [f"(@)] < |f" ()|, then we get

fl@+fb) 1 [°
5 _b—a/a fx)dx

- (b—d)zlf//(bﬂm (21211\/3;1'*(1 +p))}g(/l< lf//(a)| )qt dt)q
2 F(E +p) 0

< (b-a)*|f"(b)|™ (ZIZPﬁF(l +p)>1la (/1< If" (@)l )qatdt>é
0

2 r'@é+p)
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_w—aVV%wW<21”v?Fﬂ+w>5
- 2 r'+p)

x( @)1~ If" ()" )é
lf//(b)|mqa [hl If//(a)|qa _ ln If//(b)|mqa]

(b=l B (27 STTA4P)\E e 1
- OO (P ) el e

where we used the fact that if 0 < u <1,0 <t and o <1, we have
ut < pet,
(i) IF |f"(@)] = |f" ()|, then we get

fl@+fb) 1 [*
5 _b—a/,l fx)dx

<w—mWWMW(21%ﬁﬁu+m>%
- 2 F(% +p) '

Theorem 7 Let f : [0,b] — R, be a twice differentiable function, a € [0,b] and f" €

Li[a,b]. If |[f"| and |f"|1 are (o, m)-geometrically convex and monotonically decreasing on
bl fora,b>1,p>1, (a,m) € (0,1] 2 and t € [0,1], we have

b b
—%;[;fuwM—f(fg—)

<bm11[ﬁ : Ve [ }
— b Kd Gd
< BV(MA nvw|L ¢

1 1 i 1 i
— ”(b)’”( 1<th> "( )’”( qut) “ (3.1)
+(4p+2ﬁ[v ([ xeae) ([

2 2

where K = (W /@ Ly G = (Iflf, o) )taand + s 1_q,

Proof By using Lemma 3 and the properties of absolute value, we have
a+b
e [ (5)
(b-a)?

= {/2tzv//(m+(1—t)b)|dt+/2tzv//((l—t)a+tb)|dt
0 0
1 1
+/1 (1—1:)2[f”(ta+(1—t)b)|a!t+/1 (1—t)2[f”((1—t)a+tb)|dt}

_(b-ap

{11 +12 +13 +I4}.
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Since #2 is increasing on [0, %] and |f”| is decreasing, by applying the Chebyshev inequality
to I; and I; and by applying the Holder inequality to I35 and I, we get

o [rwar(42))
(b_a)Z % 2 % 17
= {2/0 tdt/o (ta+ (1 -1t)b)|dt

1 1
+2/2 tzdtf2[f//((1—t)a+tb)|dt
0 0

+ ([(1 - t)ZPdt)p ([{f“(m +(1- t)b)|th)q

2

1 [ i
+</1 (1—t)21’dt) (ﬁ Lf”((l—t)a+tb)|"dt) }
. a)z{u(/ "(ta+(1-1t)b ]dt+/ IF(( —ta+tb)|dt>
+71 — ((/ "(ta + ( —t)b)|th)

2p+1)P2° 7

" /;Wu_mwat)%)}.

As |f”| is decreasing, |[f”| and || are («, m)-geometrically convex, from (1.2) we have

/f(x)dx f(az+b>‘
_(b ﬂ)2{12</ V.,/ tbmlt |dt+/ lf// ltbt |dt>
T 17 tbmlt th)
2p+1)P2°7 ((/ lf |
1 :
+(ﬁ V”(Gm(l_t)bt”th) )}
b- 2 t* 17 )| g1
O ([P rarrmrae [N ror «)
L ([ i@ o ya)
2p+1)P27P 2

1 (1-£%) o %
+ (/; [V//(a)|m - lf//(b)‘ ]th> i|})

which is the desired result.

+
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Corollary 5 Under the conditions of Theorem 7, if we choose f" is symmetric about “;—b,

then we have
’)

b
e [ (%
w—#wwwv 2 1 (1 f}
_— Kdt + —— Kid .
: 8 3-/0 t+(4p+2)1% /5 t

Proof From (3.1) and by using the symmetric property of f”, we get

o a5

< (b—4a)2{é(/flfﬁ(m+(1_t)b)|dt+/7[f”((1—t)a+tb)|dt>
b {([rma-ora)
@2p+1)r27r
1 a
+(/1 V’/((l—t)a+tb)|th) )}

(b &Z)Z{ flf//tﬂ+(1_t )|dt

+7 ”ta+1 t) th) }
(2p+1)1’2 D </ »)

_&- ”)2{ / " (ta + (1 - £)b) | dt

(2p+1)1% 1%(/— ' m+ 1= )|th> }

2

+

By using («, m)-geometric convexity of |[f”'| and |f”'|7 and similar calculations, we get

=T REEC ]
(b "Z) { 1/ tbm(l t) dt ( 17 tbmlt th> }
/lf ) +(2p+1)55 /zv )

St /[V”( )" de

8

1 o tO{ %
r (@l e e

(4p +2)7 \V3

_M—WW@WF ivmnfd 1 ( (WWU dY}
s ), (e t+wﬂméﬁ o) )T

So, the proof is completed.

O
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