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Abstract
In the present paper, we investigate the majorization properties for certain classes of
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out some new and interesting consequences of our main result.
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1 Introduction and definitions
Let f and g be two analytic functions in the open unit disk

� =
{
z ∈ C : |z| < 

}
. (.)

We say that f is majorized by g in � (see []) and write

f (z) � g(z) (z ∈ �) (.)

if there exists a function ϕ, analytic in �, such that

∣∣ϕ(z)∣∣ ≤  and f (z) = ϕ(z)g(z) (z ∈ �). (.)

It may be noted here that (.) is closely related to the concept of quasi-subordination
between analytic functions.
For two functions f and g , analytic in �, we say that the function f is subordinate to g

in � if there exists a Schwarz function ω, which is analytic in � with

ω() =  and
∣∣ω(z)∣∣ <  (z ∈ �),

such that

f (z) = g
(
ω(z)

)
(z ∈ �).
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We denote this subordination by f (z) ≺ g(z). Furthermore, if the function g is univalent
in �, then

f (z) ≺ g(z) (z ∈ �) ⇔ f () = g() and f (�)⊂ g(�).

Let Ap denote the class of functions of the form

f (z) = zp +
∞∑

k=p+

akzk
(
p ∈ N = {, , . . .}), (.)

that are analytic and p-valent in the open unit disk �. Also, let A = A.
For a function f ∈ Ap, let f (q) denote a qth-order ordinary differential operator by

f (q)(z) =
p!

(p – q)!
zp–q +

∞∑
k=p+

k!
(k – q)!

akzk–q, (.)

where p > q, p ∈N , q ∈ N =N ∪{} and z ∈ �. Next, Frasin [] introduced the differential
operator Dmf (q) as follows:

Dmf (q)(z) =
p!(p – q)m

(p – q)!
zp–q +

∞∑
k=p+

k!(k – q)m

(k – q)!
akzk–q. (.)

In view of (.), it is clear that Df ()(z) = f (z), Df ()(z) = zf ′(z) and Dmf ()(z) = Dmf (z) is
a known operator introduced by Salagean [].

Definition . A function f (z) ∈ Ap is said to be in the class Lj,lp,q[A,B;α,γ ] of p-valent
functions of complex order γ �=  in � if and only if

[
 +


γ

(
Djf (q)(z)
Dlf (q)(z)

– (p – q)j–l
)
– α

∣∣∣∣ γ
(
Djf (q)(z)
Dlf (q)(z)

– (p – q)j–l
)∣∣∣∣

]
≺  +Az

 + Bz(
z ∈ �; – ≤ B < A≤ ; j > l;p, j ∈N ; l,q ∈ N;  ≤ α;γ ∈ C∗ = C \ {}). (.)

Clearly, we have the following relationships:
() Lj,lp,q[A,B; ,γ ] = Sj,lp,q[A,B;γ ];
() Lm,n

, [A,B;α, ] =Um,n(α,A,B);
() L,,[ – β , –;α, ] =US(α,β) ( ≤ β < ) (α-uniformly starlike functions of

order β);
() L,,[ – β , –;α, ] =UK(α,β) ( ≤ β < ) (α-uniformly convex functions of

order β);
() Ln+,np, [, –;α,γ ] = Sn(p,α,γ ) (n ∈ N);
() L,,[, –;α,γ ] = S(α,γ ) ( ≤ α < , γ ∈ C∗);
() L,,[, –;α,γ ] = K(α,γ ) ( ≤ α < ,γ ∈ C∗);
() L,,[, –;α,  – β] = S∗(α,β) ( ≤ α < ,  ≤ β < ).

The classes Sj,lp,q[A,B;γ ] and Um,n(α,A,B) were introduced by Goswami and Aouf []
and Li and Tang [], respectively. The classesUS(α,β) andUK(α,β) were studied recently
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in [] (see also [–]). The class Sn(p, ,γ ) = Sn(p,γ ) was introduced byAkbulut et al. [].
Also, the classes S(,γ ) = S(γ ) andK(,γ ) = K(γ ) are said to be classes of starlike and con-
vex of complex order γ �=  in � which were considered by Nasr and Aouf [] and Wia-
trowski [] (see also [, ]), and S∗(,β) = S∗(β) denotes the class of starlike functions
of order β in �.
A majorization problem for the class S(γ ) has recently been investigated by Altintas

et al. []. Also, majorization problems for the classes S∗(β) and Sj,lp,q[A,B;γ ] have been
investigated by MacGregor [] and Goswami and Aouf [], respectively. Very recently,
Goyal and Goswami [] (see also []) generalized these results for the fractional deriva-
tive operator. In the present paper, we investigate a majorization problem for the class
Lj,lp,q[A,B;α,γ ].

2 Majorization problem for the class Lj,lp,q[A,B;α,γ ]
We begin by proving the following result.

Theorem . Let the function f ∈ Ap and suppose that g ∈ Lj,lp,q[A,B;α,γ ]. If Djf (q)(z) is
majorized by Dlg(q)(z) in �, and

(p – q)j–l ≥
[
(A – B)|γ |

 – α
+ (p – q)j–l|B|

]
δ,

then

∣∣Dj+f (q)(z)
∣∣ ≤ ∣∣Dl+g(q)(z)

∣∣ (|z| ≤ r
)
, (.)

where r = r(p,q,α,γ , j, l,A,B) is the smallest positive root of the equation

[
(A – B)|γ |

 – α
+ (p – q)j–l|B|

]
r –

[
(p – q)j–l + |B|]r

–
[
(A – B)|γ |

 – α
+ (p – q)j–l|B| + 

]
r + (p – q)j–l = 

(
– ≤ B < A≤ ;p, j ∈N ;q, l ∈N;  ≤ α < ;γ ∈ C∗,  ≤ δ ≤ r

)
. (.)

Proof Suppose that g ∈ Lj,lp,q[A,B;α,γ ]. Then, making use of the fact that

	 – α|	 – | ≺  +Az
 + Bz

⇔ 	
(
 – αe–iφ

)
+ αe–iφ ≺  +Az

 + Bz
(φ ∈ R),

and letting

	 =  +

γ

(
Djg(q)(z)
Dlg(q)(z)

– (p – q)j–l
)

in (.), we obtain

[
 +


γ

(
Djg(q)(z)
Dlg(q)(z)

– (p – q)j–l
)](

 – αe–iφ
)
+ αe–iφ ≺  +Az

 + Bz
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or, equivalently,

 +

γ

(
Djg(q)(z)
Dlg(q)(z)

– (p – q)j–l
)

≺  + (A–αBe–iφ
–αe–iφ )z

 + Bz
(.)

which holds true for all z ∈ �.
We find from (.) that

 +

γ

(
Djg(q)(z)
Dlg(q)(z)

– (p – q)j–l
)
=
 + (A–αBe–iφ

–αe–iφ )ω(z)
 + Bω(z)

, (.)

whereω(z) = cz+cz+ · · · ,ω ∈ P,P denotes thewell-known class of the bounded analytic
functions in � and satisfies the conditions

ω() =  and
∣∣ω(z)∣∣ ≤ |z| (z ∈ �).

From (.), we get

Djg(q)(z)
Dlg(q)(z)

=
(p – q)j–l + [ (A–B)γ–αe–iφ + (p – q)j–lB]ω(z)

 + Bω(z)
. (.)

By virtue of (.), we obtain

∣∣Dlg(q)(z)
∣∣ ≤  + |B||z|

(p – q)j–l – | (A–B)γ–αe–iφ + (p – q)j–lB||z|
∣∣Djg(q)(z)

∣∣

≤  + |B||z|
(p – q)j–l – [ (A–B)|γ |

–α
+ (p – q)j–l|B|]|z|

∣∣Djg(q)(z)
∣∣. (.)

Next, since Djf (q)(z) is majorized by Dlg(q)(z) in �, thus from (.), we have

Djf (q)(z) = ϕ(z)Dlg(q)(z).

Differentiating the above equality with respect to z and multiplying by z, we get

Dj+f (q)(z) = zϕ′(z)Dlg(q)(z) + ϕ(z)Dl+g(q)(z). (.)

Thus, by noting that ϕ(z) ∈ P satisfies the inequality (see, e.g., Nehari [])

∣∣ϕ′(z)
∣∣ ≤  – |ϕ(z)|

 – |z| (z ∈ �) (.)

and making use of (.) and (.) in (.), we obtain

∣∣Dj+f (q)(z)
∣∣ ≤

(∣∣ϕ(z)∣∣ +  – |ϕ(z)|
 – |z| · ( + |B||z|)|z|

[(p – q)j–l – ( (A–B)|γ |
–α

+ (p – q)j–l|B|)|z|]
)

× ∣∣Dl+g(q)(z)
∣∣, (.)
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which, upon setting

|z| = r and
∣∣ϕ(z)∣∣ = ρ ( ≤ ρ ≤ ),

leads us to the inequality

∣∣Dj+f (q)(z)
∣∣

≤
(

ψ(ρ)
( – r)[(p – q)j–l – ( (A–B)|γ |

–α
+ (p – q)j–l|B|)r]

)∣∣Dl+g(q)(z)
∣∣,

where

ψ(ρ) = –r
(
 + |B|r)ρ +

(
 – r

)[
(p – q)j–l –

(
(A – B)|γ |

 – α
+ (p – q)j–l|B|

)
r
]
ρ

+ r
(
 + |B|r) (.)

takes its maximum value at ρ =  with r = r(p,q,α,γ , j, l,A,B), where

r = r(p,q,α,γ , j, l,A,B)

is the smallest positive root of equation (.). Furthermore, if  ≤ δ ≤ r(p,q,α,γ , j, l,A,B),
then the function ψ(ρ) defined by

ψ(ρ) = –δ
(
 + |B|δ)ρ +

(
 – δ

)[
(p – q)j–l –

(
(A – B)|γ |

 – α
+ (p – q)j–l|B|

)
δ

]
ρ

+ δ
(
 + |B|δ) (.)

is an increasing function on the interval ≤ ρ ≤  so that

ψ(ρ)≤ ψ() =
(
 – δ

)[
(p – q)j–l –

(
(A – B)|γ |

 – α
+ (p – q)j–l|B|

)
δ

]

(
 ≤ ρ ≤ ;  ≤ δ ≤ r(p,q,α,γ , j, l,A,B)

)
. (.)

Hence, upon setting ρ =  in (.), we conclude that (.) of Theorem . holds true for
|z| ≤ r(p,q,α,γ , j, l,A,B), which completes the proof of Theorem .. �

Setting α =  in Theorem ., we get the following result.

Corollary . Let the function f ∈ Ap and suppose that g ∈ Sj,lp,q[A,B;γ ]. If Djf (q)(z) is ma-
jorized by Dlg(q)(z) in �, and

(p – q)j–l ≥ [
(A – B)|γ | + (p – q)j–l|B|]δ,

then

∣∣Dj+f (q)(z)
∣∣ ≤ ∣∣Dl+g(q)(z)

∣∣ (|z| ≤ r
)
, (.)
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where r = r(p,q,γ , j, l,A,B) is the smallest positive root of the equation

[
(A – B)|γ | + (p – q)j–l|B|]r – [

(p – q)j–l + |B|]r – [
(A – B)|γ | + (p – q)j–l|B| + 

]
r

+ (p – q)j–l = 
(
– ≤ B < A≤ ;p, j ∈N ;q, l ∈N;γ ∈ C∗,  ≤ δ ≤ r

)
. (.)

Remark . Corollary . improves the result of Goswami and Aouf [, Theorem ].

Putting p = , q = , j =m, l = n,m > n and γ =  in Theorem ., we obtain the following
result.

Corollary . Let the function f ∈ A and suppose that g ∈ Um,n(α,A,B). If Dmf (z) is ma-
jorized by Dng(z) in �, then

∣∣Dm+f (z)
∣∣ ≤ ∣∣Dn+g(z)

∣∣ (|z| ≤ r
)
, (.)

where r = r(α,A,B) is the smallest positive root of the equation

[
A – B
 – α

+ |B|
]
r –

(
 + |B|)r –

[
A – B
 – α

+ |B| + 
]
r +  = 

(– ≤ B < A≤ ;  ≤ α < ). (.)

ForA = –β , B = –, puttingm = , n =  andm = , n =  in Corollary ., respectively,
we obtain the following Corollaries . and ..

Corollary . Let the function f ∈ A and suppose that g ∈ US(α,β). If Df (z) is majorized
by g(z) in �, then

∣∣f ′(z) + zf ′′(z)
∣∣ ≤ ∣∣g ′(z)

∣∣ (|z| ≤ r
)
,

where r = r(α,β) is the smallest positive root of the equation

[
( – β)
 – α

+ 
]
r – r –

[
( – β)
 – α

+ 
]
r +  =  ( ≤ α < ;  ≤ β < ).

Corollary . Let the function f ∈ A and suppose that g ∈UK(α,β). If Df (z) is majorized
by Dg(z) in �, then

∣∣Df (z)
∣∣ ≤ ∣∣Dg(z)

∣∣ (|z| ≤ r
)
,

where r = r(α,β) is the smallest positive root of the equation

[
( – β)
 – α

+ 
]
r – r –

[
( – β)
 – α

+ 
]
r +  =  ( ≤ α < ;  ≤ β < ).

Also, putting A = , B = –, q = , j = n +  and l = n in Theorem ., we obtain the
following result.
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Corollary . Let the function f ∈ Ap and suppose that g ∈ Sn(p,α,γ ). If Dn+f (z) is ma-
jorized by Dng(z) in �, then

∣∣Dn+f (z)
∣∣ ≤ ∣∣Dn+g(z)

∣∣ (|z| ≤ r
)
, (.)

where r = r(p,α,γ ) is the smallest positive root of the equation

[
|γ |
 – α

+ p
]
r – (p + )r –

[
|γ |
 – α

+ p + 
]
r + p = 

(
p ∈ N ;γ ∈ C∗;  ≤ α < 

)
. (.)
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