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Abstract
In this paper, we introduce the notion of generalized G-β-ψ contractive mappings
which is inspired by the concept of α-ψ contractive mappings. We showed the
existence and uniqueness of a fixed point for such mappings in the setting of
complete G-metric spaces. The main results of this paper extend, generalize and
improve some well-known results on the topic in the literature. We state some
examples to illustrate our results. We consider also some applications to show the
validity of our results.

1 Introduction and preliminaries
In nonlinear functional analysis, the importance of fixed point theory has been increasing
rapidly as an interesting research field. One of the most important reasons for this devel-
opment is the potential of application of fixed point theory not only in various branches
of applied and pure mathematics, but also in many other disciplines such as chemistry,
biology, physics, economics, computer science, engineering etc. We also emphasize the
crucial role of celebrated results of Banach [], known as a Banach contraction mapping
principle or a Banach fixed point theorem, in the growth of this theory. In , Banach
proved that every contraction in a complete metric space has a unique fixed point. After
this remarkable paper, a number of authors have extended/generalized/improved the Ba-
nach contraction mapping principle in various ways in different abstract spaces (see, e.g.,
[–]). One of the interesting and recent results in this directionwas given by Samet et al.
[]. They defined the notion of α-ψ contractive mappings and proved that including the
Banach fixed point theorems, some well-known fixed point results turn into corollaries of
their results. Another interesting result was given in  by Mustafa and Sims [] by
introducing the notion of a G-metric space as a generalization of the concept of a metric
space. The authors characterized the Banach fixed point theorem in the context of a G-
metric space. After this result, many authors have paid attention to this space and proved
the existence and uniqueness of a fixed point in the context of a G-metric space (see, e.g.,
[, –, –]). In this paper, we combine these two notions by introducing a G-β-ψ
contractive mapping which is a characterization α-ψ contractive mappings in the context
ofG-metric spaces. Our main results generalize, extend and improve the existence results
on the topic in the literature.
Let � be a family of functions ψ : [,∞)→ [,∞) satisfying the following conditions:
(i) ψ is nondecreasing;
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(ii) there exist k ∈N and a ∈ (, ) and a convergent series of nonnegative terms∑∞
k= vk such that

ψk+(t) ≤ aψk(t) + vk

for k ≥ k and any t ∈ R
+, where R+ = [,∞).

These functions are known in the literature as Bianchini-Grandolfi gauge functions in
some sources (see, e.g., [, , ]) and as (c)-comparison functions in some other sources
(see, e.g., []).

Lemma  (See []) If ψ ∈ � , then the following hold:
(i) (ψn(t))n∈N converges to  as n→ ∞ for all t ∈R

+;
(ii) ψ(t) < t for any t ∈R

+;
(iii) ψ is continuous at ;
(iv) the series

∑∞
k= ψ

k(t) converges for any t ∈R
+.

Very recently, Karapınar and Samet [] introduced the following concepts.

Definition  Let (X,d) be a metric space and T : X → X be a given mapping. We say that
T is a generalized α-ψ contractivemapping if there exist two functions α : X×X → [,∞)
and ψ ∈ � such that

α(x, y)d(Tx,Ty)≤ ψ
(
M(x, y)

)
for all x, y ∈ X, where

M(x, y) =max
{
d(x, y),

(
d(x,Tx) + d(y,Ty)

)
/,

(
d(x,Ty) + d(y,Tx)

)
/

}
.

Clearly, since ψ is nondecreasing, every α-ψ contractive mapping, presented in [], is
a generalized α-ψ contractive mapping.

Definition  Let T : X → X and α : X ×X → [,∞). We say that T is α-admissible if for
all x, y ∈ X, we have

α(x, y)≥  =⇒ α(Tx,Ty)≥ .

Various examples of such mappings are presented in []. The main results in [] are
the following fixed point theorems.

Theorem  Let (X,d) be a complete metric space and T : X → X be a generalized α-ψ
contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) T is continuous.
Then there exists u ∈ X such that Tu = u.

Theorem  Let (X,d) be a complete metric space and T : X → X be a generalized α-ψ
contractive mapping. Suppose that

http://www.journalofinequalitiesandapplications.com/content/2013/1/70


Alghamdi and Karapınar Journal of Inequalities and Applications 2013, 2013:70 Page 3 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/70

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x,Tx) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ ∞, then α(xn,x) ≥  for all n.
Then there exists u ∈ X such that Tu = u.

Theorem Adding to the hypotheses of Theorem  (resp.Theorem ) the condition: For all
x, y ∈ Fix(T), there exists z ∈ X such that α(x, z) ≥  and α(y, z) ≥ , we obtain the unique-
ness of the fixed point of T .

Mustafa and Sims [] introduced the concept of G-metric spaces as follows.

Definition  [] Let X be a nonempty set and G : X × X × X → R
+ be a function satis-

fying the following properties:
(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
Then the functionG is called a generalizedmetric or, more specifically, aG-metric onX,

and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x) for all x, y ∈ X.

Example  Let (X,d) be a metric space. The function G : X ×X ×X →R
+, defined as

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x)

for all x, y, z ∈ X, is a G-metric on X.

Definition  [] Let (X,G) be a G-metric space, and let {xn} be a sequence of points
of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→∞G(x,xn,xm) = ,

that is, for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε for all n,m ≥ N . We call
x the limit of the sequence and write xn → x or limn→∞ xn = x.

Proposition  [] Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x;
() G(xn,xn,x)→  as n → ∞;
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() G(xn,x,x)→  as n→ ∞;
() G(xn,xm,x)→  as n,m → ∞.

Definition  [] Let (X,G) be a G-metric space. A sequence {xn} is called a G-Cauchy
sequence if for any ε > , there is N ∈ N such that G(xn,xm,xl) < ε for all n,m, l ≥ N , that
is, G(xn,xm,xl)→  as n,m, l → ∞.

Proposition  [] Let (X,G) be a G-metric space. Then the following are equivalent:
() the sequence {xn} is G-Cauchy;
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε for all n,m ≥ N .

Definition  [] A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence is G-convergent in (X,G).

Lemma  [] Let (X,G) be a G-metric space. Then, for any x, y, z,a ∈ X, it follows that
(i) if G(x, y, z) = , then x = y = z;
(ii) G(x, y, z) ≤ G(x,x, y) +G(x,x, z);
(iii) G(x, y, y) ≤ G(y,x,x);
(iv) G(x, y, z) ≤ G(x,a, z) +G(a, y, z);
(v) G(x, y, z) ≤ 

 [G(x, y,a) +G(x,a, z) +G(a, y, z)];
(vi) G(x, y, z) ≤ G(x,a,a) +G(y,a,a) +G(z,a,a).

Definition  (See []) Let (X,G) be a G-metric space. A mapping T : X → X is said
to be G-continuous if {T(xn)} is G-convergent to T(x), where {xn} is any G-convergent
sequence converging to x.

In [], Mustafa characterized the well-known Banach contraction principle mapping
in the context of G-metric spaces in the following way.

Theorem  (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), ()

where k ∈ [, ). Then T has a unique fixed point.

Theorem  (See []) Let (X,G) be a complete G-metric space and T : X → X be a map-
ping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), ()

where k ∈ [, ). Then T has a unique fixed point.

Remark  The condition () implies the condition (). The converse is true only if k ∈
[,  ). For details, see [].

From [, ], eachG-metricG onX generates a topology τG onX whose base is a family
of open G-balls {BG(x, ε) : x ∈ X, ε > }, where BG(x, ε) = {y ∈ X :G(x, y, y) < ε} for all x ∈ X

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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and ε > . Moreover,

x ∈ A ⇔ BG(x, ε)∩A �= ∅, for all ε > .

Proposition  Let (X,G) be a G-metric space and A be a nonempty subset of X. Then A
is G-closed if for any G-convergent sequence {xn} in A with limit x, one has x ∈ A.

2 Main results
We introduce the concept of generalized α-ψ contractive mappings as follows.

Definition  Let (X,G) be a G-metric space and T : X → X be a given mapping. We say
that T is a generalized G-β-ψ contractive mapping of type I if there exist two functions
β : X ×X ×X → [,∞) and ψ ∈ � such that for all x, y, z ∈ X, we have

β(x, y, z)G(Tx,Ty,Tz) ≤ ψ
(
M(x, y, z)

)
, ()

where

M(x, y, z) =max

{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),


 (G(x,Ty,Ty) +G(y,Tz,Tz) +G(z,Tx,Tx))

}
.

Definition  Let (X,G) be a G-metric space and T : X → X be a given mapping. We say
that T is a generalized G-β-ψ contractive mapping of type II if there exist two functions
β : X ×X ×X → [,∞) and ψ ∈ � such that for all x, y ∈ X, we have

β(x, y, y)G(Tx,Ty,Ty) ≤ ψ
(
M(x, y, y)

)
, ()

where

M(x, y, y) =max

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),


 (G(x,Ty,Ty) +G(y,Ty,Ty) +G(y,Tx,Tx))

}
.

Remark Clearly, any contractivemapping, that is, amapping satisfying (), is a general-
izedG-β-ψ contractive mapping of type I with β(x, y, z) =  for all x, y, z ∈ X and ψ(t) = kt,
k ∈ (, ). Analogously, a mapping satisfying () is a generalized G-β-ψ contractive map-
ping of type II with β(x, y, y) =  for all x, y ∈ X and ψ(t) = kt, where k ∈ (, ).

Definition  Let T : X → X and β : X ×X ×X → [,∞). We say that T is β-admissible
if for all x, y, z ∈ X, we have

β(x, y, z) ≥  =⇒ β(Tx,Ty,Tz) ≥ .

Example  Let X = [,∞) and T : X → X. Define β(x, y, z) : X × X × X → [,∞) by
Tx = ln( + x) and

β(x, y, z) =

⎧⎨
⎩e if x ≥ y≥ z,

 if otherwise.

Then T is β-admissible.

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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Our first result is the following.

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a gener-
alized G-β-ψ contractive mapping of type I and satisfies the following conditions:

(i)a T is β-admissible;
(ii)a there exists x ∈ X such that β(x,Tx,Tx)≥ ;
(iii)b T is G-continuous.

Then there exists u ∈ X such that Tu = u.

Proof Let x ∈ X be such that β(x,Tx,Tx) ≥  (such a point exists from the condition
(ii)a). Define the sequence {xn} in X by xn+ = Txn for all n ≥ . If xn = xn+ for some n,
then u = xn is a fixed point of T . So, we can assume that xn �= xn+ for all n. Since T is
β-admissible, we have

β(x,x,x) = β(x,Tx,Tx) ≥  =⇒ β(Tx,Tx,Tx) = β(x,x,x) ≥ .

Inductively, we have

β(xn,xn+,xn+) ≥ , for all n = , , . . . . ()

From () and (), it follows that for all n≥ , we have

G(xn,xn+,xn+) = G(Txn–,Txn,Txn)

≤ β(xn–,xn,xn)G(Txn–,Txn,Txn)

≤ ψ
(
M(xn–,xn,xn)

)
.

On the other hand, we have

M(xn–,xn,xn) = max

{
G(xn–,xn,xn),G(xn–,Txn–,Txn–),G(xn,Txn,Txn),


 (G(xn–,Txn,Txn) +G(xn,Txn,Txn) +G(xn,Txn–,Txn–))

}

= max

{
G(xn–,xn,xn),G(xn–,xn,xn),G(xn,xn+,xn+),


 (G(xn–,xn+,xn+) +G(xn,xn+,xn+) +G(xn,xn,xn))

}

≤ max

{
G(xn–,xn,xn),G(xn,xn+,xn+),


 (G(xn–,xn,xn) +G(xn,xn+,xn+) +G(xn,xn+,xn+))

}

= max

{
G(xn–,xn,xn),G(xn,xn+,xn+),


 (G(xn–,xn,xn) + G(xn,xn+,xn+))

}

= max
{
G(xn–,xn,xn),G(xn,xn+,xn+)

}
.

Thus, we have

G(xn,xn+,xn+)≤ ψ
(
max

{
G(xn–,xn,xn),G(xn,xn+,xn+)

})
.

We consider the following two cases:

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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Case : If max{G(xn–,xn,xn),G(xn,xn+,xn+)} =G(xn,xn+,xn+) for some n, then

G(xn,xn+,xn+)≤ ψ
(
G(xn,xn+,xn+)

)
<G(xn,xn+,xn+),

which is a contradiction.
Case : If max{G(xn–,xn,xn),G(xn,xn+,xn+)} =G(xn–,xn,xn), then

G(xn,xn+,xn+)≤ ψ
(
G(xn–,xn,xn)

)
for all n ≥ . Since ψ is nondecreasing, by induction, we get

G(xn,xn+,xn+)≤ ψn(G(x,x,x)) for all n≥ . ()

Using (G) and (), we have

G(xn,xm,xm) ≤ G(xn,xn+,xn+) +G(xn+,xn+,xn+)

+G(xn+,xn+,xn+) + · · · +G(xm–,xm,xm)

=
m–∑
k=n

G(xk ,xk+,xk+)

≤
m–∑
k=n

ψk(G(x,x,x)).
Since ψ ∈ � and G(x,x,x) > , by Lemma , we get that

∞∑
k=

ψk(G(x,x,x)) < ∞.

Thus, we have

lim
n,m→

G(xn,xm,xm) = .

By Proposition , this implies that {xn} is a G-Cauchy sequence in the G-metric space
(X,G). Since (X,G) is complete, there exists u ∈ X such that {xn} is G-convergent to u.
Since T isG-continuous, it follows that {Txn} isG-convergent to Tu. By the uniqueness of
the limit, we get u = Tu, that is, u is a fixed point of T . �

Definition  (See []) Let (X,G) be a G-metric space and T : X → X be a given map-
ping. We say that T is a G-β-ψ contractive mapping of type I if there exist two functions
β : X ×X ×X → [,∞) and ψ ∈ � such that for all x, y, z ∈ X, we have

β(x, y, z)G(Tx,Ty,Tz) ≤ ψ
(
G(x, y, z)

)
()

by following the lines of the proof of Theorem .

Corollary  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a G-β-ψ
contractive mapping of type I and satisfies the following conditions:

(i)a T is β-admissible;

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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(ii)a there exists x ∈ X such that β(x,Tx,Tx)≥ ;
(iii)b T is G-continuous.

Then there exists u ∈ X such that Tu = u.

Example  Let X = [,∞) be endowed with the G-metric

G(x, y, z) = |x – y| + |y – z| + |z – x| for all x, y, z ∈ X.

Define T : X → X by Tx = x for all x ∈ X. We define β : X × X × X → [,∞) in the
following way:

β(x, y, z) =

⎧⎨
⎩


 if (x, y, z) �= (, , ),

 otherwise.

One can easily show that

β(x, y, z)G(Tx,Ty,Tz) ≤ 

G(x, y, z) for all x, y, z ∈ X.

Then T is a G-β-ψ contractive mapping of type I with ψ(t) = 
 t for all t ∈ [,∞). Take

x, y, z ∈ X such that β(x, y, z) ≥ . By the definition of T , this implies that x = y = z = .
Then we have β(Tx,Ty,Tz) = β(, , ) = , and so T is β-admissible. All the conditions
of Corollary  are satisfied. Here,  is the fixed point of T . Notice also that the Banach
contraction mapping principle is not applicable. Indeed, d(x, y) = |x – y| for all x, y ∈ X.
Then we have x �= y d(Tx,Ty) = |x – y| > k|x – y| for all k ∈ [, ).
It is clear that Theorem  is not applicable.

The following result can be easily concluded from Theorem .

Corollary  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a gen-
eralized G-β-ψ contractive mapping of type II and satisfies the following conditions:

(i)a T is β-admissible;
(ii)a there exists x ∈ X such that β(x,Tx,Tx)≥ ;
(iii)b T is G-continuous.

Then there exists u ∈ X such that Tu = u.

The next theorem does not require the continuity of T .

Theorem  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a gen-
eralized G-β-ψ contractive mapping of type I such that ψ is continuous and satisfies the
following conditions:

(i)b T is β-admissible;
(ii)b there exists x ∈ X such that β(x,Tx,Tx)≥ ;
(iii)b if {xn} is a sequence in X such that β(xn,xn+,xn+) ≥  for all n and {xn} is a

G-convergent to x ∈ X , then β(xn,x,x)≥  for all n.

Then there exists u ∈ X such that Tu = u.

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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Proof Following the proof of Theorem , we know that the sequence {xn} defined by
xn+ = Txn for all n ≥ , is a G-Cauchy sequence in the complete G-metric space (X,G),
that is, G-convergent to u ∈ X. From () and (iii)b, we have

β(xn,u,u) ≥  for all n≥ . ()

Using (), we have

G(xn+,Tu,Tu) = G(Txn,Tu,Tu)

≤ β(xn,u,u)G(Txn,Tu,Tu)

≤ ψ
(
M(xn,u,u)

)
,

where

M(xn,u,u) = max

{
G(xn,u,u),G(xn,Txn,Txn),G(u,Tu,Tu),


 (G(xn,Tu,Tu) +G(u,Tu,Tu) +G(u,Txn,Txn))

}

= max

{
G(xn,u,u),G(xn,xn+,xn+),G(u,Tu,Tu),


 (G(xn,Tu,Tu) +G(u,Tu,Tu) +G(u,xn+,xn+))

}
.

Letting n → ∞ in the following inequality:

G(xn+,Tu,Tu) ≤ ψ
(
M(xn,u,u)

)
,

it follows that

G(u,Tu,Tu) ≤ ψ
(
G(u,Tu,Tu)

)
,

which is a contradiction. Thus, we obtain G(u,Tu,Tu) = , that is, by Lemma , u = Tu.
�

The following corollary can be easily derived from Theorem .

Corollary  Let (X,G) be a complete G-metric space. Suppose that T : X → X is a gen-
eralized G-β-ψ contractive mapping of type II such that ψ is continuous and satisfies the
following conditions:

(i)b T is β-admissible;
(ii)b there exists x ∈ X such that β(x,Tx,Tx) ≥ ;
(iii)b if {xn} is a sequence in X such that β(xn,xn+,xn+) ≥  for all n and {xn} is a

G-convergent to x ∈ X , then β(xn,x,x)≥  for all n.

Then there exists u ∈ X such that Tu = u.

With the following example, we will show that the hypotheses in Theorems  and 
do not guarantee uniqueness.

http://www.journalofinequalitiesandapplications.com/content/2013/1/70
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Example  Let X = {(, ), (, )} ⊂R
 be endowed with the following G-metric:

G
(
(x, y), (u, v), (z,w)

)
= |x – u| + |u – z| + |z – x| + |y – v| + |v –w| + |w – y|

for all (x, y), (u, v), (z,w) ∈ X. Obviously, (X,G) is a complete metric space. The mapping
T(x, y) = (x, y) is trivially continuous and satisfies, for any ψ ∈ � ,

β
(
(x, y), (u, v), (z,w)

)
G

(
T(x, y),T(u, v),T(z,w)

) ≤ ψ
(
M

(
(x, y), (u, v), (z,w)

))
for all (x, y), (u, v), (z,w) ∈ X, where

β
(
(x, y), (u, v), (z,w)

)
=

⎧⎨
⎩ if (x, y) = (u, v) = (z,w),

 otherwise.

Thus T is a generalized G-β-ψ contractive mapping. On the other hand, for all (x, y),
(u, v), (z,w) ∈ X, we have

β
(
(x, y), (u, v), (z,w)

) ≥  → (x, y) = (u, v) = (z,w),

which yields that

T(x, y) = T(u, v) = T(z,w) → β
(
T(x, y),T(u, v),T(z,w)

) ≥ .

Hence T is β-admissible. Moreover, for all (x, y) ∈ X, we have β((x, y),T(x, y),T(x, y)) ≥ .
So, the assumptions of Theorem are satisfied.Note that the assumptions of Theorem
are also satisfied, indeed, if {(xn, yn)} is a sequence inX that converges to some point (x, y) ∈
X with β((xn, yn), (xn+, yn+), (xn+, yn+)) ≥  for all n, then from the definition of β , we have
(xn, yn) = (x, y) for all n, which implies that β((xn, yn), (x, y), (x, y)) =  for all n. However, in
this case, T has two fixed points in X.

Let X be a set and T be a self-mapping on X. The set of all fixed points of T will be
denoted by Fix(T).

Theorem  Adding the following condition to the hypotheses of Theorem  (resp. Theo-
rem , Corollary , Corollary ), we obtain the uniqueness of the fixed point of T .
(iv) For x ∈ Fix(T), β(x, z, z) ≥  for all z ∈ X .

Proof Let u, v ∈ Fix(T) be two fixed points of T . By (iv), we derive

β(u, v, v)≥ .

Notice that β(Tu,Tv,Tv) = β(u, v, v) since u and v are fixed points of T . Consequently, we
have

G(u, v, v) = G(Tu,Tv,Tv)

≤ β(u, v, v)G(Tu,Tv,Tv)≤ ψ
(
M(u, v, v)

)
,
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where

M(u, v, v) = max

{
G(u, v, v),G(u,Tu,Tu),G(v,Tv,Tv),


 (G(u,Tv,Tv) +G(v,Tv,Tv) +G(v,Tu,Tu))

}

= max

{
G(u, v, v),



(
G(u, v, v) +G(v,u,u)

)}

≤ max

{
G(u, v, v),



(
G(u, v, v) + G(u, v, v)

)}

= G(u, v, v).

Thus, we get that

G(u, v, v)≤ ψ
(
M(u, v, v)

) ≤ ψ
(
G(u, v, v)

)
<G(u, v, v),

which is a contradiction. Therefore, u = v, i.e., the fixed point of T is unique. �

Corollary  Let (X,G) be a complete G-metric space and let T : X → X be a given map-
ping. Suppose that there exists a continuous function ψ ∈ � such that

G(Tx,Ty,Tz) ≤ ψ
(
M(x, y, z)

)
for all x, y, z ∈ X. Then T has a unique fixed point.

Corollary  Let (X,G) be a complete G-metric space and let T : X → X be a given map-
ping. Suppose that there exists a function ψ ∈ � such that

G(Tx,Ty,Tz) ≤ ψ
(
G(x, y, z)

)
for all x, y, z ∈ X. Then T has a unique fixed point.

Corollary  Let (X,G) be a complete G-metric space and let T : X → X be a given map-
ping. Suppose that there exists λ ∈ [, ) such that

G(Tx,Ty,Tz) ≤ λmax

{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),


 (G(x,Ty,Ty) +G(y,Tz,Tz) +G(z,Tx,Tx))

}

for all x, y, z ∈ X. Then T has a unique fixed point.

Corollary  Let (X,G) be a complete G-metric space and let T : X → X be a given map-
ping. Suppose that there exist nonnegative real numbers a, b, c, d and e with a+b+c+d+e <
 such that

G(Tx,Ty,Tz) ≤ aG(x, y, z) + bG(x,Tx,Tx) + cG(y,Ty,Ty) + dG(z,Tz,Tz)

+
e

(
G(x,Ty,Ty) +G(y,Tz,Tz) +G(z,Tx,Tx)

)
for all x, y, z ∈ X. Then T has a unique fixed point.
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Corollary  (See []) Let (X,G) be a complete G-metric space and let T : X → X be a
given mapping. Suppose that there exists λ ∈ [, ) such that

G(Tx,Ty,Tz) ≤ λG(x, y, z)

for all x, y, z ∈ X. Then T has a unique fixed point.

3 Consequences
3.1 Fixed point theorems onmetric spaces endowed with a partial order
Definition  Let (X,) be a partially ordered set and T : X → X be a given mapping.
We say that T is nondecreasing with respect to  if

x, y ∈ X, x  y =⇒ Tx  Ty.

Definition  Let (X,) be a partially ordered set. A sequence {xn} ⊂ X is said to be
nondecreasing with respect to  if

xn  xn+ for all n.

Definition  Let (X,) be a partially ordered set andG be aG-metric on X. We say that
(X,,G) is G-regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ X
as n→ ∞, xn  x for all n.

Theorem  Let (X,) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Let T : X → X be a nondecreasing mapping with re-
spect to . Suppose that there exists a function ψ ∈ � such that

G(Tx,Ty,Ty) ≤ ψ
(
M(x, y, y)

)
()

for all x, y ∈ X with x y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  Tx;
(ii) T is G-continuous or (X,,G) is G-regular and ψ is continuous.
Then there exists u ∈ X such that Tu = u. Moreover, if for x ∈ Fix(T), x  z for all z ∈ X,

one has the uniqueness of the fixed point.

Proof Define the mapping β : X ×X ×X → [,∞) by

β(x, y, y) =

⎧⎨
⎩ if x  y,

 otherwise.
()

From (), for all x, y ∈ X, we have

β(x, y, y)G(Tx,Ty,Ty) ≤ ψ
(
M(x, y, y)

)
.

It follows that T is a generalized G-β-ψ contractive mapping of type II. From the condi-
tion (i), we have

β(x,Tx,Tx)≥ .
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By the definition of β and since T is a nondecreasing mapping with respect to , we have

β(x, y, y) ≥  =⇒ x  y =⇒ Tx  Ty =⇒ β(Tx,Ty,Ty) ≥ .

Thus T is β-admissible. Moreover, if T is G-continuous, by Theorem , T has a fixed
point.
Now, suppose that (X,,G) is G-regular. Let {xn} be a sequence in X such that

β(xn,xn+,xn+) ≥  for all n and xn is G-convergent to x ∈ X. By Definition , xn  x
for all n, which gives us β(xn,x,x)≥  for all k. Thus, all the hypotheses of Theorem  are
satisfied and there exists u ∈ X such thatTu = u. To prove the uniqueness, since u ∈ Fix(T),
we have, u  z for all z ∈ X. By the definition of β , we get that β(u, z, z) ≥  for all z ∈ X.
Therefore, the hypothesis (iv) of Theorem  is satisfied and we deduce the uniqueness of
the fixed point. �

Corollary  Let (X,) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Let T : X → X be a nondecreasing mapping with re-
spect to . Suppose that there exists a function ψ ∈ � such that

G(Tx,Ty,Ty) ≤ ψ
(
G(x, y, y)

)
for all x, y ∈ X with x y. Suppose also that the following conditions hold:

(i) there exists x ∈ X such that x  Tx;
(ii) T is G-continuous or (X,,G) is G-regular.
Then there exists u ∈ X such that Tu = u. Moreover, if for x ∈ Fix(T), x  z for all z ∈ X,

one has the uniqueness of the fixed point.

Corollary  Let (X,) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Let T : X → X be a nondecreasing mapping with re-
spect to . Suppose that there exists λ ∈ [, ) such that

G(Tx,Ty,Ty) ≤ λmax

{
G(x, y, y),G(x,Tx,Tx),G(y,Ty,Ty),


 (G(x,Ty,Ty) +G(y,Ty,Ty) +G(y,Tx,Tx))

}

for all x, y ∈ X with x y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  Tx;
(ii) T is G-continuous or (X,,G) is G-regular.
Then there exists u ∈ X such that Tu = u. Moreover, if for x ∈ Fix(T), x  z for all z ∈ X,

one has the uniqueness of the fixed point.

Corollary  Let (X,) be a partially ordered set and G be a G-metric on X such
that (X,G) is a complete G-metric space. Let T : X → X be a nondecreasing mapping
with respect to . Suppose that there exist nonnegative real numbers a, b, c and d with
a + b + c + d <  such that

G(Tx,Ty,Ty) ≤ aG(x, y, y) + bG(x,Tx,Tx) + cG(y,Ty,Ty)

+
d

(
G(x,Ty,Ty) +G(y,Ty,Ty) +G(y,Tx,Tx)

)
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for all x, y ∈ X with x y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  Tx;
(ii) T is G-continuous or (X,,G) is G-regular.
Then there exists u ∈ X such that Tu = u. Moreover, if for x ∈ Fix(T), x  z for all z ∈ X,

one has the uniqueness of the fixed point.

Corollary  Let (X,) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Let T : X → X be a nondecreasing mapping with re-
spect to . Suppose that there exists a constant λ ∈ [, ) such that

G(Tx,Ty,Ty) ≤ λG(x, y, y)

for all x, y ∈ X with x y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x  Tx;
(ii) T is G-continuous or (X,,G) is G-regular.
Then there exists u ∈ X such that Tu = u. Moreover, if for x ∈ Fix(T), x  z for all z ∈ X,

one has the uniqueness of the fixed point.

3.2 Cyclic contraction
Now, we will prove our results for cyclic contractive mappings in a G-metric space.

Theorem (See [, ]) Let A, B be a nonempty G-closed subset of a complete G-metric
space (X,G). Suppose also that Y = A∪B and T : Y → Y is a given self-mapping satisfying

T(A) ⊆ B and T(B) ⊆ A. ()

If there exists a continuous function ψ ∈ � such that

G(Tx,Ty,Ty) ≤ ψ
(
M(x, y, y)

)
, ∀x ∈ A, y ∈ B, ()

then T has a unique fixed point u ∈ A∩ B, that is, Tu = u.

Proof Notice that (Y ,G) is a complete G-metric space since A, B is a closed subset of a
complete G-metric space (X,G). We define β : X ×X ×X → [,∞) in the following way:

β(x, y, y) =

⎧⎨
⎩ if (x, y) ∈ (A× B)∪ (B×A),

 otherwise.

Due to the definition of β and the assumption (), we have

β(x, y, y)G(Tx,Ty,Ty) ≤ ψ
(
M(x, y, y)

)
, ∀x, y ∈ Y . ()

Hence, T is a generalized G-β-ψ contractive mapping.
Let (x, y) ∈ Y × Y be such that β(x, y, y) ≥ . If (x, y) ∈ A × B then by the assump-

tion (), (Tx,Ty) ∈ B × A, which yields that β(Tx,Ty,Ty) ≥ . If (x, y) ∈ B × A, we get
again β(Tx,Ty,Ty) ≥  by analogy. Thus, in any case, we have β(Tx,Ty,Ty) ≥ , that is,
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T is β-admissible. Notice also that for any z ∈ A, we have (z,Tz) ∈ A × B, which yields
β(z,Tz,Tz) ≥ .
Take a sequence {xn} in X such that β(xn,xn+,xn+) ≥  for all n and xn → u ∈ X as

n→ ∞. Regarding the definition of β , we derive that

(xn,xn+) ∈ (A× B)∪ (B×A) for all n. ()

By assumption, A, B and hence (A × B) ∪ (B × A) is a G-closed set. Hence, we get that
(u,u) ∈ (A × B) ∪ (B × A), which implies that u ∈ A ∩ B. We conclude, by the definition
of β , that β(xn,u,u) ≥  for all n.
Now, all hypotheses of Theorem  are satisfied and we conclude that T has a fixed

point. Next, we show the uniqueness of a fixed point u ofT . Since u ∈ Fix(T) and u ∈ A∩B,
we get β(u,a,a)≥  for all a ∈ Y . Thus, the condition (iv) of Theorem  is satisfied. �
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