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Abstract
In this article, a sharp two-sided bounding inequality and some best constants for the
approximation of the quantity associated with the Wallis’ formula are presented.
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1 Introduction andmain result
Throughout the paper, Z denotes the set of all integers, N denotes the set of all positive
integers,

N :=N∪ {},

n!! :=
[(n–)/]∏

i=

(n – i),
()

and

Wn :=
(n – )!!
(n)!!

. ()

Here in (), the floor function [t] denotes the integer which is less than or equal to the
number t.
The Euler gamma function is defined and denoted for Re z >  by

�(z) :=
∫ ∞


tz–e–t dt. ()

One of the elementary properties of the gamma function is that

�(x + ) = x�(x). ()

In particular,

�(n + ) = n!, n ∈N. ()
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Also, note that

�

(



)
=

√
π . ()

For the approximation of n!, a well-known result is the following Stirling’s formula:

n! ∼ √
πnnne–n, n→ ∞, ()

which is an important tool in analytical probability theory, statistical physics and physical
chemistry.
Consider the quantity Wn, defined by (). This quantity is important in the probability

theory - for example, the three events, (a) a return to the origin takes place at time n,
(b) no return occurs up to and including time n, and (c) the path is non-negative between
 and n, have the common probabilityWn. Also, the probability that in the time interval
from  to n the particle spends k time units on the positive side and n – k time units
on the negative side is WkWn–k . For details of these interesting results, one may see [,
Chapter III].
Wn is closely related to the Wallis’ formula.
The Wallis’ formula


π

=
∞∏
n=

(n – )(n + )
(n)

()

can be obtained by taking

x =
π



in the infinite product representation of sinx (see [, p.], [, p.])

sinx = x
∞∏
n=

(
 –

x

nπ

)
, x ∈R. ()

Since

∞∏
n=

(n – )(n + )
(n)

= lim
n→∞(n + )W 

n , ()

another important form of Wallis’ formula is (see [, pp.-])

lim
n→∞(n + )W 

n =

π
. ()

The following generalization of Wallis’ formula was given in [].

π

t sin(π/t)
=


t – 

∞∏
i=

(it)

(it + t – )(it – t + )
, t > . ()

In fact, by letting

x = ( – /t)π , t �= 
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in (), we have

sin
π

t
=

π

t
(t – )

∞∏
i=

(it + t – )(it – t + )
(it)

, t �= . ()

From (), we get

π

t sin(π/t)
=


t – 

∞∏
i=

(it)

(it + t – )(it – t + )
()

for

t �= , t �= 
k
, k ∈ Z.

() is a special case of (). The proof of () in [] involves integrating powers of a gen-
eralized sine function.
There is a close relationship between Stirling’s formula and Wallis’ formula. The de-

termination of the constant
√
π in the usual proof of Stirling’s formula () or Stirling’s

asymptotic formula

�(x)∼ √
πxx–/e–x, x→ ∞, ()

relies on Wallis’ formula (see [, pp.-], [, pp.-], [, pp.-]).
Also, note that

Wn =
[
(n + )

∫ π/


sinn+ xdx

]–

()

=
[
(n + )

∫ π/


cosn+ xdx

]–

()

and Wallis’ sine (cosine) formula (see [, p.])

Wn =

π

∫ π/


sinn xdx ()

=

π

∫ π/


cosn xdx. ()

Some inequalities involvingWn were given in [–].
In this article, we give a sharp two-sided bounding inequality and some exact constants

for the approximation ofWn, defined by (). The main result of the paper is as follows.

Theorem  For all n ∈N, n ≥ ,

√
e
π

(
 –


n

)n √
n – 
n

<Wn ≤ 


(
 –


n

)n √
n – 
n

. ()

The constants
√
e/π and / in () are best possible.
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Moreover,

Wn ∼
√

e
π

(
 –


n

)n √
n – 
n

, n → ∞. ()

Remark  By saying that the constants
√
e/π and / in () are best possible, we mean

that the constant
√
e/π in () cannot be replaced by a number which is greater than

√
e/π

and the constant / in () cannot be replaced by a number which is less than /.

2 Lemmas
We need the following lemmas to prove our result.

Lemma  ([, Theorem .]) The function

f (x) :=
xx+ 



ex�(x + )
()

is strictly logarithmically concave and strictly increasing from (,∞) onto (, √
π ).

Lemma  ([, Theorem .]) The function

h(x) :=
ex

√
x – �(x + )
xx+

()

is strictly logarithmically concave and strictly increasing from (,∞) onto (,
√
π ).

Lemma  ([, p.]) For all n ∈N,

�

(
n +




)
=

√
πn!Wn, ()

where Wn is defined by ().

Remark  Some functions associated with the functions f (x) and h(x), defined by ()
and () respectively, were proved to be logarithmically completely monotonic in [–].
For more recent work on (logarithmically) completely monotonic functions, please see,
for example, [–].

3 Proof of themain result

Proof of Theorem  By Lemma , we have


e
√
eπ

= f
(



)
≤ f

(
n –




)
=

(n – 
 )

n

en–/�(n + /)
<

√
π

, n≥ , ()

and

lim
n→∞

(n – 
 )

n

en–/�(n + /)
=

√
π

. ()

The lower and upper bounds in () are best possible.
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By Lemma , () and () can be rewritten respectively as


e

≤ (n – 
 )

n

Wnenn!
<

√
e

, n≥ , ()

and

lim
n→∞

(n – 
 )

n

Wnenn!
=

√
e

. ()

The constants /e and /
√
e in () are best possible.

By Lemma , we get

(
e


)

= h()≤ h(n) =
enn!

√
n – 

nn+
<

√
π , n≥ , ()

and

lim
n→∞

enn!
√
n – 

nn+
=

√
π . ()

The lower bound (e/) and the upper bound
√
π in () are best possible.

From () and (), we obtain that for all n≥ ,




≤
√
n – (n – 

 )
n

Wnnn+
<

√
π

e
. ()

The constants / and
√

π/e in () are best possible. From () we get that for all n≥ ,

√
e
π

(
 –


n

)n √
n – 
n

<Wn ≤ 


(
 –


n

)n √
n – 
n

. ()

The constants
√
e/π and / in () are best possible.

From () and (), we see that

lim
n→∞

√
n – (n – 

 )
n

Wnnn+
=

√
π

e
, ()

which is equivalent to ().
The proof is thus completed. �
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