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Abstract

In this paper, we present some properties of generalized proximity operators and
propose an iterative method of approximating solutions for a class of generalized
variational inequalities and show its convergence in uniformly convex and smooth
Banach spaces.
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1 Introduction
Let f be a lower semi-continuous proper convex function from a Hilbert space H to
(—00, +00]. The Moreau envelope of the function f is defined as

_ 1
¢ (x) =ylgg{f(y) + 5llx—yllz}. (1.1)

It is well known that ¢/ (x) is a continuous convex function, and for every x € H, the in-
fimum in (1.1) is achieved at a unique point prox;(x). The operator prox, from H to H,

ie.,
. 1
proxfx:argmln{f(y)+ E||x—y||2} 1.2)
yeH

thus defined, is called the proximity operator of f. When f = (x is the indicator function of
a closed convex set K in H, then proxf(x) = Px(x) becomes the metric projection operator
on K.

In 1994, Alber extended the metric projection operator to uniformly convex and uni-
formly smooth Banach spaces. Let K be a closed convex subset of a uniformly convex
and uniformly smooth Banach space X, Alber [1] introduced the generalized projections
g X*—> Kand g : X —> K,

JTK(x*) = argmin{ ||x* ||2 - 2(x*,x) + ||x||2}
xeK
and

M (x) = argmin{ [|Jx]1 = 20, 9) + 5117},
yekK
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where ] is the duality mapping from X to X*, and studied their properties in detail. In [2],
Alber presented some applications of the generalized projections to approximately solv-
ing variational inequalities in Banach spaces. Recently, Li [3] extended the generalized
projection operator g from uniformly convex and uniformly smooth Banach spaces to
reflexive Banach spaces and studied some properties of the generalized projection opera-
tor with applications to solving the variational inequality in Banach spaces. By employing
the generalized projection operators, Zeng and Yao [4] established some existence results
for the variational inequality problem in uniformly convex and uniformly smooth Banach
spaces and convergence results for the variational inequality. In [5], Wu and Huang further
introduced and studied a class of generalized f-projection operators in Banach spaces. As
applications, they proposed an iterative method of approximating solutions for the varia-

tional inequality problem: find x € K such that

(Ax,y-x) +f(y) - f(*) =0, VyeK, 1.3)

where K is a nonempty closed convex subset of X, A : K — X* is a mapping and f : X —
(—00, +00] is a proper convex, lower semicontinuous and positively homogeneous func-

tion, via

Knet = T (Jn = ] (20 — 7T Uity — pA%)) ), (1.4)
where

g (%) = argmin{2f (x) + [+° I? = 2%, %) + 111},

and the parameter sequence {«,,} satisfies

+00
0<a,<l1, Zan(l—an):+oo, p>0,
n=0

and they proved that {x,} has a subsequence converging to a solution of (1.3) when K is
a nonempty compact convex subset of a uniformly convex and uniformly smooth Banach
space.

Motivated and inspired by the above works, we continue to study some properties of
generalized proximity operators and propose an iterative method of approximating so-
lutions for the following generalized variational inequality problem: find ¥ € domf such
that

(Ax,y —x) +f(y) - f(x) = 0, Vy e domf, (1.5)

where f : X — (—00, +00] is a proper convex and lower semicontinuous function, A : X —
X* is a norm-to-weak continuous operator. Our iterative method is different from that
given in [5]. We also prove a convergence result for this iterative method in smooth and
uniformly convex Banach spaces. Let K be a nonempty closed convex set of X. If we replace
fbyf +Ix in (1.5), where I is the indicator function of K, then (1.5) reduces to (1.3).
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2 Preliminaries
Let X be a reflexive, smooth and strictly convex Banach space with the dual space X*. We
denote by x, — x and x,, — x the strong and the weak convergence to x of a sequence {x,,}
in a Banach space X, respectively. Let I'g(X) denote the class of all lower semi-continuous
proper convex functions from X to (-oo, +00]. Let B(x, §) denote the closed ball of x € X
and radius § > 0. Let S(X) = {x € X : ||x|| = 1} be the unit sphere.

A Banach space X is said to be strictly convex if % lx+y|l <1forall x,y € S(X) and x # y.
The Banach space X is said to be smooth provided

x+ty|| — |[x
i 1+ 1= Il

t—0 t

exists for each x,y € S(X). We recall that uniform convexity of X means that for any given
€ > 0, there exists § > 0 such that for all x,y € X with ||x|| <1, |ly|| <1, and ||x — y|| = ¢, the
inequality

llx +yll <2(1 - 6)

holds.

A subset C of X is called boundedly compact if for any § > 0 the intersection C N B(0, )
is empty or compact.

The duality mapping J : X = X* is defined by

J@) = [ € X*|(x*,2) = |*||* = 1«1}, VxeX.

The following basic results concerning the duality mapping are well known [2, 6, 7]:
(1) X is reflexive if and only if J is surjective;
(2) X is strictly convex if and only if J is injective;
(3) X is smooth if and only if J is single-valued;
(4)
(5) ] is monotone, i.e., {Jx = Jy,x —y) > 0, Vx,y € X;

if X is smooth, then J is norm-to-weak star continuous;

(6) if X is strictly convex and smooth, then (Jx — Jy,x —y) =0 = x =y, Vx,y € X;
(7) if a Banach space X is reflexive strictly convex and smooth, then the duality mapping
J* from X* into X is the inverse of J, that is, /™' = J*.

Consider the following envelope function:
e (x*) = inf{ f(x) + lV(x*,x) , (2.1)
v xeX 2

where V(x*,x) = ||x*[|? — 2(x*,x) + |lx]|%. Since the function (x,x*) — f(x) + 1V (x*,%) is
lower semicontinuous convex, one sees that e(,(x*) is lower semicontinuous and convex
by Proposition 4.4 in [8].

For every x* € X*, the infimum in (2.1) is achieved at a unique point 7y(x*), i.e.,

mp(xt) o= argmin{f(x) + %V(x*,x)}.

xeK
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The operator 7y is called the generalized proximity operator. It can be characterized by

the inclusion

x* —]nf(x*) € 8f(nf(x*)), (2.2)
equivalently,
mr=( + af)~. (2.3)

From (2.3), we easily know that 77y is maximal monotone by Theorem 2.6.2 in [6]. Observe

that when p =1,
”I/;(x*) =T+l (x*)
If, in addition, domf = K, then JTI/Z(x*) =1y (x%).

Lemma 2.1 ([9]) Let X be a smooth, strictly convex and reflexive Banach space, let {x,} be
a sequence in X, and x € X. If (x, —x,Jx, — Jx) — 0, then x, — x, Jx, — Jx and ||x,|| — ||x||.

Lemma 2.2 ([10]) Let r > 0 be a fixed real number. Then a Banach space X is uniformly
convex if and only if there is a continuous, strictly increasing and convex function g : Rt —
R* with g(0) = 0 such that

2
|2x+ @ =2)y|” < allxl> + A= DIyl> =20 -Ng(lx-yl), VxyeB,0<r<l,
where B, ={x e X : ||x|| <r}.

3 Main results
Proposition 3.1 Let f € T'o(X). Then the following hold:
(i) (mmp(x™) = r ("), (6" = Jrp(x¥)) = (O = Jmp(v*))) = 0, V™, y* € X
(ii) my is bounded on each nonempty bounded subset of C C X*;
(iil) if {x}} is a sequence in X* such that x;, — x*, then 7y (x}) — mr(x™),
Jrp(g) = Jrp(x*) and || (x5) | — e ()5
(iv) if domf is a nonempty boundedly compact convex subset, then g is weak-to-norm
continuous, that is, if i, — x*, then mp(x},) — mwy(x*).

Proof (i) Take x*,y* € X*. Then (2.2) yields

(e =Ty () (%) = 77 (7)) < £ (2 7)) = f (7 (7))

and

=T () 7y (6%) =717 (7)) < f (e (7)) = f (7 (7))

Adding these two inequalities, we obtain

{rrp () = 7 (57), (6 = Jp (57)) = (9" =T (57))) = O
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(ii) Suppose that 717 is not bounded on some nonempty bounded subset of C. Then there
exists a bounded sequence {x;} C C such that ||7¢(x})|| — oo. Fix x* € X*. From (i), we
obtain the following:

7 () = 7 () | e = | = (o) — 2 (7)) = 6°)

> (my (o) = 77 (%), Ty (35) = T (7))
(VUmr (%) 7 (x7)) + V Uy (57), 77 (%))
() | = e () )

N =

%
—

So, we have ||x};|| — oo. This is a contradiction.
(iii) Let {x};} be a sequence in X* such that x}; — «x*. It follows from (ii) that {m(x})} is
bounded. From (i), we have

0 < (my(w) — 7 ("), Sy (33) =Ty (&) < [y (33) = 0 (0%) | [, — 2| = 0.
Thus, Lemma 2.1 implies that mr(x}) — m(x*), Jmp(x)) — Jur(x*) and ||lme(x) || —

ll7z (x*) I
(iv) From (2.2), we know that

(s —Tmp (), 9 = 7p (x3)) < £ G) = f (7 (%)), Vy € domyf. (31)

Since x; — x*, {x;} is bounded. It follows from (ii) that {r/(x})} is bounded. Since domf
is boundedly compact, there exists a subsequence {x;, } of {x}} such that

iy (x; ) > ¥ edomf asi— +oo.
Since J is norm-to-weak star continuous and f is lower semicontinuous, we obtain that
(x*—Jx,y-%) <f(y) -f&), Vyedomf. (3.2)

Then, by (2.2), we have x = 77(x*). Similar to the above arguments, we know that ¢ (x*) is
the unique limit point of {r7(x})}. Hence, 7y (x};) — mr(x*). (]

With the help of the operator 7y, we can show that the envelope function ef;, is Gateaux
differentiable.

Proposition 3.2 Let f € I'g(X). Then e(, is Gateaux differentiable and Vef/(x*) =J*x* —
p(x*).

Proof For any i € X*, by definitions of e{, and 7y, we have

e, (x* + th) — &, (x*)
t
Flrp( + th)) + SV (p(ar + th), & + th) — f (p(x")) — LV (mp(x), %)
t

Page 5 of 10
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<f(JTf(x*)) + %V(nf(x*),x* +th) —f(r(x*)) - %V(nf(x*),x*)
- t
Sl + ehl|? = S1lx 11> - (%), th)

7 .

Since V(||z]|?) = 2/*(z), for any z € X*, we get that

e, (x* + th) — €, (x*)

1 * 2 1 * (12
3 lle” + )" — s llatl”

timsup - < lim ; (e (), 1)
= (J*x* — 7y (x%), h).
On the other hand,
&y @ + th) - &, (")
:fcqé*+m»+%V@qu*+ﬂax*+ﬂn-f@quﬂ)-§vmﬂﬂmxﬂ
>qu@*+ﬁﬁ)+%V@VM*+ﬂmxi+ﬂ0—f0qu*+ﬂﬂ)—%chu*+ﬂmxﬂ

t

Ll + ehl|? - & fla*2
3wt IIt 2 Il — (s (" + th), ).

By Proposition 3.1(iii), we have 7y (x* + th) — my(x*) as £ — 0. Hence, we get that

e, + th) -,

1 * 2 1 * 112
L x* gl ekl = Sl
liminf —£ ) > lim 2 2 -
t—0 t t—0 t

= (%" — 7 (x"), ).

<nf (x* + th), h)

This implies that

e, (o + th) — &), (x)

. _pEak *
tim IO e ) ),
Hence e’;, is Gateaux differentiable and Ve/:,(x*) =% — mp(x™). O

In the following, we propose a modification of the iterative method given in [5] and
prove that the iterative sequence has a subsequence converging to a solution of (1.5) when
X is a smooth and uniformly convex Banach space and f is not necessarily positively ho-
mogeneous.

By (2.2), we can easily prove the following result.

Proposition 3.3 Let f € I'o(X). Then the point x € domf is a solution of the variational
inequality

(Ax,y —x) +f(y) = f(x) >0, Vyedomf
if and only if x € domf is a solution of the following inclusion:

x = mp(Jx — Ax).
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The following lemma will be used in proving the convergence of the iterative method
for variational inequality problem (1.5).

Lemma 3.1 Letf € I'o(X). If f(x) > 0 for all x € domf and f(0) = 0, then
EACHI S B (33)
Proof From (2.2), we know that
(5" I ()= 7 (57) <£O0) £y ), ¥y € dom.
Noticing that f(x) > 0 for all x € domf and f(0) = 0, it follows that
(o =Ty (), =7 (+7)) = f (s (+7)) < O
Hence,
oy () | = (et (7)),
and hence
EACI N B O

Proposition 3.4 Let X be a smooth and uniformly convex Banach space. Let A : X — X*
be a norm-to-weak continuous operator. Suppose that f € I'g(X) and domf is nonempty
boundedly compact convex. Suppose that

(i) f(x) >0 forall x € domf and f(0) = 0;

(ii) for any x € domf,

lJx — Ax|| < [Ix]|.
Let xy € domf and the sequence {x,} be generated by the following iteration scheme:
KXntl = (1 - an)xn + O5;'17":f(]~76;«1 _Axn),
where {a,} satisfies the conditions:
() 0<a,<1foralln=0,1,2,...;
(b) 3% an(l—ay) = +o0.

Then generalized variational inequality (1.5) has a solution x € domf, and there exists a
subsequence {x,,} of {x,} such that x,, — x as i — o0.

Proof By (3.3), we have
|7 U = A) || < W, — Azl (34)
By (3.4) and condition (ii), we obtain

%l < (@ = ct)1%ull + et || 727 U = Ax) | < Nl
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Then {x,} and {7/(/x, — Ax,)} are bounded. Hence, by Lemma 2.2, there exists a continu-
ous, strictly increasing and convex function g : R* — R* with g(0) = 0 such that

”xn+1”2 = ”(1 - an)xn + annf(]xn _Axn)H2
< (1= ) 12 + et | 77 Ui — A |
—ozy,(l—a,,)g(”xy, — 1y (Jx, —Axy,)H). (3.5)
It follows from (3.5), (3.4) and condition (ii) that
I

”xn+1”2 <@1- 0[,,)”.76,,”2 + oty [l |17 — an (1 - an)g(”xn - 7Tf(]xn — Axy) ||)

That is,
a1 < a1 = 06w (1 = ct)g (|| 00 — 777 U — A ||).- (3.6)

Taking the sum for n =0,1,2,...,m in (3.6), we get

Zan(l - an)g(”xn - nf(]xn _Axn)”)

n=0
2 2
= Il%oll” = [l I

2
=< llxoll”.

Hence,

+00

Zan(l —an)g(||%n = 77U — Axy) ) < +00. (3.7)

n=0

Due to the condition Y% &, (1 — @,,) = +00, we may assume, without loss of generality,
that

g([|#%n = U — Ax,)|) > 0 asn— +oo.
Applying the properties of g, we can deduce that

||x,, — 1y (J, —Ax,,)” — 0 asun— +00. (3.8)
Since domf is boundedly compact, there exists a subsequence {x,,} of {x,} such that

Xy, — x €domf asi— +o0.
Since A is norm-to-weak continuous and J is norm-to-weak star continuous, we get that

Jx, — Axy; = JXx —AX  asi— +o0.
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Since my is weak-to-norm continuous by Proposition 3.1(iv),
7 (Jxn, — Axy;) = r(JX — AX)  asi— +oo.

Hence, (3.8) yields
X =nr(Jx — AX).

Now it follows from Proposition 3.3 that x is a solution of generalized variational inequal-
ity (1.5). O

4 Application
Letf € I')(X) and let g : X — R be a convex and Gateaux differentiable function. Consider
the optimization problem

1;1;}1(1 f(x) + g(x). (P)

We denote by Sol(P) the solution set of problem (P). Despite its simplicity, problem (P) has
been shown to cover a wide range of apparently unrelated signal recovery formulations
(see [11, 12]).

Notice that

xe€Sol(P) < 0€df(x)+ Vgx)
& —Vg) e of(x)
& (Vg®),y-x)+f()-fX®) =0, VyeX.

Note that if g is convex and Gateaux differentiable, then Vg is norm-to-weak continuous
from X to X* by Corollary 3.1 in [13]. Therefore, as an application of Proposition 3.4, we
have the following result.

Proposition 4.1 Let X be a smooth and uniformly convex Banach space. Let g : X — R
be convex and Gdteaux differentiable. Suppose that f € I'o(X) and domf is a nonempty
boundedly compact convex subset of X. Suppose that

(i) f(x) >0 forall x € domf and f(0) = 0;

(ii) for any x € domf,

|Jx = Ve)| < ll«l.
Let xog € domf and the sequence {x,} be generated by the following iteration scheme:
Xnsl = (1 - Q'n)xn + oy TTf (]xn - Vg(xn)):

where {a,} satisfies the conditions:
() 0<a,<1foralln=0,1,2,...;
(b) 3520 an(l—ay) = +o0.
Then problem (P) has a solution x and there exists a subsequence {x,,} of {x,} such that

Xp; —> X as i — 0.
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5 Concluding remark

This paper has improved the iterative method of Wu and Huang [5] for solving generalized
variational inequality problem (1.5), several results regarding the generalized proximity
operator and its relations with the envelope function are presented. In addition, it is shown
that under an appropriate assumption some optimization problem can be transformed
into (1.5) and then the iterative method can be applied.
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