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Abstract

Our aim in this paper is to deal with the growth properties for modified Neumann
integrals in a half-space of R". As an application, the solutions of Neumann problems
in it for a slowly growing continuous function are also given.
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1 Introduction and main results

Let R and R, be the sets of all real numbers and of all positive real numbers, respectively.
Let R” (n > 3) denote the n-dimensional Euclidean space with points x = («/,,,), where
x = (%1,%2,...,%,-1) € R" 1 and x,, € R. The boundary and closure of an open set 2 of R”
are denoted by 32 and 2, respectively. For x € R” and r > 0, let B,,(x,r) denote the open
ball with center at x and radius r in R”.

The upper half-space is the set H = {(«,x,) € R” : x, > 0}, whose boundary is dH. For
aset F, F C R, U {0}, we denote {x € H;|x| € F} and {x € dH;|x| € F} by HF and 0HF,
respectively. We identify R” with R”! x R and R"! with R”! x {0}, writing typical points
x,y € R" as x = («',x,), ¥ = (v/,y,), where ¥ = (y1,%2,...,y,-1) € R"L. Let 6 be the angle
between x and ¢,, i.e., x, = |x| cos® and 0 < 0 < /2, where ¢, is the ith unit coordinate
vector and &, is normal to dH.

We shall say that a set E C H has a covering {rj, R;} if there exists a sequence of balls {B;}
with centers in H such that E C Uio:oo B;, where r; is the radius of B; and R; is the distance
between the origin and the center of B;.

For positive functions g and g, we say that g1 < g» if g1 < Mg, for some positive con-
stant M. Throughout this paper, let M denote various constants independent of the vari-
ables in question. Further, we use the standard notations, [d] is the integer part of 4 and
d = [d] + {d}, where d is a positive real number.

Given a continuous function f in d H, we say that / is a solution of the Neumann problem
in H with f, if & is a harmonic function in H and

. a
lim
x€H,x—y 896,,

h(x) =f(¥)

for every point y' € dH.
For x € R" and y' € R"}, consider the kernel function

/ ﬁ}’l
I(n( »)’) == |x _y/|n72,
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where B, = 2/(n — 2)o, and o, is the surface area of the n-dimensional unit sphere. It has
the expression

K J/)‘i L c’?(x'y,)
n\* - +hk=2 Tk /)’
pardl Ve (1]

where Ck% (¢) is the ultraspherical (Gegenbauer) polynomials [1]. The series converges for
|y'| > |%|, and each term in it is a harmonic function of x.

The Neumann integral is defined by

N[fl(x) = / Ku(%,9)f () dy
OH
where f is a continuous function on dH, «,, = 2/no, and 0, = w 3/T(1+ 5) is the volume of
the unit #-ball.
The Neumann integral N[f](x) is a solution of the Neumann problem on H with f if (see
[2, Theorem 1 and Remarks])

o
— < d .
Lﬂuww4y<”

In this paper, we consider functions f satisfying

e
Aﬁuwww4@<m a1

forl<p<ooanda €R.
For this p and «, we define the positive measure ¢ on R” by
du(y) = FOOIPlY 2 dy, y € dH(1,+00),
0, QeR"-09H(1, +00).
If f is a measurable function on dH satisfying (1.1), we remark that the total mass of y is

finite.
Let € >0 and § > 0. For each x € R”, the maximal function M(x; 1, 8) is defined by

WBy (1))

M(x; 1, 8) = sup 5

O<p< |’2‘—‘ P
The set {x € R"; M(x; t,8) > €} is denoted by E(e; u, §).

To obtain the Neumann solution for the boundary data f, as in [3—6], we use the follow-
ing modified kernel function defined by

_ k n=2 "
_,Bn Z]ZZ()I blll;f%ckz (‘:H};/l)! |J’/| Zlmil,
L,,,m(x,y/) =30, [y <1m=>1,
0, m=0

for a non-negative integer .
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For x € R” and ¥ € R""}, the generalized Neumann kernel is defined by

1<n,m (xry/) = I<r1 (x,y/) - Ln,m( ,)/) (m > 0)

Since |x|kC,:%2 (%) (k > 0) is harmonic in H (see [4]), K,,x(-,y') is also harmonic in H
for any fixed y' € dH. Also, K,,,,(x,y') will be of order |y'|~"*"-? as y' — oo (see [7, The-
orem DJ).

Put

zmmwh[;mmLMVWM%

where f is a continuous function on dH. Here, note that Ny [f](x) is nothing but the Neu-
mann integral N[f](x).

The following result is due to Siegel and Talvila (see [5, Corollary 2.1]). For similar results
with respect to the Schrodinger operator in a half-space, we refer readers to papers by Su
(see [8]).

Theorem A Iff is a continuous function on dH satisfying (1.1) with p =1 and o = m, then

lim N, (f1(%) = o(|x|" sec">8). (1.2)

|x|—o00,xeH

The next result deals with a type of uniqueness of solutions for the Neumann problem
on H (see [9, Theorem 3]).

Theorem B Let [ be a positive integer and m be a non-negative integer. If f is a continuous
function on d0H satisfying

/ _ VO o,
9

i ey )2

and h is a solution of the Neumann problem on H with f such that

li + _ l+m ,
|x|—>go},lerh (x) 0(|x| )

then
&y
h(x) = Nou[f1x) + TI() + > (2—j)'xf,7NH(x')
j=1 ‘

forany x = (x',x,) € H, where h*(x) is the positive part of h,

2 2 2
N:(a 9 oot 9 ) (G=1,2..)

-+
2 2 2
oxy  0x; 0x,_;

and T1(x') is a polynomial of x € R"™! of degree less than [ + m.
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Our first aim is to be concerned with the growth property of N,,[f] at infinity and es-
tablish the following theorem.

Theorem1 Letl1<p<00,0<B<(n-2)pn+a-2>-(n-1)(p-1)and

l-«o

l-a |
1- <m<2-—— ifp>1,
p

a<m<a+l ifp=1

If f is a measurable function on 0 satisfying (1.1), then there exists a covering {rj,R;} of
E(e; i, (n—2)p — B) (C H) satisfying

SN )

E (—1) <00 (1.3)
— \ R

Jj=0

such that

a-1 B
lim N, %) = o(|x|"" 7 sec? ). 1.4
|| — 00,x€ H—E(€;4,(n—2)p—B) m[f]( ) 0(' | ) ( )

Corollary1 Letl<p<oo,n+a—2>—-(n—1)(p-1)and

l-« l-«o

1- <m<2—-——.

Iff is a measurable function on 0H satisfying (1.1), then

a-1
lim N, [fl(x) = o(|x|l+7 sec”29). (1.5)
|%|—o00,xeH
As an application of Theorem 1, we now show the solution of the Neumann problem
with continuous data on H.

Theorem 2 Let p, B, « and m be defined as in Theorem 1. If f is a continuous function
on dH satisfying (1.1), then the function N,,[f] is a solution of the Neumann problem on H
with f and (1.4) holds, where the exceptional set E(e; i, (n —2)p — B) (C H) has a covering
{r;, R;} satisfying (1.3).

Remark In the case p =1, « = m and 8 = n — 2, then (1.3) is a finite sum and the set
E(e; 1, 0) is a bounded set. So (1.4) holds in H. That is to say, (1.2) holds. This is just the
result of Theorem A.

Corollary2 Letl<p<oo,n+a—2>—-(n—-1)(p-1)and

l-«o
1-

1-
em<2-—2 ifp>1,
p

a<m<a+l ifp=1

Iff is a continuous function on OH satisfying (1.1), then the function N,,(f] is a solution of
the Neumann problem on H with [ and (1.5) holds.
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The following result extends Theorem B, which is our result in the case p =1 and o = m.

Theorem 3 Let1 <p < o0, a >1-p, [ be a positive integer and

l-«o
V4

1-

l-«
<m<2-—— ifp>1,
p

a<m<a+l ifp=1.

If f is a continuous function on dH satisfying (1.1) and h is a solution of the Neumann
problem on H with f such that

lim i (x) = ol "7, (1.6)
|x|—o00,xe
then
[l+[1+2°‘7]] ( )}
h(x) = Ny [f1(%) + T (x @ x NTI(x) (1.7)
j
j=1

forany x = (x',x,) € H and T1(x') is a polynomial of x' € R"™* of degree less than [ + [1 + "‘p%l].

2 Lemmas
In our discussions, the following estimates for the kernel function K}, ,,(x,y’) are funda-
mental (see [10, Lemma 4.2] and [4, Lemmas 2.1 and 2.4]).

Lemma 1

W) IL<ly| < B, then | K, y)| <l Ly |7-7+3,
@) IS <1y < 3ixl, then |Kym(x,5)] < lx =y 7.
(3) If 31xl < |y'| < 20, then |Kym(x,y)| S 227"

(4) Ifly'| = 2|x| and |y'| > 1, then |Kym(x,y)| < x|y |27,
The following lemma is due to Qiao (see [4]).

Lemma 2 Ife >0, n > 0 and A is a positive measure in R" satisfying L(R") < oo, then
E(e; 1,n) has a covering {rj, Rj} (j=1,2,...) such that

j=1
Lemma 3 ([9, Lemma 4]) Let p, B, « and m be defined as in Theorem 1. If f is a locally

integral and upper semi-continuous function on dH satisfying (1.1), then

lim su
xeH,x—y'

()

forany fixed y' € 0H.
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Lemma 4 ([2, Lemma 1]) If h(x) is a harmonic polynomial of x = (x',x,)) € H of degree m
and dh/dx, vanishes on dH, then there exists a polynomial T1(x') of degree m such that

-y 21 ’
h(x): H(x)+Z]1 W A’l'[(x) m22,
I1(x'), m=0,1.

3 Proof of Theorem 1
For any € > 0, there exists R, > 1 such that

faHR o Wty dy <e. (3.1)

Take any point x € H(R, 00) — E(€; i, (n — 2)p — B) such that |x| > 2R, and write
N, [f1(x) = (/ +/ +/ +/ +/ >I(n,m(x,y’)f(y’)dy’
G Ga Gs Gy Gs
= Ui (x) + Uz (x) + Us(x) + Ua(x) + Us (%),
where
G ={yedH:|y| <1}, Gzz{y/68H11<}y/|§|;c—|},
/ 3 /

Gg—{y €IH: —<|y| == |x|} G4:{y e8H:§|x|<|y|§2|x|}
Gs={y €0oH: M > 2|x|}.

First note that

|th(x)| < / Mdy/

G lx—y[m2

b [ 1707)|4y.

so that
gl
o Jim " U (x) = 0. (3.2)
Ifm<2- and +— =1,then 3 —n—m + &%= 2)q+n—1>0 By Lemma 1(1), (3.1)

and the Holder 1nequallty, we have

U] < 5 / )| dy
2

m-1 lf()//)V’ ) ( —n-m+3+ ”*a =2)q >_
<o ( [ ) ([ e
1-a 114 %
e ([ 200 .
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Put
Us(x) = Uy (%) + U (x),
where
Uy (x) = f Ko (%9 )f (V) dy,
G2NBy-1(Re)
Uzz(x) = / I(n,m (x,y/)f(y/) dy/.
GZ\Bn—l(Re)
If |x| > 2R,, then
2-m-1¢ 1
|Un(@)| SR 7 a7
Moreover, by (3.1) and (3.3), we get
1-l=a
|L[22(x)| Selx 7.
That is,
1-l=a
|ta@)| Selxl™ 7. (34)
By Lemma 1(3), (3.1) and the Hélder inequality, we have
Uy ()| S x5 (3.5)

Ifm>1- 1_7"‘, then 2—-n—m+ %ﬁz)q +n—1<0. We obtain, by Lemma 1(4), (3.1) and
the Holder inequality,

jus] < [ )]y
5

1 1
m ()’/)|p , p , 424 12 , q
~ (/ VO ay | My
Gs [Vl Gs

1-l=a
<elx|" 7. (3.6)

Finally, we shall estimate U3(x). Take a sufficiently small positive number b such that
dH[2, 2 |x|] c B(x, ) for any x € I1(b), where

272 2
<b}

and divide H into two sets I1(b) and H — T1(b).

Y

I1(b) = {er' inf -
lxl 1y

)
y'€dH
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If x € H — T1()), then there exists a positive number ' such that |x — y'| > J'|x| for any

y' € 0H, and hence
U] S /|y|“ )y

st [ )|y
G3
1-a

1-
Selxl e

which is similar to the estimate of Us(x).

We shall consider the case x € T1(b). Now put

Hi(x) = {y eaH[U ~|x @ 2715(x) < \x—y/|<2fa<x)},

where 8(x) = infy ey |x — /.
Since dH N {y e R": |x—y/| < §(x)} = &, we have

Z/H I(J/Zy’

lx—y'|"

where i(x) is a positive integer satisfying 2/®-1§(x) < % < 2@ 5(x).
Similar to the estimate of Us(x), we obtain

g0l
dy
/Iill(x |x y|n Jx—y|"2 i’
lg()l ,
< _ BV
> /Hm sy @
s / 87 g(y) | dy
Hi(x)
(n-2), _B
[l
Hi(x)
< IxI"_Q_g cos_g 98(x)ﬁ7(*;2)1’ / |y/|2_n |g(y’)|dy/
Hj(x)

1
< |x|n—1+“7T€H COS_f_; 0 W(H;(x)) ’
~ 2"5(96)("72)177’3

fori=0,1,2,...,i(x).
Since x ¢ E(e; 1, (n — 2)p — B), we have

HHE) o p(Baa(x,2'8(x)))

; B~(n-2)
(2i8(x)}(r-2-B ~ (20§ (x)} 2B~ M(x; 1, (n=2)p - B) S elxl

fori=0,1,2,...,i(x) =1 and

WMHi(x)) (B, (x, B)) < elxf- 0,
{26(x))0-2F > (Blye2pp
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So
1421 &
’Ug(x)’ Selx| 7 secr 0. (3.7)

Combining (3.2), (3.4)-(3.7), we obtain that if R, is sufficiently large and ¢ is a sufficiently
small number, then N,,[f](x) = o(|x|l+al'%1 secg 0) as |x| — oo, where x € H(R,, +00) —
E(e; u, (n—2)p— B). Finally, there exists an additional finite ball By covering H(0, R.], which
together with Lemma 2, gives the conclusion of Theorem 1.

4 Proof of Theorem 2
For any fixed x € H, take a number R satisfying R > max{1,2|x|}. If m > 1‘7", then (2 —n -
m+ ”*;f‘z)q +n—-1<0.By (1.1), Lemma 1(4) and the Holder inequality, we have

[ [l )]

< / ) | dy
dH (R,00)

1 1
[FONIP » (o2 1102) a
S W(/ ez Y 4 Y
IHR00) V'] IH(R,00)

< Q.

Hence N,,[f](x) is absolutely convergent and finite for any x € H. Thus N,,[f](x) is har-
monic on H.

To prove

. ad
lim
x—y xeH 00Xy,

N, [f1x) =£(y)

for any point ¥ € dH, we only need to apply Lemma 3 to f(y) and —f(y).
We complete the proof of Theorem 2.

5 Proof of Theorem 3
Consider the function #'(x) = h(x) — N,,,[f]1(x). Then it follows from Theorems 2 and 3 that
I (x) is a solution of the Neumann problem on H with f and it is an even function of x,
(see [2, p-92]).

Since

0 < {h-Nulfl1} (x) <h*(x) + {Noulf1} ()
for any x € H, and

lim  N,[flx) = 0(|x|1+a771)

|| —co,x€

from Theorem 2.
Moreover, (1.6) gives that

lim (= Nylf])@) = o(2"" 7).

|x|—ooxeH
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This implies that /' (x) is a polynomial of degree less than [+ [1 + “’%1] (see [11, Appendix]),
which gives the conclusion of Theorem 3 from Lemma 4.
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