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Abstract
In this paper, we propose a new model for segmentation of both gray-scale and color
images. This model is inspired by the GAC model, the region-scalable fitting model,
the weighted bounded variation model and the active contour model based on the
Mumford-Shah model. Compared with other active contour models, our new model
cannot only make full use of advantages of both edge-based and region-based
models, but also maintain more accurate overall message of segmented objects.
Moreover, we establish the existence of the global minimum of the new energy
functional and analyze the property of it. Finally, numerical results show the
effectiveness of our proposed model.

1 Introduction
The image segmentation problem is fundamental in the field of computer vision, and the
aim of it is to divide an image into a finite number of important regions. Recently, vari-
ational methods have been extensively studied for image segmentation because of their
flexibility in modeling and advantages in numerical implementation.
The geometric active contour (GAC) model is one of the most well-known variational

models [–] for image segmentation. It was proposed in [] and has been widely used
in practice []. The main idea of the GAC model is to utilize the image gradient to stop
evolving contours on object boundaries. However, thismodel has onemajor disadvantage,
that is, giving an initial curve, during the evolution, the energy may evolve to its local
minimizers.
Moreover, there are other variationalmodels for image segmentation [–]. Thesemod-

els do not utilize the image gradient and are significantly less sensitive to the location of
initial contours than other modes. Therefore, they have good performance for the image
withweak object boundaries. Among thesemodels, theChan-Vesemodel [] is very popu-
lar and useful. This model can be applied for the segmentation of images with two regions,
each having a distinct mean of pixel intensities. In order to handle images with multiple
regions, Vese and Chan proposed the piecewise constant (PC) models [], in which mul-
tiple regions can be represented by multiple level set functions. And yet, these PCmodels
are not very successful for images with intensity inhomogeneity. To deal with more gen-
eral situation efficiently, Chunming Li proposed the region-scalable fitting model in [].
However, this model is not always valid when the whole object needs to be segmented.
In this paper, inspired by theGACmodel, the region-scalable fittingmodel, theweighted

bounded variation model [–] and the active contour model based on the Mumford-
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Shah model [], we propose a new model which can be applied to segment both gray-
scale and color images. In order to make our model apply to color images, we shall use
the red-green-blue model []. Although there are some other models which are similar
to our new model, they have different essence and applications. Our new model cannot
only make full use of advantages of both edge-based and region-based models, but also
overcome the usual drawback in the level set approach. Moreover, compared with other
active contours models, our model can keep more accurate overall message of segmented
objects for simple and complex images of different modalities. Finally, we investigate the
newmodel mathematically and establish the existence of the minimum to the new energy
functional.
The remainder of the paper is organized as follows. In Section , we show some back-

ground. In Section , our new model is proposed. Theoretical results, iterating schemes
and experimental results are also given in this section. Finally, we conclude our paper in
Section .

2 Background
2.1 GACmodel
Consider a given vector-valued image f :� →R

d , where � ⊂R
 is the image domain and

d ≥  is the dimension of the vector f (x). For gray-scale images, d =  and for color images,
d = . In [, ], the geodesic active contour model (GAC) is defined by the following
minimization problem:

min
c

{
EGAC(c) =

∫ L(c)


g ds

}
, (.)

where ds is the Euclidean element of length and L(c) is the length of the curve c. Hence
the energy functional in (.) is actually a new length obtained by weighting the Euclidean
element of length ds. The function g is an edge indicator function that vanishes at object
boundaries. If d = ,

g =


 + β|Gσ ∗�f | , (.)

where β is an arbitrary positive constant.
If d = , it is a color image and this stopping function should be modified. For a color

image f = (f, f, f), a new stopping function g(x) is proposed as follows:

g =


 + β∧ , (.)

where ∧ is the largest eigenvalue of the structure tensor metric gij in the spatial-spectral
space, and

gij =

(
 + Rx + Bx +Gx RxRy + BxBy +GxGy
RxRy + BxBy +GxGy  + Ry + By +Gy

)
,

where R, G and B represent the pixel values of red, green and blue after Gaussian convo-
lution, respectively, i.e., R =Gσ ∗ f, G =Gσ ∗ f and B =Gσ ∗ f.
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2.2 The region-scalable fitting model
Let � ⊂ R

 be the image domain, and let f : � → R be a given gray-scale image. The
region-scalable fitting model is defined by minimizing the following energy functional:

∫
�

λ

∫
�

Kσ (x – y)
∣∣f (y) – f(x)

∣∣H(φ)dydx + λ

∫
�



(|�φ| – 

)
dx

+
∫

�

λ

∫
�

Kσ (x – y)
∣∣f (y) – f(x)

∣∣( –H(φ)
)
dydx +

∫
�

H ′(φ)|�φ|dx, (.)

whereKσ is theGaussian function and f, f are two functions that fit image intensities near
the point x. Moreover, φ is the level set function embedding the evolving active contour
c(t) = {x : φ(x, t) = } and H(φ) is the Heaviside function.
This model does not need to re-initialize φ periodically during the evolution because of

the second term of (.). If λ = , (.) is equivalent to

∂φ

∂t
= H ′

[
div

( �φ

|�φ|
)
– λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy
+ λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy].
The steady state solution of this gradient flow is the same as

∂φ

∂t
= div

( �φ

|�φ|
)
– λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy
+ λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy. (.)

Moreover, it is known that equation (.) is the gradient descent flow of the following
energy:

∫
�

|�φ|dx +
∫

�

(
λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy
– λ

∫
�

Kσ (x – y)
∣∣f (x) – f(y)

∣∣ dy)φ dx. (.)

3 Our proposedmodel
Let f = (f, . . . , fd) : � → R

d be a given vector-valued image, where � ⊂ R
 is the image

domain and d ≥  is the dimension of the vector f (x). For gray-scale images, d =  and for
color images, d = . Inspired by the GAC model, energy functional (.) and the active
contour model based on the Mumford-Shah model [], our new model is constructed.
This model is to minimize the following energy functional w.r.t. u ∈ g – BV [,](�), fi, fi ∈
L(�):

E(u, fi, fi) =
∫

�

g(x)|�u|dx

+
∫

�

( d∑
i=

λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy
)
u(x)dx

+
∫

�

( d∑
i=

λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy
)(

 – u(x)
)
dx, (.)
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where g is a diffusion coefficient defined in the same way as formula (.) or (.) and Kσ

is the Gaussian function.
In the following, we analyze the above model from two aspects. Firstly, for any given

u, according to the necessary condition of the minimization problem, the functions fi(y),
fi(y) must satisfy the following equations:

fi(y)
∫

�

Kσ (x – y)u(x)dx =
∫

�

Kσ (x – y)fi(x)u(x)dx,

fi(y)
∫

�

Kσ (x – y)
(
 – u(x)

)
dx =

∫
�

Kσ (x – y)fi(x)
(
 – u(x)

)
dx,

(.)

where Kσ takes larger values at the points near the center point y, and decreases to  as x
goes away from y. Therefore, fi(y), fi(y) are allowed to vary in space.
Furthermore, for any given fi, fi, model (.) can be converted into a simpler form. That

is,

min
u∈g–BV[,](�)

E(u) =
∫

�

g(x)|�u|dx

+
∫

�

( d∑
i=

λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy
)
u(x)dx

–
∫

�

( d∑
i=

λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy
)
u(x)dx. (.)

If u is limited to a characteristic function �c , energy functional (.) can be changed
into the following form:

E(u) =
∫

�

g ds +
∫

�c

d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)dx

+
∫

�\�c

d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)dx +C, (.)

where C is a constant.
In this case, model (.) is equal to the following constrained minimization problem:

min
c

∫
c
g ds,

when approximating fi with spatially varying fitting functions fi, fi.
The above analysis shows that our new model uses not only the edge detector which

contains information concerning the boundaries of objects, but also the spatially varying
fitting functions fi(y), fi(y) which are used to approximate the image intensities and avoid
existence of the local minimizers to energy functional (.).

3.1 Mathematical results
In [, ], the proof of existence of models was not given. In the following, we state exis-
tence of the minimizer to energy functional (.) and analyze the property of it.
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Theorem  For any given fi(x), fi(x) ∈ L∞(�) (i = , . . . ,d, where d =  or ), there exists a
function u ∈ g – BV [,](�)minimizing the energy functional E in (.).

Proof Let

r(x) =
d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy – λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy).
Since fi ∈ L∞(�), we get r(x) ∈ L∞(�). Since u ∈ g – BV [,](�), | ∫

�
r(x)udx| ≤ M < ∞,

then we have

E(u) =
∫

�

g(x)|�u|dx +
∫

�

r(x)udx≥ –M.

Assume infE = β ≥ –M and {un} is the minimizing sequence of (.) in g – BV [,](�),
i.e., limn→∞ E(un) = β . So, there is a positive constantM such that

∣∣E(un)∣∣ =
∣∣∣∣|un|g–BV +

∫
�

r(x)un dx
∣∣∣∣ <M.

If d = , from (.) we can obtain g(x)≥ 
+c‖f ‖L∞(�)

with c being a positive constant. Since

f ∈ L∞(�), g ≥ 
+C where C is a positive constant.

If d = , the structure tensor metric gij is symmetric positive and ∧ is the largest eigen-
value of gij. Thus

∧ ≤ trace(gij)

=  + R
x + R

y +G
x +G

y + B
x + B

y

≤  + c‖f‖L∞(�) + c‖f‖L∞(�) + c‖f‖L∞(�),

where ci ≥  (i = , , ). Since fi ∈ L∞(�) (i = , , ), g ≥ 
+C , where C is a positive

constant.
In these two cases, we all obtain g ≥ δ (δ = 

+C or


+C ). Then

δ|un|BV ≤M +
∣∣∣∣
∫

�

r(x)un dx
∣∣∣∣ ≤M +M =M.

So, |un|BV is bounded.
Since {un} ∈ g – BV [,](�) = {x : u(x) ∈ [, ] for every x ∈ �} ∩ g –BV (�), the sequence

{un} has a bounded BV-norm.
Thus, there is a subsequence, also denoted by {un}, and u∗ ∈ BV (�) such that un → u∗

strongly in L(�). Moreover, according to the formula un → u∗ in L(�), we know that
there is a subsequence, also denoted by {un}, satisfying limn→∞ un(x) = u∗(x) a.e. for x ∈ �.
Since un(x) ∈ [, ] for any x ∈ �, u∗(x) ∈ [, ] a.e. for x ∈ �.
Assume � ⊂ �, s.t. m(�) =  and u∗(x) ∈ [, ], limn→∞ un(x) = u∗(x) for any x ∈ � \

� ⊂ �. Let

u∗ =

⎧⎨
⎩u∗ if x ∈ � \ �,

 if x ∈ �.

http://www.journalofinequalitiesandapplications.com/content/2013/1/556
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Then
∫

�

|un – u∗|dx =
∫

�\�

|un – u∗|dx =
∫

�\�

|un – u∗|dx =
∫

�

|un – u∗|dx.

That is, un → u∗ strongly in L(�) and u∗(x) ∈ [, ] for every x ∈ �.
Furthermore, by the lower semi-continuity for the g – BV space, we get

|u∗|g–BV ≤ lim
n→∞ inf |un|g–BV . (.)

So, u∗ ∈ g – BV [,](�). According to the dominated convergence theorem, we know

∫
�

r(x)u∗ dx = lim
n→∞

∫
�

r(x)un dx. (.)

These formulas (.)-(.) imply the weak lower semi-continuity of the energy functional
E

E(u∗) ≤ β = lim
n→∞ infE(un).

Therefore u∗ ∈ g – BV [,](�) and u∗ is a minimum of the energy functional E. �

Similar to [, ], we can obtain the property of minimizers to energy functional (.).

Theorem Let fi(x) (i = , . . . ,d), g(x) ∈ [, ]. For any given fi(x), fi(x) (i = , . . . ,d), if u(x)
is anyminimum of the energy functional E defined in (.), then for almost everyμ ∈ [, ],
the characteristic function �c = {x:u(x)>μ} is a global minimum of the functional E where
c is the boundary of the set �c.

In addition, according to the above theorem, we know �c = {x : u(x) > μ} is a minimizer
of the following minimization problem:

min
c

∫
�

g ds +
∫

�c

d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)dx

+
∫

�\�c

d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)dx.

3.2 Numerical implementation
In the numerical algorithm, we do not deal with the new variation model (.) directly
since too many equations need to be computed. In order to improve computational effi-
ciency, we use the algorithm framework of the paper [] to deal with our model. That is,
we minimize the energy functional E by alternating the following steps:
() Considering u fixed, compute fi and fi by using formula (.);
() Considering fi and fi fixed, update u by using the iterative schemes of

minimization problem (.).
When a steady state is found, the final segmentation is obtained by thresholding u at any
level in [, ] (in our experiments, we choose μ = .).
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In the following, we give the iterative schemes of minimization problem (.). To solve
this minimization problem, we firstly change it into the following unconstrained mini-
mization problem:

min
u∈g–BV (�)

E =
∫

�

g(x)|�u|dx +
∫

�

αν(u)dx

+
∫

�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
u(x)dx

–
∫

�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
u(x)dx, (.)

where ν(u) =max{, |u–.|– } is an exact penalty function provided that the constant
α is chosen large enough. The energy functional E is convex, so E does not possess local
minimizers. Hence, any minimizer of E is global.
Based on [–], we use a convex regularization as follows:

min
u,v

∫
�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
vdx +

∫
�

g(x)|�u|dx

+

θ

‖u – v‖ –
∫

�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
v + αν(v)dx,

where θ is chosen to be small. Since this functional is convex, its minimum can be com-
puted by minimizing this functional w.r.t. u and v separately. That is,
() v being fixed, we search for u as a solution of

min
u

∫
�

g(x)|�u|dx + 
θ

‖u – v‖, (.)

() u being fixed, we search for v as a solution of

min
v

∫
�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
vdx +


θ

‖u – v‖

–
∫

�

[ d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy)
]
v + αν(v)dx. (.)

According to [], we know the solution of (.) can be given by

u = v – θ div 
p, (.)

where 
p = (p,p) is given by

g(x)�(θ div 
p – v) –
∣∣�(θ div 
p – v)

∣∣
p = .

The previous equation can be solved by the fixed point method


pn+ = 
pn + δt�(div 
pn – v/θ )
 + δt

g(x) |�(div 
pn – v/θ )| , 
p = (, ). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/556
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Figure 1 Segmentation of the image of fluorescent cells. (a) The original image. (b) The result obtained
by using the GAC model. (c) and (d) The final active contour and u obtained by using our new model (θ = 0.1,
β = 50/2552, δt = 1/8, σ = 2, λ11 = λ12 = 0.001, iteration times = 40).

Moreover, the solution of (.) is given by

v =min
{
max

{
u(x) – θr(x), 

}
, 

}
, (.)

where

r(x) =
d∑
i=

(
λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy – λi

∫
�

Kσ (x – y)
(
fi(x) – fi(y)

) dy).

3.3 Experimental results
Theproposed variationalmodel can be applied to both gray-scale and color images. Firstly,
we compare our new model with the GAC model in Figure . According to Figures c, d,
we see that our proposedmodel can segment all the edges accurately. This result is hard to
achieve by using theGACmodel. Thenwe compare our proposedmodel with themodel in
[] in Figures  and . Figures a and a are the original gray-scale images. The final active
contours and u got by using our new model are displayed in Figures c, d and Figures c,
d, respectively. Figures b and b show the active contours obtained by using the model in
[]. From these experiment results, we find that our model can segment the entire object
more accurately and keep more details. Finally, we use our new model for segmentation
of color images in Figures , , . Figure a is the noisy image with the variance ..
Figures a and a are complex images. According to Figures b, c, b, c, and b, c, we see
that in all the three cases the experimental results are very good and can correspond to
the actual needs.
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Figure 2 Segmentation of the image of a liver. (a) The original image. (b) The result obtained by using the
model in [11]. (c) and (d) The final active contour and u obtained by using our new model (θ = 0.1,
β = 50/2552, δt = 1/8, σ = 2, λ11 = λ12 = 0.001, iteration times = 100).

Figure 3 Segmentation of the image of a cameraman. (a) The original image. (b) The result obtained by
using the model in [11]. (c) and (d) The final active contour and u obtained by using our new model (θ = 0.1,
β = 50/2552, δt = 1/8, σ = 4, λ11 = λ12 = 0.001, iteration times = 200).

4 Conclusion
This paper describes a new model for segmentation of gray-scale and color images.
This model is based on the GAC model, the region-scalable fitting model, the weighted
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Figure 4 Segmentation of a noisy color image. (a) The noisy image. (b) and (c) The final active contour
and u obtained by using our new model (θ = 0.1, β = 50/2552, δt = 1/8, σ = 5, λi1 = λi2 = 0.0003, i = 1, 2, 3,
iteration times = 100).

Figure 5 Segmentation of a color image. (a) The color image. (b) and (c) The final active contour and u
obtained by using our new model (θ = 1/8, β = 50/2552, δt = 1/8, σ = 5, λi1 = λi2 = 0.0015, i = 1, 2, 3,
iteration times = 300).

Figure 6 Segmentation of a color image. (a) The color image. (b) and (c) The final active contour and u
obtained by using our new model (θ = 1/8, β = 50/2552, δt = 1/8, σ = 8, λi1 = λi2 = 0.0003, i = 1, 2, 3,
iteration times = 400).

bounded variation model and the active contour model based on the Mumford-Shah
model. Compared with other active contour models, our new model cannot only make
full use of advantages of both edge-based and region-based models, but also keep more
accurate overall message of the segmented objects. Our numerical results confirm the ef-
fectiveness of our algorithm.Moreover, we investigate the newmodel mathematically and
establish the existence of the minimum to the new energy functional.
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