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Abstract
Fractals are sets whose Hausdorff dimension strictly exceeds their topological
dimension. The algorithmic Riemannian-like method, Fα-calculus, has been
suggested very recently. Henstock-Kurzweil integral is the generalized Riemann
integral method by using the gauge function. In this paper we generalize the
Fα-calculus as a fractional local calculus that is more suitable to describe some
physical process. We introduce the new measure using the gauge function on fractal
sets that gives a finer dimension in comparison with the Hausdorff and box
dimension. Hilbert Fα-spaces are defined. We suggest the self-adjoint Fα-differential
operator so that it can be applied in the fractal quantummechanics and on the fractal
curves.
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1 Introduction
Fractal geometry is used to describe real objects such as trees, lightning, river meanders
and coastlines. We known that the Euclidean geometry is the approximate geometry ap-
plied in the real world. In the sense ofMandelbrot, a fractal set is the one whose Hausdorff
dimension strictly exceeds the topological dimension [–]. Therefore, the calculus on
fractals leads to better understanding the description of various real world models from
science and engineering. Researchers have constructed analysis on fractals by using dif-
ferent approaches. For example, the fractional calculus has been applied to explain the
supper- and sub-diffusion in physics as well as many other non-local phenomena. The
fractional derivatives are non-local and they have memory property [–]. Recently, the
fractional local calculus has been defined and applied in various fields [–]. The cal-
culus on fractals which is Riemannian-like was suggested in [, ]. Meanwhile, it was
generalized and applied in Newtonian, Lagrange and Hamilton mechanics. The Maxwell
and the Schrödinger equations were expanded on fractal imbedding in R [–]. More-
over, the measure theoretical approaches were used to create a calculus on fractals [,
]. In recent years, the calculus on fractals became an interesting and powerful tool for
researchers. Taking into account the motivation presented above, in this manuscript we
suggest a newmeasure on fractals. The relative extrema in Fα-calculus are discussed. The
Hilbert Fα-spaces and Fα-self-adjoint differential operator are defined.
The plan of the paper is given below.
In Section  we review the definitions of measurable sets and Hausdorff measure. In

Section  a new measure on fractal sets is introduced. We introduce the relative extrema
condition of the Fα-calculus in Section  . Section  presents the Hilbert spaces in an Fα-
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space. In Section  the Fα-self-adjoint differential operator is defined. Section  is devoted
to conclusions.

2 Preliminaries
As it is known, measure theory extends the concept of length for an arbitrary subset of
the real line. Thus, a measure is the generalization of the concepts of length, area and
volume []. Lebesgue introduced a measure that leads to a calculus on Rn. In this section
we review the basic tools used in this paper. Firstly, we recall the definition of measurable
sets such as Borel sets. Secondly, the Hausdorff measure is reviewed so that it is useful for
analysis on fractals []. We notice that the Lebesgue measure is zero on the Cantor set as
a fractal subset of the real line. More details about this subject can be found in the papers
[–].

2.1 Measurable sets
Let R and P(R) be all subsets or a power set of R. Boolean algebraR of the sets in P(R) has
the following conditions [, , , ]:

(I) A,B ∈ R⇒ A∪ B ∈R,
(II) A ∈R⇒ Ac = R –A ∈ R,
(III) A,B ∈ R⇒ A∩ B ∈R,

whereR are subsets of a set P(R). An algebraR is σ -algebra if it is closed under countable
union of sets.

μ is a measure onR if for a number of subsets ofR, we have

μ(∅) = ; ()

μ(A)≤ μ(B) if A ⊂ B. ()

If A,A, . . . is a countable sequence of sets, thus

μ

( ∞⋃
i=

)
≤

∞∑
i=

μ(Ai) ()

equality is for the disjoint Borel sets.

2.2 Hausdorff measure
Suppose that the (R,ρ) is a metric space and K ⊂ R, thus the diameter of K is [, , , ]

diamK := sup
{
ρ(x, y)|x, y ∈ K

}
. ()

Consider Z to be a subset of R, then we conclude that

Hd
δ (Z) = inf

{ ∞∑
i=

(diamKi)d :
∞⋃
i=

Ki ⊇ Z,diamKi < δ

}
, ()

where δ >  and infimum is upon all countable covers of Z with the condition Ki ⊂ R and
diamKi < δ. The Hd

δ (S) is decreasing, so limδ→Hd
δ (S) exists. Then the following

Hd(S) := sup
δ>

Hd
δ (S) = lim

δ→
Hd

δ (S) ()
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is called Hausdorff measure on fractal sets [, , , ]. In this definition, the covering
sets can be open or closed, and they will yield the same measure.

2.3 Generalized Hausdorff measure
We review the fractional measure introduced on fractional sets [, ].
The fractional sets are defined as follows:

Nα =
{
α , α , . . .

}
, Zα =

{
α ,±α ,±α , . . .

}
,

Qα =
{
mα =

(
p
q

)α

: p,q ∈ Zq �= 
}
,  < α < ,


α =
{
mα �=

(
p
q

)α

: p,q ∈ Zq �= 
}
,  < α < ,

Rα = 
α ∪Qα . ()

The diameter of a non-empty fractional set E, the subset of a fractional set, is given by

|E| := sup
{|x – y|α ,xα , yα ∈ E

}
. ()

If {Fi} is a countable collection of subsets of Rα such as E ⊂ ⋃
i= dFi and  < |Fi| < δα ,

then {Fi} is δα-cover sets [, ]. The α-dimensional generalized Hausdorff measure is
suggested as follows:

Hα(E) = lim
δα→

inf

{∑
i=

|Fi| : Fi is δα cover of E
}
. ()

In the following sections, we present the main results of our manuscript.

3 A newmeasure on fractals
In this section we write the definition of a flag function. By using the gauge function, the
generalized mass function is defined so that it can be used for a wider class of functions
on fractal sets. Let F be a subset of the real line and a fractal. The flag function for a set F
has the form

θ (F , I) =

⎧⎨
⎩ if F ∩ I �= ∅,
 otherwise,

()

where I = [a,b] denotes an interval in R, and P = {Ii, i = , . . . ,n} = {Ii}ni= is a tagged parti-
tion [, ]. Let δ(t) be a gauge function on I . So, we say that Ṗ is δ(t)-fine if

Ii ⊆
[
ti – δ(ti), ti + δ(ti)

]
.

Let us assume that I = [a,b] is a nonempty compact interval.
Let F be a subset of I = [a,b]. Let Ṗ be a δ-fine partition. σα

* [F , I] is defined as

σα
* [F , I] =

n∑
i=

(xi – xi–)α

�(α + )
θ
(
F , [xi–,xi]

)
, ()

where a < b and  < α ≤ .
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Given the gauge δ(t) on I = [a,b] and a < b, let Ṗ be a δ-fine partition. The coarse grained
mass ∗γ α

δ (F ,a,b) of F ∩ [a,b] is given by

∗γ α
δ(t)(F ,a,b) = inf

|Ṗ|<sup{δ(ti);ti∈[xi–,xi]}
σα
* [F , I], ()

where |Ṗ| =max≤i≤n(xi – xi–). We take the infimum over all δ-fine partitions of I .
The mass function ∗γ α(F ,a,b) is defined as follows:

∗γ α(F ,a,b) = lim
sup{δ(ti):ti∈[xi–,xi]}→

∗γ α
δ(t)(F ,a,b).

∗γ α
δ is increasing with δ, then we can define [, , ]

∗γ α
 (F ,a,b) = lim

sup{δ(ti);ti∈[xi–,xi]}→
∗γ α

δ(t)(F ,a,b), ()

if it exists. We mention that ∗γ α
 is not a measure because countable additivity fails. We

define the new measure arising from the gauge function and denote it by Gα(F ,a,b). Let
∗γ α(F ,a,b) be a set of functions over Borel sets F ⊂ R as

Gα(F ,a,b) = inf

{ ∞∑
i=

∗γ α
 (Fi,a,b)F ⊂

∞⋃
i=

Fi

}
, ()

where Fi are countable closed covers of the set F . Here, we are taking infimum over all
closed covers of F . Now, as a measure Gα(F ,a,b), we check the properties as follows.

Properties Now, we check all the properties for the new measure, namely:
() It is clear that the measure of a null set is zero. Since ∗γ α

δ (∅,a,b) = , then Gα(∅,a,
b) = .
() If A ⊆ B and B ⊆ ⋃

n∈N En, where En is a measurable set, then the set A is also A ⊆⋃
n∈N En. Subsequently, we have

∗γ α
δ (A,a,b)≤ ∗γ α

δ (B,a,b). ()

Therefore we conclude that

Gα(A,a,b) ≤Gα(B,a,b). ()

() Now, we demonstrate that if A =
⋃

i∈N Ai, where Ai is a sequence of measurable sets,
then Gα(A,a,b)≤ ∑∞

i=Gα(Ai,a,b).

Proof If
∑

i=Gα(Ai,a,b) diverges, then there is nothing to prove. So, we assume that∑
i=Gα(Ai,a,b) < ∞. Let ε > , then for each i there exist sets Eni, n ∈ N , such that

Ai ⊆ ⋃
n= Eni and

∑
n=

∗γ α
 (Eni,a,b) <Gα(Ai,a,b) + ε/i.
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Since A⊆ ⋃
i
⋃

n Eni, we have

Gα(A,a,b) ≤
∑
i

∑
n

γ α
 (Eni,a,b) <

∑
i

(
Gα(Ai,a,b) +

ε

i

)

=
∑
i

Gα(Ai,a,b) + ε.

Since this holds for any ε > , therefore we obtain

Gα(A,a,b) ≤
∑
i=

Gα(Ai,a,b). ()
�

() If {Ai} is a countable family of disjoint measurable sets such that A =
⋃

i Ai, then

Gα

(⋃
i

Ai,a,b
)
=

∑
i

Gα(Ai,a,b). ()

Proof LetA,A, . . . ,An be disjointmeasurable sets. Noticing that the setA ismeasurable,
if one picks out a test set as T = A ∪A ∪ · · · ∪An, therefore, we have

Gα(A,a,b) +Gα(A ∪A, . . . ,An,a,b) =Gα(A ∪A ∪ · · · ∪An,a,b).

Recalling that A is measurable, by choosing a test set T = A ∪A ∪ · · · ∪An, we have

Gα(A,a,b) +Gα(A ∪A, . . . ,An,a,b) =Gα(A ∪A ∪ · · · ∪An,a,b).

In a finite number of steps, we conclude that

Gα

( n⋃
i

Ai,a,b

)
=

n∑
i=

Gα(Ai,a,b). ()

Notice that {Ai} is a countable family of disjoint measurable sets. For each n, we have

Gα

( ∞⋃
i

Ai,a,b

)
≥Gα

( n⋃
i

Ai,a,b

)
=

n∑
i=

Gα(Ai,a,b). ()

Hence, we obtain the following inequality:

Gα

( ∞⋃
i

Ai,a,b

)
≥

∞∑
i=

Gα(Ai,a,b). ()

In view of ()-(), the proof is complete. �

Finally, we define β-dimension as it is given below

dimβ F = inf
{
α :Gα(F ,a,b) = 

}
= sup

{
α :Gα(F ,a,b) = ∞}

. ()
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4 Relative extrema in Fα-calculus
In the rest of the paper, we generalize the Fα-calculus on a fractal subset of the real-line
[]. We recall that the extrema of a function are the values that the function is either
maximum or minimum. Suppose that f : I → R and Sch(f ) contained in F , which is α-
perfect [], is said to have a relative maximum / relative minimum at c ∈ I if there exists
a neighborhood V = Vδ(c) of c such that f (x) ≤ f (c) [respectively f (c) ≤ f (x)] for all x in
Vδ ∩ F . We say that f has a relative extremum at c ∈ I if it has either a relative maximum
or a relative minimum at c [].

Analogue of Fermat’s theorem in Fα-calculus Let f : I → R be a function such that
Sch(f ) is contained in F which is an α-perfect set. Suppose that c ∈ I is a relative extrema
of f . If f is Fα-differentiable at c, then Dα

F f (x) =  [].

Proof Let c be a relative maximum. Then there is δ >  such that Vδ(c) = (c – δ, c + δ) ⊂ I
for all x ∈ Vδ ∩ F , we have f (x)≤ f (c).
If Dα

F f (x) >  so that there exists a neighborhood Vδ(c) ⊆ I such that

f (x) – f (c)
Sα
F (x) – Sα

F (c)
>  for x ∈ Vδ ∩ F . ()

If x ∈ Vδ ∩ F and x > c, then we have

f (x) – f (c) =
(
Sα
F (x) – Sα

F (c)
) · f (x) – f (c)

Sα
F (x) – Sα

F (c)
> . ()

However, this contradicts that f has a relative maximum at c. Therefore, we cannot have
Dα

F f (x) > . Similarly, we cannot have Dα
F f (x) < . Hence, we must have Dα

F f (x) = . �

Remark A similar proof applies if c is a relative minimum.

5 Hilbert spaces in Fα-calculus
The Hilbert space is a vector space equipped with inner product such that every Cauchy
sequence has limit that belongs to the vector space. In most cases in the quantum me-
chanics, we need to construct the Hilbert spaces. Therefore, in this section, we introduce
the analogues of Hilbert spaces on a fractal set subset of the real line [, ]. Consider
the space of functions, f : [a,b] → R and Sch(f ) is an α-perfect set[]. Thus, we have the
following:

∫ b

a

∣∣f (x)∣∣ dα
F x < ∞. ()

This space is called a square Fα-integrable function and it is denoted by Lα
 . If f , g ∈ Lα

 ,
then af + bg ∈ Lα

 , where a,b ∈ R. Lα
 is a complete vector space. We introduce the inner

product in an Fα-space as

〈f |g〉 =
∫ b

a
f (x)g(x)dα

Fx, ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/522


Golmankhaneh and Baleanu Journal of Inequalities and Applications 2013, 2013:522 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/522

where f , g ∈ Lα
 . This inner product gives us a positive definite norm for each vector such

that

‖f ‖ = [〈f |f 〉]/, ()

‖f ‖ =  if only if f = . A distance between two functions is given by

d(f , g) = ‖f – g‖. ()

This inherits from the metric space Lα
 since this metric space is complete with respect to

the metric defined in Eq. (). Accordingly, Lα
 is an Fα-Hilbert space, which will also be

denoted by Hα . A system of functions {fn(x)} in H
α is said to be an orthogonal system if

∫ b

a
fn(x)fm(x)dα

Fx = δn,m. ()

Here, δn,m is the Kronecker delta. Let 〈fn(x)〉 be a sequence of functions which belongs to
Lα
 . Then there exists a function f (x) ∈ Lα

 with the following property:

lim
n→∞

∫ b

a

∣∣fn(x) – f (x)
∣∣ dα

F x = . ()

Equivalently, one can say that fn(x) approaches f (x) if for every ε > , there exists a number
n >  such that

∥∥fn(x) – f (x)
∥∥ < ε whenever n > n. ()

The sequence of functions 〈fn(x)〉 belonging to Lα
 is called a Cauchy sequence if

lim
m→∞
n→∞

∫ b

a

∣∣fm(x) – fn(x)
∣∣ dα

F x = . ()

In other words, for a given ε > , there exists a number n >  such that

‖fm – fn‖ =
∫ b

a

∣∣fm(x) – fn
∣∣ dα

F x < ε wheneverm > n,n > n. ()

Equation () means that every Cauchy sequence on a fractal set has limit belonging to
the vector space. Finally, we have complied with all the conditions for a Hilbert space in
Fα-calculus.

6 Self-adjoint Fα-differential operator
It is interesting to note that a second-order differential operator can be written in a Sturm-
Liouville form if it is self-adjoint. In quantum mechanics, the eigenvalues and eigenvec-
tors are the energy and the wave function, respectively. So, by extending the Fα-calculus,
namely defining an Fα-differential operator, we gain the definition and the condition for
the analogous Hilbert operator on a fractal set. In this section we present the self-adjoint
operators involving the fractional local derivative on fractals.

http://www.journalofinequalitiesandapplications.com/content/2013/1/522
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Suppose that L is a fractional local differential operator in the form

Lf (x) = p(x)
(
Dα

F
)f (x) + p(x)Dα

F f (x) + p(x)f (x). ()

Now, we would like to calculate

〈f |Lf 〉 =
∫ b

a
f (x)Lf (x)dα

F x

=
∫ b

a
f (x)

{
p(x)

(
Dα

F
)f (x) + p(x)Dα

F f (x) + p(x)f (x)
}
dα
F x. ()

By using integration by parts [] once or twice, we conclude that

〈f |Lf 〉 = [
f (x)

(
p(x) –Dα

Fp(x)
)
f (x)

]∣∣x=b
x=a

+
∫ b

a

{(
Dα

F
)[p(x)f (x)] –Dα

F
[
p(x)f (x)

]
+ p(x)f (x)

}
f (x)dα

Fx. ()

Comprising the integrals in Eqs. () and (), we get

f (x)
((
Dα

F
)p(x) –Dα

Fp(x)
)
f (x) + f (x)

(
Dα

Fp(x) – p(x)
)
Dα

F f (x) = , ()

and

Dα
Fp(x) = p(x). ()

Then, we finally conclude that

L̄
[
f (x)

]
=

(
Dα

F
)[p(x)f (x)] –Dα

F
[
p(x)f (x)

]
+ p(x)f (x)

= p(x)
(
Dα

F
)f (x) + (

Dα
Fp(x) – p(x)

)
Dα

F f (x)

+
((
Dα

F
)p(x) –Dα

Fp(x) + p(x)
)
f (x). ()

When L̄[f (x)] = L[f (x)], the operator is said to be Fα-self-adjoint operator []. It is clear
that every Fα-self-adjoint operator can be written as an analogous Sturm-Liouville equa-
tion on fractal sets.

7 Conclusion
Researchers are trying to create new calculus on fractals by using some different ap-
proaches which are algorithmic or not. Since the fractals generated are different, the mea-
sures on them also vary from one to another. The gauge function is used to generalize
the Riemann integral for a wider class of functions. We defined a newmeasure on fractals
by using this function. This new measure can be used to define an integral on fractals.
Meanwhile, the Fα-calculus on fractals was generalized by given the relative extrema con-
dition. Moreover, the Hilbert Fα-space is constructed for potential applications on fractal
quantummechanics and the self-adjoint Fα-differential operator is defined on fractal sets.
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