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Abstract

This paper is concerned with the shunting inhibitory cellular neural networks
(SICNNs) with time-varying delays in the leakage (or forgetting) terms. Under proper
conditions, we employ a novel argument to establish a criterion on the global
exponential stability of almost periodic solutions by using Lyapunov functional
method and differential inequality techniques. We also provide numerical simulations
to support the theoretical result.
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1 Introduction

It is well known that shunting inhibitory cellular neural networks (SICNNs) have been
introduced as new cellular neural networks (CNNs) in Bouzerdout and Pinter in [1-3],
which can be described by

(t) = —611/ t)Xt/ t) Z Ckl t)f Xkl(t T(t)))xij(t)

Cri €Ny (i)

- Y B[ Kyl ) duxy 0+ Lo

CklENq(i,j)

i=1,2,...,mj=12,...,n, (1.1)

where Cj; denotes the cell at the (i, ) position of the lattice. The r-neighborhood N (i) is
given as

No(ij) = {Cu:max(jk = il, |l - jl) <r1<k<m1<l<n),

Ny (i,)) is similarly specified. x; is the activity of the cell Cj;, L;(t) is the external input to Cy,
the function a;;(t) > 0 represents the passive decay rate of the cell activity, C{;l (¢) and Bf;l (¥)
are the connection or coupling strength of postsynaptic activity of the cell transmitted to
the cell Cy, and the activity functions f(-) and g(-) are continuous functions representing
the output or firing rate of the cell Cy;, and t(¢) > 0 corresponds to the transmission delay.

Recently, SICNNs have been extensively applied in psychophysics, speech, perception,
robotics, adaptive pattern recognition, vision, and image processing. Hence, they have
been the object of intensive analysis by numerous authors in recent years. In particular,
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there have been extensive results on the problem of the existence and stability of the equi-
librium point, periodic and almost periodic solutions of SICNNs with time-varying delays
in the literature. We refer the reader to [4—9] and the references cited therein. Obviously,
the first term in each of the right side of (1.1) corresponds to a stabilizing negative feed-
back of the system, which acts instantaneously without time delay; these terms are vari-
ously known as ‘forgetting’ or leakage terms (see, for instance, Kosko [10], Haykin [11]). It
is known from the literature on population dynamics and neural networks dynamics (see
Gopalsamy [12]) that time delays in the stabilizing negative feedback terms will have a ten-
dency to destabilize a system. Therefore, the authors of [13—19] dealt with the existence
and stability of equilibrium and periodic solutions for neuron networks model involving
leakage delays. However, to the best of our knowledge, few authors have considered the ex-
istence and exponential stability of almost periodic solutions of SICNNs with time-varying
delays in the leakage terms. Motivated by the discussions above, in this paper, we consider

the following SICNNs with time-varying leakage delays:

x(0) = —ay(Ozy(t=ny@0) = D, GO Gwut=7(0))y )

CieNy (i)

- X B0 [ Kl - ) dusy(0)+ o) 12)

Cri€Ng(ir))

wherei=1,2,...,m,j=1,2,...,n,a;:R— (0 + 00), n;;, T : R— [0 + 00), and Li,',Cf;l,Bf;l :
R — R are almost periodic functions, 7;(¢) and t(£) denote the leakage delay and trans-
mission delay, respectively, the delay kernels Kj; : [0,00) — [0, 00) are continuous and in-
tegrable, and 7;; is a bounded continuous function.

The main purpose of this paper is to give the conditions for the existence and exponential
stability of the almost periodic solutions for system (1.2). By applying Lyapunov functional
method and differential inequality techniques, we derive some new sufficient conditions
ensuring the existence, uniqueness and exponential stability of the almost periodic solu-
tion for system (1.2), which are new and complement previously known results. Moreover,
an example with numerical simulations is also provided to illustrate the effectiveness of
our results.

Throughout this paper, for jj € J := {11,12,...,1n,21,22,...,2n,...,ml,m2,...,mn}, from
the theory of almost periodic functions in [20, 21], it follows that for all € > 0, it is possible
to find a real number [ = [(¢) > 0, for any interval with length /(¢), there exists a number
8 = 8(¢) in this interval such that

|aj(t +8) —az(t)l <€, Ing(t+8)—n;®)l <€, |CJl(t+8)-CJl®)l <e,

Kl kL (1.3)
|B;; (t+6) - By BOl<e, |tE+8)-t®)l<e, |Lyjt+8)-Lyt)l<e,

forallt e R, kl,ije].
We set

{x,»,»(t)} = (xu(t), e ,xln(t), “en ,xil(t), e ,xm(t), ven ,xml(t), e ,xm,,(t)) € R™",
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For Vx(t) = {x;(t)} € R™*", we define the norm |lx(¢)| = max{|x;(£)|}. For the conve-

nience, we shall introduce the notations

h = sup’h(t)

teR

where /(t) is a bounded continuous function.
We also make the following assumptions.

(T1) There exist constants My, My, (1 and g such that

f @) —fO)| <mrlu—vl,  |f@)] <My,

’g(u)—g(v)‘ < uglu—vl, ’g(u)’ <M,, forallu,veR.

(Ty) Forije], aln} <1,

ij nl]

8;(t) = {al,(t) (1—2ajn) — |ay(®) = (1= nj(®))ay (£ — ny(0)]

- 2 |cfwlmy

CrieNy (i)
ki OO 1
DI 0] / | Ky (w)| d“Mg} T
CrieNg (i) 0 il
>0, (1.4)

and there exist positive constants 1 > 0 and A such that
(o)
A< ay(t), / e’\”|1<,-j(u)| du < +00,
0
and

[(al,(t) )\4)(1 2%17”)

1
—\a:: At At =n:
‘ﬂl](t) J (1 T)l]( ))ﬂl](t T]l}(t)) |] 1 al}nl}
1 1 Li\"*
+ Ckl(t)/l, e)n: ——( z;)
CkleZI\[r(i,j)| ! |f 1—aym 1-azn; \ 8
1
vy GloM——
Cri €Ny (i) 1- allnl/

1 1 Li\"*
oy B“(t)|/ K a0)| duaprg T—— 7(5})

Cri€Ng (i) a lnkl 1 al]nl]
Kl * 1
vy B (t)|/ |Kt‘/(”)’d”Mgm
CeNy (i) 0 i'lij

<-n, forallt>0. (1.5)


http://www.journalofinequalitiesandapplications.com/content/2013/1/494

Liu and Shao Journal of Inequalities and Applications 2013, 2013:494 Page 4 of 22
http://www.journalofinequalitiesandapplications.com/content/2013/1/494

The initial conditions associated with system (1.2) are of the form

xij(s) = (/)ij(s); se (_OO; 0]’ ij S ]r (16)
where g;(-) denotes a real-valued bounded continuous function defined on (-0, 0].
Definition 1.1 (See [20, 21]) Let u(t) : R — R™*" be continuous in £. u(t) is said to be
almost periodic on R if for any ¢ > 0, the set T'(u, &) = {8 : ||u(t + 8) — u(?)|| < &,Vt € R} is
relatively dense, i.e., for any € > 0, it is possible to find a real number / = [(¢) > 0, for any

interval with length I(¢), there exists a number § = §(¢) in this interval such that ||u(z + §) —
u(t)|| <e forall t € R.

2 Preliminary results

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.1 Let (T1) and (T5) hold. Suppose that x(t) = {x;(t)} is a solution of system (1.2)

with initial conditions

x45(8) = @i(s),

wm—f a(9)py(s) ds

Li\"* .
< 5 ) s, t e (—00,0],ij €. (2.1)

=n;(£) ij
Then
t L +
x(t) — / a;(s)x;(s)ds| < (—U) , forallt>0,ije], (2.2)
0] 8ij
and
|l (®)| < (b +, forallt>0,ije]. (2.3)
/ - 1- d;ﬂ; 6,’1‘ -

Proof Assume, by way of contradiction, that (2.2) does not hold. Then, there exist ij € A,
y > (%)*r and ¢, > 0 such that
ij

’le(t*)’ =y and !X,y(f)! <y forall¢e (-o00,t,), (2.4)

where

t

mm=wm—f () (s) ds.

t"h’j(t)

It follows that

+

/t a;j(s)x;(s) ds

—n5(t)

, forallte (-o0,t,]. (2.5)

x;(t) — / a;j(s)x;(s) ds

—n;(t)

|xij(t)| =

<y+ a;n; sup |x,7(s)
SE(—00,t4]
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Consequently, in view of (2.5) and the fact aj; iy <1 (i € J), we have

lxi(0)] < sup  |ai(s)]

s€(—00,tx]

1
< ———y, forallte(-o0o,t,]. (2.6)
T 1- agn;

From system (1.2), we derive

d t
z (x,,(t) / T ds)

= x;j(t) - [ﬂ[j(t)x[j(t) - (1 - nb(t))aij (t - ”ii(t))xii (t - nlj(t))]
= —[ () () — (1= nj;(8)) @y (£ = 03 (0) % (£ = my(0)) |
+ [ —ayOxi(t-ny®©) = Y CHEN (walt — T(0)))i(2)

CrieNy (i)

_ Z B (1) /0 Iqj(u)g(xk,(t-u))dux,,(t)+L,»,»(t)}

Cii €Ny (i)
= —ay () (8) — [ () — (1= mj(6)) @y (£ = ny(8)) ] (£ = (D))

- Z C§l(t)f(xkz(t—r(t)))xi;(t)

Cri €Ny (i)

- > Bo /0 Ky (a0g (wu(t = ) dusy(®) + Ly (1

Cr1€Ng(irj)

—ay(t) (xi/(t) - / ) ds) —ay®) / RCCE

= [ay(®) = (1 = mj(e)) s (¢ — (@) Joe (£ = mi(0))
- > CHOf (wua(t - ())x(0)

CrieNy (i)

- Z Bf.‘/l(t)/o K,',»(u)g(xkl(t— u)) dux;(t) + L(t), el (2.7)

Cri€Ny (i)

Calculating the upper left derivative of | X;;(t)|, together with (2.4), (2.6), (2.7), (T}) and
(T,), we obtain

0 = D_|Xij(t*)|
Ly

—a;(t) aij(s)x;;(s) ds
t*—fhj(t*)

- [“ij(t*) - (1 - n;j(t*))ﬂij(t* 7711(t ))]xz]( Yh,(t*))
- Z C,{;l(t*)f(xkl(t* - f(t*)))xij(t*)

CrieNy (i)

< —ay(t) | Xy(t)| +

- Y B [ Kt - ) duye) + Le)

Ck[ENq(i,j)

Page 5 of 22
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Ly
=< —aij(t*)|Xij(t*)| + at’/’(t*) a;;|xij(s)| ds

t*—ﬂij Ly
+‘ﬂij(t*) (1 n;}(t*))ﬂu( — Nij t* qu(t* nt](t*))|

) |CH @I (ora (e — T(8)) | ()]

Cr €Ny (i)

+ Y B / 1K 1) [ g (waa(e- — 1)) a2 + | L)

Cii €Ny (i)

Ly
=< _ﬂij(t*)|Xz'j(t>k)| + ﬂij(t*) a;;ixij(s)| ds

tx—55(tx
+ |ay(t) = (1= mj(6) a (6 — ny(8))| |25 (8 — ny() |

Y O | My |xy ()|
Cr1 €Ny (ir))

v Y |BY) / 1K )| ey 6)] + |y (2

Cii €Ny (i)

1
= _ﬂz](t )y + az](t )ag’h]ﬁy
iy

+ |ag(t) = (1= mj(8))ay (8 — ny(8)) | Y

1- “;177;1

1
E : ki
CreN (i) U ‘1

1
DN {R] / | Ki(0)| b a+n+y+|LU t.)|

Cii €Ny (i,)) gy

:{ [dz/(t*)(l 2“117711) |aij(t* (1 nzj(t*))dy( nl](t*))H

> |cke My

Cri €Ny (i)

1
LY B / |1c,<u)|duM}my+|Ll,(t*>|

Cr1€Ng(irj) U

Ly\*
= _Slj(t*)[y - (8_]) :|
J

< 0.

It is a contradiction, and it shows that (2.2) holds. Then, using a similar argument as in
the proof of (2.5) and (2.6), we can show that (2.3) holds. The proof of Lemma 2.1 is now
completed. d

Remark 2.1 In view of the boundedness of this solution, from the theory of functional
differential equations with infinite delay in [22], it follows that the solution of system (1.2)

with initial conditions (2.1) can be defined on [0, +00).
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Lemma 2.2 Suppose that (T1) and (T;) hold. Moreover, assume that x(t) = {x;(t)} is a
solution of system (1.2) with initial function ¢;(-) satisfying (2.1), and (plfj(-) is bounded con-
tinuous on (—00,0]. Then for any € > 0, there exists [ = I(€) > 0, such that every interval

[o, & + 1] contains at least one number §, for which there exists N > 0 satisfying
||x(t+8)—x(t) || <e€, forallt>N. (2.8)
Proof For ij €], set

Eij(S, t) = —a,»,»(t)[xij(t +6— T’)l']‘(t + 5)) —x,-j(t — T’)i/(t) + 8)]
- [ai,(t + 5) - a,»,(t)]xlj(t +6— T]ij(t + (S))
— > [CRE+8) - CEOf (walt — Tt + ) +8) )yt + 6)

Cr1€Nr (i)

- Z CYOf (xui(t = T(E+8) +8)) = f (oua (£ = T(0) + 8)) sy (£ + 8)

Cr1€Nr (i)

_ Z [Bifjl(t +8)— Bf;.l(t)] /-oo Kij(u)g (i (t + 8 — 1)) duoi (£ + )

CrieNgiy) 0

+ [Li,‘(t + 8) - Lij(t)].

By Lemma 2.1, the solution x(t) = {x;(¢)} is bounded and

1 [Li\"'
oj(t)| < ——— (<L) forallte[0,+00),i €. (2.9)
l—ﬂ;jn;; (Sij

Thus, the right side of (1.2) is also bounded, which implies that x(¢) is uniformly continuous
on R. From (1.3), for any € > 0, there exists [ = [(¢) > 0, such that every interval [o, o + [],
o € R, contains a §, for which
1 .+ here ii
’e,»,(&, t)| < Enrzr}el?{l - ai},ni},}e, whereije/,t e R. (2.10)

Let Ny > 0 be sufficiently large such that ¢ + § > 0 for ¢t > Nj, and denote u;;(t) = x;(¢ +
8) —x;;(t). We obtain

du;;
L;]t(t) = _aij(t)uij(t - nzj(t)) - Z C;;l(t)(f(xkl(t —7() + 5))
Cr1€Ny (i)
_f(xkl(t - T(t))))x,j(t +6) — Z C{;l(t)f(xkl(t _ ‘L'(t)))
Ci1 €Ny (i)

. (xij(t +8) —xi}-(t)) - Z Bf/(t)/ K,»j(u)(g(xk;(t +6— u))

Cri€Ng ivf) 0

— g(wu(t - w)) duxy(e+8) - Y B /o K (w)g (xu(t — u)) du

CklENq(i,j)

< (wi(E +8) — xy(2)) +€5(8,8), forallt > No,ij €],
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which yields

t
d <e'\ uy(t) — / a,',»(s)e“ulj(s) ds)
dt t-ny(®)

= e uy(t) + e”u;(t)
= [ay(@)e™ uy(0) = (1= nj(®) i = nii(6)) T Dy (£ = ny(0)) ]
= neMuy(t) — [ay(t)e uy(e) - (1- U;,(t))ﬂij (£ = ny(8)) 1Dy (£ - y(2)) ]

+ e“{—a,,(t)u,,(t —n®) - Y CH@(f (wult— @) +5))

Cri€Nr (i)

~floa(t—7®)))aze+8) = Y CH@f (wult - ()

Cr1 €Ny (i)

(w8 -xg0) - Y BN /o Ki(u) (g (st + 8 — u))

Cr1€Ng (i)

— g (%t — ) ) duxy(t + 8) - Z Bkl(t)/ Kij(u)g (% (£ — ) dua

Cra€Ng (i)
(i + ) — x5(0)) + €56, t)}
= —(ﬂl‘]‘(t) - A)e”u;,»(t)
= [ay(e) = (1= nj;(©)ay (£ = ny())e 7 e uy (£ - nyi(0))

{ > O (- +9))

CrieNy (i)

~floa(t—7@®)))aze +8) = > CH@f (wult - ()

CrEN (i)

(w8 -xg0) - Y BN /o Ki(u) (g (st + 8 — u))

Cr1€Ng (i)

— g (%t — ) ) duxy(t + 8) - Z Bkl(t)/ Kij(u)g (% (£ — ) dua

Cry€Ng (1))
(i + ) — x5(0)) + €56, t)}
= —(ay(t) - 1) (e“a,j(t) - /t a;(s)e u(s) ds)
£-n;(£)
- (ai}-(t) — A) / a,','(s)e“u,-j(s) ds
t=n;i(t)
= [ay(e) = (1= nj(©)ay (¢ — ny(0)e*"7D e uy (£ - ny(8))
+ e“{— Z Cgl(t)(f(xkl(t —7(t) + 8))

Cri €Ny (i)

—f(xkl(t—t(t x,} (t+9) - Z Ckl t)f xkl t T(t)))

Cri €Ny (i)
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(e +8) —x0) - > BY®) /o Ki(u) (g (st + 8 — u))

Cri€Ng (i)

- g(xu(t — u))) dux;(t +8) - Z Bi(1) / Kij(u)g (xa(t — ) du
CuieNg(i)) 0
. (xlj(t +6) —xlf,«(t)) + GL']‘(S, t)}, for all £ > N, ije]. (2.11)
Set
U(t) = { l}(t)}
where
t
Uji(t) = " uy(t) - / a;(s)e uy(s)ds, ije].
t”hj( )
Let (i), be such an index that
| Ui, 0] = [U®]. (212)

Calculating the upper left derivative of |/;,(s)| along (2.11), we have

D™ (|Us(9)]) 5=

= — (@, () = 1) [ U ()] +

t
i 0-3) [ a0 ug, 0 ds
=137, ()

_[“(t’l’)z(t)_(1_’721’/»“))“(!'1‘%( N (0) e O e i, (£ = nep, (1)
{ Z C (t)(f (xia(t = T(2) + 8))

CreNy(ij)e

—f (et = ()2, (8 + 8) — Z Ch, @f (wu(t - (1))

CrieNr(i))e

(£ + ) —xp,0) = Y B, (@) /O Ky, ) (g (xua(t + 8 — u))

Cr1€Ny (i)

— g (%t — w))) duxy, (¢ +8) - Z B, (®) /0 Ky, (w)g (xa (¢ — 1)) dus

Cri €Ny (i,))e
(%, (& + 8) — %, (1)) + €6, (6, t)} ‘ (2.13)
Let

M(t) = sg;t){ || L[(s)” } (2.14)

Page 9 of 22
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It is obvious that || U(2)|| < M(t), and M(¢) is non-decreasing. In particular,

e |uy(p)| < +

P
¢u(p) - / (), (s) ds
o

-nij(p)

P
/ ui,'(s)e“ulj(s) ds
P

-nij(p)

, forallt>p,ijje]. (2.15)

<M() +a;n;; sup e |uy(9)
e(—o00,t]

+

Consequently, in view of (2.15) and the fact a;

nj; <1(ij € ]), we have

M(t
e)‘siui/(s)| < sup ew|u,~j(0)| < %, where s € (—00,¢],ijj €]. (2.16)
fe(-00,t] 1- a;n;

Now, we consider two cases.
Case (i). If

M) > |U(p)| forall £> No. (2.17)

Then, we claim that
M(t) = M(Ny) is a constant for all £ > Nj. (2.18)

Assume, by way of contradiction, that (2.18) does not hold. Then, there exists t; > Ny such
that M(#;) > M(Ny). Since

|u@)]|| < M(No) for all £ < Np.
There must exist 8 € (Np, t1) such that
|u®)| = Mt) = M(B),

which contradicts (2.17). This contradiction implies that (2.18) holds. It follows from (2.16)
that there exists t, > Ny such that

—At wy
e MM(t e " M(N;
||u(t) H = max|uij(t)| < max +(+) = max f f)

ije/ ijel 1-— azn; je] 1— azn;

<€, forallt>t,. (2.19)

Case (ii). If there is such a point £y > Ny that M(ty) = ||U(to)||. Then, in view of (1.5),
(2.9), (2.10), (2.13), (2.16), (T1) and (T5), we get

0 < D™ (U, 9)])Is=to
Lo
= (@ (t0) = 1) | Uty (t0)| + (@6, (0) — ) / (i € [y (5)| ds

L=y, (t0)

Ay, (o) Ato—n(p),, (t0))
+ gy, (Eo)e™" 0™ — (1=, (8)) g, (o = M, (20)) [P0 ™

: |u(ij)t0 (to- UIom (t0))] + Z |C(];‘;l‘)[0 (to)| € |f (xu(to — T(t0) +8))

Cri €Nr (i)t
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—f (xu(to — T(20)))| |x(ij)t0 (to +6)| + Z |C(k,-§)t0 (o) | [f (ke (0 — T(20)))|

Cri€Nr (i)t
%z, (o + 8) = X3, (to) |
o0
+ Z |Bﬁi’)¢0 (t0)|f ’K(ii):o (u)|e“° ’g(xkl(to +8 - u))
CrieNg i)y 0
—g(xkl(to - u)) | du‘x(i,»)to (to + 8)|
o0
+ Z |B(,,)z (to)] / | Ky, (10)] g (00 — )| e
Cri€Ng i)y, 0

. eMo |x(‘7)to (to +68) — X(ij)e, (l’o)| + |€(i1')z0 (6, t0)|e“°

M(to)
< (g, (t0) = 2)Mto) + (a, (bo) = X)ay, 1y, ——
0 ’ Yo 01— agy 0,

Angj), (o)
+‘ﬂ(i/)[0(t0)e (g \*0

M(to)

- (1 - ﬂzlj)to (t))ﬂ(i/)to (to = Ny (to))|

Sl e e i ()
(ij)zon(ij)zo CeNili)eg

1 L\
1 ( ) ’°> Y 1€, o) |Mre o ug, ()]

1- a(ii)zo Nije, 8(’7)20 CreN i)

+ | i) (t0)| u|1<(ij)¢0 (u)|/~/Lge)L(t0_u)|uk[(t0 —u)|du
20

Cr €Ny (i))ry

. 1 (Laj)to )*
+ + o
L= ag, M, \ S

e}
+ Z | (l/)t (t0)| / |I<(ij)t0 (Ll)| duMge“O |u(ij)z0 (t0)| + |6(i/)t0 (8, to)|€M0
CreNg(i)eg 0

= {_[(a(ij)to (bo) - A) (1 26! (s n(l] to) |ﬂ(tl)t0 (fo)e ey (F0)
1
(1 77 U (t)) (&) to ( 0 — n("j)to (to)) |] 1_'_7_'_

Ly Nijeg

1 1 Liipe \*
) Ich, @)ue ™ < [O)

Cra &Nr )z L=agm L =ag, 16, \ S,
1

* Z ’C(l/)t tO)VWW
Cri €Ny (i)t (ii)eg NN

Kl *©

A

Y B, @) f | Ky, ()| du
Cri€Ng (i) 0

1 1 (L(mzo )*
- g
‘1- ANy 1 - “ (i)t ’7(17)20 S(iieq

+ Z |Bﬁi)t (to)| fo | K, ()| duMy

Cri€Ng (i))ry

T+ _+ 0
] + +
ﬂ(ij)tg r’(i/)lo
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: AL
+7min{l — ﬂt A €e 0
" ije] { llnl]}

< —nM(ty) + 1 rlrlleljn{l —agn;; Jeet, (2.20)
which yields that
|u(t)| = M(zo) < I;l;lel}’l{l - a;jn;;}ee“", (2.21)
and
e Mo M(to)

| uto) || < max (2.22)

+ o+
ijeJ l—aijni].

For any ¢ > ty, by the same approach used in the proof of (2.21) and (2.22), we have

@)1 = M(£) < minge {1 - ajng)ee*

lu(@) <€ , M) = U@ (2.23)

On the other hand, if M(¢) > |U(t)] and ¢ > £, we can choose £y < t3 < t such that

M) = |U(ts)

, and M(s) > H U(s) H for all s € (¢3, t],
which, together with (2.23), yields that
M(t) = |U(ts)] < Illllel}’l{l - a;'jn;;}eem, and  |u(t;)| <e.
Using a similar argument as in the proof of Case (i), we can show that
M(s) = M(t3) is a constant for all s € (¢3,£], (2.24)

which implies that

—At i + At:
e M(2) e M(t3) e~ ming {1 - a{jniﬁ;}ee 3
||u(t)H§max — =m — <max — <e.
ijeJ 1— agng e 1- a;n; ijeJ 1- agng

In summary, there must exist N > max{tp, Ny, £} such that ||u(¢)|| < € holds forall > N.

The proof of Lemma 2.2 is now complete. g

3 Main results
In this section, we establish some results for the existence, uniqueness and exponential
stability of the almost periodic solution of (1.2).

Theorem 3.1 Suppose that (T1) and (T,) are satisfied. Then system (1.2) has exactly one
almost periodic solution Z*(t). Moreover, Z*(t) is globally exponentially stable.

Proof Let v(t) = {v;i(t)} be a solution of system (1.2) with initial function go;’j(-) satisfying
(2.1), and (<pfj(~))/ is bounded continuous on (—00, 0].
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Set

€i(t) = —ay () (¢ + i — 0y (€ + 1)) — (£ = my(2) + 1) |
- [alj(t +1) — ﬂij(t)]xi;’ (t + 1 -yt + tk))

= > [CRE+ ) - CEOF (sl — T + 1) + ) syt + )

Cr1€Nr (i)

= > CHOUf (oua(t = (e + 1) + 1)) = f (ora (£ = T() + 1)) [t + 1)

Cr1€Nr (i)

- > [Bf¢+t)-BY @) / K (u)g (wua(t + tr — ) duy(t + ty)

Cri €Ny (0,)) 0

+[Lyt+ 1) - Ly®)], ij€], (3.1)

where {#} is any sequence of real numbers. By Lemma 2.1, the solution v(¢) is bounded
and

1 Li\"*
vit) < ——— (L) forallte R ije), (32)
1—agng \ &;

i
which implies that the right side of (1.2) is also bounded, and v'(¢) is a bounded function
on R. Thus, v(¢) is uniformly continuous on R. Then, from the almost periodicity of a;;, n;;,
T, Cf;l and Bf;l, we can select a sequence {fx} — +00 such that

laii(t + tx) — ay(

) IG5 (¢ + 1) = Cjl(0)
|7h'/'(t + 1) — 77;7(1‘)

<% b 1B (t+t)—-Bl(®)] < ¢
<o ltE+a)-t@)l<

1
|€L'/',k(t)| = %

| | <
1 , (3.3)
| Er
forallijj,kle], t e R.
Since {v(f + £)};3 is uniformly bounded and equiuniformly continuous, by Arzala-
Ascoli lemma and diagonal selection principle, we can choose a subsequence {ti;} of {tx},
such that v(¢ + tk}.) (for convenience, we still denote by v(t + £;)) uniformly converges to a

continuous function Z*(¢) = {x;"j(t)} on any compact set of R, and

% 1 LL’j * ..
]xi}.(t)’ <—(Z forallt e R,ije]. (3.4)
1—a;n; \ 8

ij
Now, we prove that Z*(¢) is a solution of (1.2). In fact, for any ¢ > 0 and At € R, from
(3.3), we have
xj-}(t + At) — x};(t)

= kEIPoo[Vij(t + AL+ 1) — vt + tk)]

t+At
= lim {—aij(u + )i (1 + b = ny (e + )
t

k—+00

- Z Cil(u+ t)f (via (1 + = T+ 80)) vy + )
CrieNy (i)
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- > Bu+ tk)/o Kyj(u)g (v + ti — ) duvig(u + te) + Ly(u + tk)} d

Cri €Ng i)

t+At
= lim / {_atj(ﬂ)vij(ﬂ = (1) + tk)

k—+00

- Y O (i — () + ) vy + 1)

Cri €Ny (i)

- > B /0 Ki()g(via( + t — ) duvig(u + t) + Ly(u) + 61’1’,k(,u)} dp

Cr1€Ng(irj)

t+At
= / {a,,(u)xl,(u () = Y CR)f (i - ()25 (w)

Cri €Ny (i)

- Y s zcj(u)g(le(u—m)dux;;(m+Li,(u>}d

Cri€Ny (i)

t+At
+ lim €jx(n) du

k—+00 J,

t+At
- / {—al,(u)xl,(u i) = > CROaS (5 (1 = 7 (1)) ) (1)

CrEN; (i)

- Y Bfw /0 Kij(u)g (i, (i — w)) dusxy(n) + Lij(ﬂ)} du, (3.5)

Cri €Ny (i)

which implies that

d
—{x5(0)) = —ayOx(t-ny(0)) - D CHOf (g (- (0))x50)

dt iy
Cr1 €Ny (i)

- > Bo fo Kij(u)g(wg (¢ - w)) dux() + Ly(), ije].  (3.6)

Cri€Ng (i)

Therefore, Z*(t) is a solution of (1.2).

Secondly, we prove that Z*(¢) is a almost periodic solution of (1.2). From Lemma 2.2, for
any ¢ > 0, there exists [ = [(¢) > 0, such that every interval [, o + /] contains at least one
number § for which there exists N > 0 satisfying

vt +8) —vy(t)| <e forallt>N,ije]. 3.7)

Then, for any fixed s € R, we can find a sufficient large positive integer N; > N such that
for any k > Ny

s+i>N, |vgls+te+8)—vils+t)| <&, ije]. (3.8)
Let k — +00, we obtain
|x (s+8)— xl/(s)| <e, ijej, (3.9)

which implies that Z*(¢) is an almost periodic solution of (1.2).
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Finally, we prove that Z*(¢) is globally exponentially stable.

Let Z*(¢t) = {xj;-(t)} be the positive almost periodic solution of system (1.2) with initial
value ¢* = {(p;;(t)}, and let Z(¢) = {x;;(¢)} be an arbitrary solution of system (1.2) with initial
value ¢ = {¢;(t)}, set y(£) = {y;(£)} = {x;(¢) —x;;(t)} = Z(t) — Z*(¢t). Then

Yy®) = —ag®ys(t—nz®©) = > CROLf (st — 7(8)))(2)

Cri €Ny (i)

Sl - Y 80| [ Kg(oute - 0) dusy0

Cri€Ng (i)

—/0 K,','(u)g(x,d( )) duxl}(t)i|

which yields

t

jt (e byii(6) — a;(s)e"*y;(s) dS)

= 1e'y;(0) + 6“)’;( )
- [“ij(t)e)ttyij(t) - (1 - n;/(t))ﬂij(t - nlj(t)) Mo= (0 }’z; (t 7711( ))]
= reMy;(t) — [ay(t)e y () — (1- ﬂ;j(t))ﬂi/(t - nij(t))ex(t_mj(t))yi/(t -n;(1))]

+ eu{_“z‘j(t)yij(t —n(t)) - Z CYOf (= T(0)))(0)

Cri €Ny (i)

= (t)

~flgE-@)s@] - > Bﬁl(t)[ /0 K(u)g (xu(t — w)) duxy(t)

G
- [ ket~ ) i |

—(ay(®) - 2)eyy(e)

= [a5(0) = (1= ny(®)) (£ = ny(®) e ey (¢ = ny(2))

+e“{— Z Cgl(t)[f(xk;(t—r(t)))xij(t) —f (g (- r(t)))x:;(t)]

Cri €Ny (i)

-y B{fj(t)[ /0 Kyj(u)g (xa(t — u)) duxy(t)

CkleNq(iv/)

- /0 Kij(u)g (a7 (¢ — ) dux}'}(t)] }
—wmrmmwﬁm—/ %@wﬁ@%>
t-1;5(t)
4@m—m/ a5(8)"y;(s) ds
t=1;5(t)

= [ay(®) = (1= mj(6))ay (¢ - n3(8))e 1 My (£ — 1y(0))
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Cl@Of (= 7(0))) = £ (s (£ — T(0))) ] (2)

+e“{— Z

CklENr(i,j)

- > CHof (- @) [x0) - x50)]

Cri €Ny (i)
- > B / K () [g(xua(t — ) — (st — )] duay(0)
Cr1€Ng(irf)
_ Z Bkl(t)/ I(,j(u)g(x,fl(t - u)) du[x,,(t) xl](t)]} (3.10)
Cii €Ny (i)
where ij € /.
Let
t
V0= @0~ [ a0 ods, e
t=n;5(2)
We define a positive constant M as follows
M= max{ sup Yij(s)}.
je] Lse(—00,0]
Let K be a positive number such that
Yit) <M <M+1=K forallte(-00,0],ij€] (3.11)
We claim that
forall£>0,i=1,2 (3.12)
(3.13)

Y;(t) <K,
Otherwise, there must exist ij € J and 6 > 0 such that
70)=K,  Y;(t)<K, forallte(~00,6),j€]

It follows that
t
e yl](t) f a;j(s)e“ylrj(s) ds

)

My; (0] <
t
+ / a;j(s)e“y;j(s) ds
[—ﬂi“/.(t
<K +a 17~ sup e |yi~j(s) , forallte (—oo,@],fje] (3.14)
e(—oo,e]
(3.15)

Consequently, in view of (3.14) and the fact a n <1 (ij € ]), we have
for all £ € (—00,0], l~] eJ

o+

e“|yl.~j(t)| sup e“|yl}( s)| <
se(oof] i
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Calculating the upper left derivative of Y;(t), together with (2.3), (3.10), (3.13), (3.15), (Ty)

and (T,), we obtain

0 <D Y;(9)

—(a5(6) - 1) Yy(6) +

[
_(“ij(@) - )‘)/ ﬂz’;’(S)eksyij(S) ds
0-1;(60)
- [aij(e) - (1 - 771,‘]'(9))(1;‘]'(9 - nzj(e))e_knij(m]ewylj(9 - mj(e))

{ Z Ckl 0) xkz —1(9))) —f(x,d( —T(G)))]x,]()

Cri €Ny (i)

Z (9)f xg(0 - 7(0)))[x;(6) —xZ;(Q)]

Cri €Ny (i)

0 /0 K1) g (0ut0 — ) — g(37,(6 - )] duy0)

Ck[ENq(i,j)

- Y Bl /0 1@;(u)g(le<9—u>)du[xu<9>—x3<9)]}‘

Ck[ENq(i,j)
K +o+
—(ﬂij(e)_)\)yij(e) + (ﬂij(e)_)\)l T+ %l
Al

+ ‘ﬂij(g)ekr]’i(g) - (]. - n;(G))aU(G - 77[1(8)) ’6A<9_mj(0>) |_)/U(9 - 77[1(8))|

+ 2 GO (6~ 1(0)) |6

CreNy (i)

+ ) |CO)|Mre’ vy 0)]

Cr €Ny (i)

+ BY0)| / &4 Ky (1) 1€ |6 — )| | 6)|
C/dENq i)

+ Z Bkl(9)|/ |Kij(u) | dubze™ | y(0)]

Cr1€Ng(irj)

{ [(ﬂll(g) )‘)(1 zal]nl])

B 1
— |ay(0)e"® — (1= 1(0))ay(6 - ny(6))]]
I- al]nl]
1 1 Li\"
1
> (el e e (5)
Cri €Ny (i) klnkl ij nt/
ki
) G ONM——
Cri Ny (i) iy
1 1 Li\"*
+ Y Bkl(9)|/ ¢ | Ky(an)| duptg (;)
CrieNg (i) o i

+ > |B (9)|/ |Ki()| dubg “unu}K

Cr1€Ng(irj)
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which is a contradiction, and it implies that (3.12) holds.

Consequently, using a similar argument as in ( 3.14)-(3.15), we know that
K
yii(t)|e <« ———, forallteRije].
| y | 1— ﬂ?jﬂg
That is,

K
’x,»}-(t) t)’ < ﬁe_“, forallt>0, andjj €.
M

This completes the proof.

4 An example

In this section, we give an example with numerical simulations to demonstrate the results

obtained in previous sections.

Example 4.1 Consider the following SICNNs with time-varying delays in the leakage

terms:

dx; .
(Z’ al,(t)x,,( - mj(t)) - Z Cgl (xkl(t — sin? t))xij(t)

Ci1 €Ny (i)

- Z Bkl/ Kij(uw)g (xu(t — w)) dux + Ly(t), i,j=1,2,3,

Cri€Ng(irj)

an ap 1
day dxp» axp|=|3
3

—_ = =
w W W

a3l dszy ass

By Bn 313:| Cui Cno G 01 02 01

By By By Cy Cyp Cyu|=]102 0 02,
_BBI B32 B3 31 C32 C33 0.1 0.2 0.1
[ m2 ms sin? /3¢t cos?+/3t  sin%2t

N Ny M2 | =0.01| cos?A/5¢ sin?v/5t  cos?2t |,
[ 731 M3 W33 sin?2t  cos?3t  sin?+/2t

Ly Ly L3

Ly Ly Ly

Ly L3z Lz

0.7 +0.24sin? /2t 0.41 + 0.5cos?¢ 0.74 +0.2sin’ ¢
=| 0.61+02cos?t 0.67+0.2sin’¢ 0.75+0.2sin’¢
0.59 + 0.4cos*t  0.5+0.41sin’t 0.76 + 0.2cos? ¢

(4.1)

4.2)

(4.3)

(4.4)

(4.5)
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Set

A =0.001, r=q=1, Kij(u) = |sinule™, i=1,2,3,j=1,2,3,
and

£ =g08) = —(Ix— 1]~ | +1])

x) =g(x =20 x—1| - |x+1]),
clearly,

My =Mg=0.05 = =0.05,

Z Z Bu— Z Clz— Z 312—

CreNi(1,1) CreNi(1,1) CreN1(1,2) CreNi(1,2)

Y Ci= ) B§=0. > Gi= ) Bi=o0.
CreN1(1,3) CreNi(1,3) CreNi(2,1) CreN1(2,1)

> Ch= ) Bh=l > Ch= ). Bh=0.
CrieN1(2,2) CreN1(2,2) CrieN1(2,3) CrieN1(2,3)

ki

Z C31 = Z B3 =0.5, Z 32 = Z B32 =
CrieN1(3,1) CreN1(3,1) CrieN1(3,2) CrieN1(3,2)

> Ch= ) By=
CrieN1(3,3) CrieN1(3,3)
1< a;; <3, r);; <0.01, a;’jn;; <0.03<1,

where ij € J = {11,12,13,21,22,23, 31,32, 33}. Then,
mm 8ij(t) = 11111}1{ {a,,( )(1- 2%%) |ay(e) - (1- n;j(t))a,y(t - n;(2))]

ije]
ki kil * ” 1
_ Z |Cij (t)|Mf - Z |Bij (t)| /0 |I<11(u)i duMg} l—ant }

CreNy (i) Cri€Ng (i) gy
>05>0, forallt>0, (4.6)
a0~ 2) (0 20507) - a0 (1@l -0 )

£y |l et p_ 1 1 <Li1‘>+
ij
CrieN; (i) 1- alnkll at/nz/ )

T D 1o

CueNr i) @
1 1 Li\"*
O S L e "
1-aimf1-aini\ &
CkIENq( i) k"1 ki ij "lij
o o] [k dot |
CrieNg (i) '

1
1-0.01

—(1-2) x (1-2x1x0.01) + (1 x e —1+0.01)
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5 —
X0
4ir X12(t)
x13(t)

3 H

3k

4

g5l I I I I I I I ]
0 5 10 15 20 25 30 35 40

Figure 1 Numerical solutions of system (4.1) for different initial values.

1
+1.2 x 0.05 x ! x 2+1.2 % 0.05 x
1-0.031-0.03 1-0.03
a 1
+1.2 x x 0.05 +1.2 x1x0.05x
1-A 1-0.031-0.03 1-0.03
~ -0.6538 < -0.5, forallt> 0. (4.7)

It follows that system (4.1) satisfies all the conditions in Theorem 3.1. Hence, system (4.1)
has exactly one positive almost periodic solution. Moreover, the almost periodic solu-
tion is globally exponentially stable. The fact is verified by the numerical simulation in
Figures 1-3 and their three different initial values, which are ¢;; =1, g1 = -3, ¢13 =4,
0n=2,00=5,03=3,p3=-Lpn=-2,033=-501=2, o =-1, o3 =5, o1 =4,
pn=2,¢3=1¢3=-3, pnn=-4 g3 =3and g =-2, pn =1, p13 = -5, o1 = -4,
V2 = -2, @o3 = -1, @33 = 3, 30 =4, 33 = -3, respectively.

Remark 4.1 Since [4-9] only dealt with SICNNs without leakage delays, and [14-19, 23,
24] give no opinions about the problem of almost periodic solutions for SICNNs with
time-varying leakage delays. One can observe that all the results in this literature and the
references therein can not be applicable to prove the existence and exponential stability
of almost periodic solutions for SICNNs (4.1). In this present paper, we employ a novel
proof to establish some criteria to guarantee the existence and exponential stability of
almost periodic solutions for SICNNs system with time-varying coefficients and leakage
delays. What will happen when one can increase the neuron’s order? Whether or not our
results and method in this paper are available for this case, it is an interesting problem,

and we leave it as our work in the future.
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_all

_3H

-5

5 -
%54(0)
4 X55(0)
x23(t)
3
2
1
0
-1
-2
-3
-4 1 1 1 1 1 1 J
0 10 15 20 25 30 35 40
Figure 2 Numerical solutions of system (4.1) for different initial values.
4
X3, (t)
x32(t)
x33(t)

15

20

25

Figure 3 Numerical solutions of system (4.1) for different initial values.

30 35 40
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