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1 Introduction
Let E and E∗ be a real Banach space and the dual space of E, respectively. Let C be a subset
of E and q >  be a real number. The generalized duality mapping Jq : E → E∗ is defined by

Jq(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖q,∥∥x∗∥∥ = ‖x‖q–}

for all x in E. In particular, J = J is called the normalized duality mapping and Jq(x) =
‖x‖q–J(x) for x �= . If E is a Hilbert space, then J = I , the identity mapping. It is well
known that if E is smooth, then Jq is single-valued, which is denoted by jq.
Recall the variational inequality problem of finding x∗ ∈ C such that

〈
Tx∗,x – x∗〉 ≥ , ∀x ∈ C, (.)

whereT : C →H is a nonlinearmapping. Variational inequalities theory, whichwas intro-
duced by Stampacchia [], emerged as an interesting and fascinating branch of mathemat-
ical and engineering sciences. The ideas and techniques of variational inequalities have
been applied in structural analysis, economics, optimization, operations research fields. It
has been shown that variational inequalities provide the most natural, direct, simple and
efficient framework for a general treatment of some unrelated problems arising in various
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fields of pure and applied sciences. In recent years, there have been considerable activities
in the development of numerical techniques including projection methods, Wiener-Hopf
equations, auxiliary principle and descent framework for solving variational inequalities;
see [–] and the references therein. These activities have motivated us to generalize and
extend the variational inequalities and related optimization problems in several directions
using novel techniques.
Recently, Verma [] proved the strong convergence of two-step projection method for

solving the following system of variational inequality problems in a Hilbert space: Find
(x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈ρT(y∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,ρ > ,

〈ηT(x∗) + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,η > .
(.)

In order to solve problem (.), Verma [] introduced the following projection method:

⎧⎨
⎩
xn+ = ( – αn)xn + αnPC[yn – ρT(yn)],

yn = ( – βn)xn + βnPC[xn – ηT(xn)], n≥ ,
(.)

where PC is the projection of a Hilbert space H onto C. This method contains several
previously known projection schemes as special cases, while some have been applied to
problems arising, especially, from complementarity problems, convex quadratic program-
ming and other variational problems; see [–, ] and the references therein.
Very recently, Yao et al. [] considered the following system of variational inequality

problems in -uniformly smooth Banach spaces: Find (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈ρT(y∗) + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,ρ > ,

〈ηT(x∗) + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C,η > ,
(.)

where T, T are two different nonlinear operators. Moreover, they modified projection
method to system (.) in Banach spaces and introduced the following iterative method:

⎧⎨
⎩
xn+ = ( – αn)xn + αn�C[yn – ρT(yn)],

yn =�C[xn – ηT(xn)], n≥ ,
(.)

where �C is a sunny nonexpansive retraction from E onto C.
One question arises naturally: Do Yao et al.’s new projection methods work for two bi-

variate nonlinear operators in -uniformly smooth Banach spaces, or more generally, in
q-uniformly smooth Banach spaces with q > , under more general control conditions?
In order to give some affirmative answers to the question raised above, we introduce

the following system of bivariate variational inequality problems in q-uniformly smooth
Banach spaces: Find (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – y∗, jq(x – x∗)〉 ≥ , ∀x ∈ C,ρ > ,

〈ηT(x∗, y∗) + y∗ – x∗, jq(x – y∗)〉 ≥ , ∀x ∈ C,η > .
(.)
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The purpose of this paper is not only to show that the projection technique can be ex-
tended to the system of bivariate variational inequality problems in q-uniformly smooth
Banach spaces, but also to suggest and analyze a new explicit iterative method, which in-
cludes the previously known projection methods as special cases, and whose convergence
analysis is proved under some more general conditions. Our results extend and unify the
corresponding results of [, , , ] and many others.

2 Preliminaries
Let E and E∗ be a real Banach space and the dual space of E, respectively. Let C be a
nonempty closed convex subset of E, and let S(E) = {x ∈ E : ‖x‖ = }. Then the norm of E
is said to be Gâteaux differentiable if the following limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ S(E). In this case, E is called smooth. The norm of E is said to be
uniformly Gâteaux differentiable if for each y ∈ S(E), the limit above is attained uniformly
for x ∈ S(E). The norm of E is called Fréchet differentiable if for each x ∈ S(E), the limit
above is attained uniformly for y ∈ S(E). The norm of E is called uniformly Fréchet differ-
entiable if the limit above is attained uniformly for x, y ∈ S(E). It is well known that (uni-
form) Fréchet differentiability of the norm of E implies (uniform) Gâteaux differentiability
of the norm of E.
Recall that ψE : [,∞)→ [,∞), the modulus of smoothness of E, is defined by

ψE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ S(E),‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if ψE(t)
t as t → . A Banach space E is

said to be q-uniformly smooth, if there exists a fixed constant c >  such that ψE(t) ≤ ctq

(q > ). It is well known that E is uniformly smooth if and only if the norm of E is uniformly
Fréchet differentiable. If E is q-uniformly smooth, then q ≤  and E is uniformly smooth,
and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E
is Fréchet differentiable. It is well known that Hilbert and Lebesgue Lp (p > ) spaces are
uniformly smooth. More precisely, Lp is min{p, }-uniformly smooth for every p > .
In order to prove our main results, we also need the following concepts and lemmas.
Let C be a nonempty closed and convex subset of a real Banach space E, and let K be a

nonempty subset of C. Let �C : C → K be a mapping, and �C is said to be:
(a) sunny if for each x ∈ C and t ∈ [, ], we have �C[tx + ( – t)�C] = �Cx;
(b) a retraction of C onto K if �Cx = x, ∀x ∈ K ;
(c) a sunny nonexpansive retraction if �C is sunny, nonexpansive and retraction

onto K .

Definition . An operator T : C → E is said to be μ-Lipschitz continuous in the first
variable if there exists a constant μ >  such that

∥∥T(x, ·) – T(y, ·)∥∥ ≤ μ‖x – y‖, ∀x, y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/481


Gong and Wen Journal of Inequalities and Applications 2013, 2013:481 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/481

Definition . Let C be a nonempty closed convex subset of a smooth Banach space E,
and Jq : E → E∗ is a generalized duality mapping. A bivariate operator T : C × C → E is
said to be:

(i) r-strongly accretive in the first variable if there exists a constant r >  such that

〈
T(x, ·) – T(y, ·), jq(x – y)

〉 ≥ r‖x – y‖q, ∀x, y ∈ C.

(ii) γ -cocoercive in the first variable if there exists a constant γ >  such that

〈
T(x, ·) – T(y, ·), jq(x – y)

〉 ≥ –γ
∥∥T(x, ·) – T(y, ·)∥∥q, ∀x, y ∈ C.

(iii) relaxed (γ , r)-cocoercive in the first variable if there exist constants γ , r >  such
that

〈
T(x, ·) – T(y, ·), jq(x – y)

〉 ≥ –γ
∥∥T(x, ·) – T(y, ·)∥∥q + r‖x – y‖q, ∀x, y ∈ C.

Remark . In Definition ., the r-strongly accretive operator includes the r-strongly
monotone and the r-strongly accretive ones defined in [, ] as special cases.

Remark . Obviously, an r-strongly accretive operator must be a relaxed (γ , r)-cocoer-
cive whenever γ = , but the converse is not true. Therefore the relaxed (γ , r)-cocoercive
operator is more general than r-strongly accretive one.

Lemma . [] Let E be a real q-uniformly smooth Banach space, then there exists a
constant Cq >  such that

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+Cq‖y‖q, ∀x, y ∈ E.

In particular, if E is a real -uniformly smooth Banach space, then there exists the best
smooth constant K >  such that

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x)

〉
+ ‖Ky‖, ∀x, y ∈ E.

Lemma . [, ] Let C be a nonempty subset of a smooth Banach space E, and let �C :
E → C be a retraction. Then �C is sunny and nonexpansive if and only if

〈
u –�C[u], J

(
y –�C[u]

)〉 ≤ , ∀u ∈ E, y ∈ C.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + σn, n≥ ,

where {γn} is a sequence in (, ) and {σn} is a sequence in R such that
(i)

∑∞
n= γn =∞;

(ii) lim supn→∞ σn/γn ≤  or
∑∞

n= |σn| <∞.
Then limn→∞ an = .
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3 Main results
By Lemma ., we establish the equivalence between the system of variational inequalities
(.) and the fixed point problem with projection technique, that is, (x∗, y∗) ∈ C × C is a
solution of the system of variational inequalities (.) if and only if

x∗ =�C
[
y∗ – ρT

(
y∗,x∗)], (.a)

y∗ =�C
[
x∗ – ηT

(
x∗, y∗)]. (.b)

This alternative formula enables us to suggest and analyze a two-step explicit projection
method for solving system (.), and this is the main motivation of our next result.

Theorem . Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E. Let Ti : C×C → E be relaxed (γi, ri)-cocoercive andμi-Lipschitz continuous in the
first variable, i = , . For arbitrarily chosen initial points (x, y) ∈ C×C, define sequences
{xn} and {yn} in the following manner:

⎧⎨
⎩
xn+ = ( – αn)xn + αn�C[yn – ρT(yn,xn)],

yn+ = ( – βn)xn+ + βn�C[xn+ – ηT(xn+, yn)],
(.)

where �C is a sunny nonexpansive retraction from E onto C, the following conditions are
satisfied:

(i) αn,βn ∈ [, ],
∑∞

n= αn =∞ and
∑∞

n= αn( – βn–) <∞;
(ii)  < ρ < ( q(r–γμ

q
 )

Cqμ
q


)


q– and  < η < ( q(r–γμ
q
)

Cqμ
q


)


q– .
Then the sequences {xn} and {yn} converge to x∗ and y∗, respectively, where (x∗, y∗) is a
solution of the system of variational inequalities (.).

Proof Let (x∗, y∗) ∈ C ×C be a solution of (.). From (.a) and (.), we have

∥∥xn+ – x∗∥∥ =
∥∥( – αn)xn + αn�C

[
yn – ρT(yn,xn)

]
– x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥�C
[
yn – ρT(yn,xn)

]
–�C

[
y∗ – ρT

(
y∗,x∗)]∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,x∗))∥∥. (.)

Since the operator T is relaxed (γ, r)-cocoercive and μ-Lipschitz continuous definition
in the first variable, it follows from Lemma . that

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,x∗))∥∥q

=
∥∥yn – y∗∥∥q – ρq

〈
T(yn,xn) – T

(
y∗,x∗), jq(yn – y∗)〉

+Cqρ
q∥∥T(yn,xn) – T

(
y∗,x∗)∥∥q

≤ ∥∥yn – y∗∥∥q – ρq
(
–γ

∥∥T(yn,xn) – T
(
y∗,x∗)∥∥q + r

∥∥yn – y∗∥∥q)
+Cqρ

q∥∥T(yn,xn) – T
(
y∗,x∗)∥∥q

≤ (
 – ρqr + ρqγμ

q
 +Cqρ

qμ
q

)∥∥yn – y∗∥∥q,
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which implies that

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,x∗))∥∥ ≤ θ

∥∥yn – y∗∥∥, (.)

where θ = q
√
 – ρqr + ρqγμ

q
 +Cqρqμ

q
 . We can obtain θ ∈ (, ) by condition (ii). Sub-

stituting (.) into (.), we have

∥∥xn+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αnθ

∥∥yn – y∗∥∥. (.)

Similarly, it follows from (.b) and (.) that

∥∥yn+ – y∗∥∥
=

∥∥( – βn)xn+ + βn�C
[
xn+ – ηT(xn+, yn)

]
– y∗∥∥

≤ ( – βn)
∥∥xn+ – y∗∥∥ + βn

∥∥�C
[
xn+ – ηT(xn+, yn)

]
–�C

[
x∗ – ηT

(
x∗, y∗)]∥∥

≤ ( – βn)
∥∥xn+ – y∗∥∥ + βn

∥∥xn+ – x∗ – η
(
T(xn+, yn) – T

(
x∗, y∗))∥∥. (.)

Since the operatorT is relaxed (γ, r)-cocoercive andμ-Lipschitz continuous definition
in the first variable, it follows that

∥∥xn+ – x∗ – η
(
T(xn+, yn) – T

(
x∗, y∗))∥∥q

=
∥∥xn+ – x∗∥∥q – ηq

〈
T(xn+, yn) – T

(
x∗, y∗), jq(xn+ – x∗)〉

+Cqη
q∥∥T(xn+, yn) – T

(
x∗, y∗)∥∥q

≤ ∥∥xn+ – x∗∥∥q – ηq
(
–γ

∥∥T(xn+, yn) – T
(
x∗, y∗)∥∥q + r

∥∥xn+ – x∗∥∥q)
+Cqη

q∥∥T(xn+, yn) – T
(
x∗, y∗)∥∥q

≤ (
 – ηqr + ηqγμ

q
 +Cqη

qμ
q

)∥∥xn+ – x∗∥∥q,

which implies that

∥∥xn+ – x∗ – η
(
T(xn+, yn) – T

(
x∗, y∗))∥∥ ≤ θ

∥∥xn+ – x∗∥∥, (.)

where θ = q
√
 – ηqr + ηqγμ

q
 +Cqηqμ

q
. We can obtain θ ∈ (, ) from condition (ii).

Substituting (.) into (.), we have

∥∥yn+ – y∗∥∥ ≤ ( – βn)
∥∥xn+ – y∗∥∥ + βnθ

∥∥xn+ – x∗∥∥
≤ ( – βn)

∥∥xn+ – x∗∥∥ + ( – βn)
∥∥x∗ – y∗∥∥ + βnθ

∥∥xn+ – x∗∥∥
=

[
 – ( – θ)βn

]∥∥xn+ – x∗∥∥ + ( – βn)
∥∥x∗ – y∗∥∥

<
∥∥xn+ – x∗∥∥ + ( – βn)

∥∥x∗ – y∗∥∥, (.)

that is,

∥∥yn – y∗∥∥ ≤ ∥∥xn – x∗∥∥ + ( – βn–)
∥∥x∗ – y∗∥∥. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/481
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It follows from (.) and (.) that

∥∥xn+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αnθ

(∥∥xn – x∗∥∥ + ( – βn–)
∥∥x∗ – y∗∥∥)

≤ [
 – ( – θ)αn

]∥∥xn – x∗∥∥ + αn( – βn–)
∥∥x∗ – y∗∥∥. (.)

Since  – θ > ,
∑∞

n= αn =∞ and
∑∞

n= αn( – βn–) <∞, we apply Lemma . to get

lim
n→∞

∥∥xn – x∗∥∥ = . (.)

Combining condition (ii), (.) and (.), we have

lim
n→∞

∥∥yn – y∗∥∥ = . (.)

It shows that limn→∞ xn = x∗, limn→∞ yn = y∗, respectively, satisfying the system of varia-
tional inequalities (.). This completes the proof. �

Theorem . Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E. Let Ti : C ×C → E be ri-strongly accretive and μi-Lipschitz continuous in the first
variable, i = , . For arbitrarily chosen initial points (x, y) ∈ C×C, define sequences {xn}
and {yn} in the following manner:

⎧⎨
⎩
xn+ = ( – αn)xn + αn�C[yn – ρT(yn,xn)],

yn+ =�C[xn+ – ηT(xn+, yn)],
(.)

where �C is a sunny nonexpansive retraction from E onto C, the following conditions are
satisfied:

(i) αn ∈ (, ),
∑∞

n= αn =∞;
(ii)  < ρ < ( qr

Cqμ
q

)


q– and  < η < ( qr

Cqμ
q

)


q– .

Then the sequences {xn} and {yn} converge to x∗ and y∗, respectively, where (x∗, y∗) is a
solution of the system of variational inequalities (.).

Proof As γ =  and βn = , from Remark ., we know that a relaxed (, r)-cocoercive
operator reduces to r-strongly accretive, and iterative algorithm (.) reduces to (.),
respectively. Then the conclusion follows immediately from Theorem .. This completes
the proof. �

If T,T : C → E are univariate operators, applying Theorem . to a -uniformly
smooth Banach space with constant Cq = K, we obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a -uniformly smooth Banach
space E. Let Ti : C → E be relaxed (γi, ri)-cocoercive and μi-Lipschitz continuous, i = , .
For arbitrarily chosen initial points x, y ∈ C, define sequences {xn} and {yn} in the follow-
ing manner:

⎧⎨
⎩
xn+ = ( – αn)xn + αn�C[yn – ρT(yn)],

yn+ =�C[xn+ – ηT(xn+)],
(.)
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where �C is a sunny nonexpansive retraction from E onto C, the following conditions are
satisfied:

(i) αn ∈ [, ],
∑∞

n= αn =∞;
(ii)  < ρ < r–γμ


Kμ


and  < η < r–γμ


Kμ


.

Then the sequences {xn} and {yn} converge to x∗ and y∗, respectively, where (x∗, y∗) is a
solution of the system of variational inequalities (.).

Since the Hilbert space H is a -uniformly smooth Banach space with the best smooth
constant K =

√

 , from Theorem . we obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let Ti :
C → H be relaxed (γi, ri)-cocoercive and μi-Lipschitz continuous, i = , . For arbitrarily
chosen initial points x, y ∈ C, define sequences {xn} and {yn} in the following manner:

⎧⎨
⎩
xn+ = ( – αn)xn + αnPC[yn – ρT(yn)],

yn+ = ( – βn)xn+ + βnPC[xn+ – ηT(xn+)],
(.)

where PC is the projection from H onto C, the following conditions are satisfied:
(i) αn,βn ∈ [, ],

∑∞
n= αn =∞ and

∑∞
n= αn( – βn–) <∞;

(ii)  < ρ < (r–γμ
 )

μ


and  < η < (r–γμ
)

μ


.
Then the sequences {xn} and {yn} converge to x∗ and y∗, respectively, where (x∗, y∗) is a
solution of the system of variational inequalities (.).

Remark . Theorems . and . extend Theorem . of [] from a -uniformly smooth
Banach space to a q-uniformly smooth Banach space. Moreover, the underlying operator
T is extended to a bivariate operator, and the property defined on T is more general than
[] in convergence analysis.

Remark . Theorems . and . extend Theorem . of [, , ] from a real Hilbert
space to a q-uniformly smooth Banach space. Moreover, the property defined on the un-
derlying operator T is extended from r-strongly monotone to relaxed (γ , r)-cocoercive,
respectively.

Remark . Algorithm (.) includes the projection methods in [, , , , ] as special
cases and unifies the previously known one-step and two-step projection-type methods
in a q-uniformly smooth Banach space. Furthermore, the computation workload of the
present explicit projection method is much less than the implicit algorithm in [] at each
iteration step.
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