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1 Introduction
The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh []
and subsequently several authors have discussed various aspects of the theory and ap-
plications of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy
orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming. Matloka
[] introduced bounded and convergent sequences of fuzzy numbers and studied some of
their properties. Later on, the sequences of fuzzy numbers were discussed by Diamond
and Kloeden [], Nanda [], Esi [], Dutta [–] and many others.
A fuzzy number is a fuzzy set on the real axis, i.e., a mapping u : R −→ [, ] which

satisfies the following four conditions:
(i) u is normal, i.e., there exists x ∈ R such that u(x) = .
(ii) u is fuzzy convex, i.e., u[λx + ( – λ)y] ≥min{u(x),u(y)} for all x, y ∈ R and for all

λ ∈ [, ].
(iii) u is upper semi-continuous.
(iv) The set [u] = {x ∈ R : u(x) > } is compact, where {x ∈ R : u(x) > } denotes the

closure of the set {x ∈ R : u(x) > } in the usual topology of R.
We denote the set of all fuzzy numbers on R by E and call it the space of fuzzy numbers.

λ-level set [u]λ of u ∈ E is defined by

[u]λ =

⎧⎨
⎩{t ∈ R : u(t)≥ λ} ( < λ ≤ ),

{t ∈ R : u(t) > λ} (λ = ).
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The set [u]λ is a closed, bounded and non-empty interval for each λ ∈ [, ] which is de-
fined by [u]λ = [u–(λ),u+(λ)]. R can be embedded in E since each r ∈ R can be regarded
as a fuzzy number

r(t) =

⎧⎨
⎩, t = r,

, t �= r.

LetW be the set of all closed bounded intervals A of real numbers such that A = [A,A].
Define the relation s onW as follows:

s(A,B) =max
{|A – B|, |A – B|

}
.

Then (W , s) is a complete metric space (see Diamond and Kloeden [], Nanda []). Then
Talo and Basar [] defined the metric d on E by means of Hausdorff metric s as

d(u, v) = sup
λ∈[,]

s
(
[u]λ, [v]λ

)
= sup

λ∈[,]
max s

(∣∣u–(λ) – v–(λ)
∣∣, ∣∣u+(λ) – v+(λ)

∣∣).
Lemma  (Talo and Basar []) Let u, v,w, z ∈ E and k ∈ R. Then

(i) (E,d) is a complete metric space.
(ii) d(ku,kv) = |k|d(u, v).
(iii) d(u + v,w + v) = d(u,w).
(iv) d(u + v,w + z) ≤ d(u,w) + d(v, z).
(v) |d(u, ) – d(v, )| ≤ d(u, v)≤ d(u, ) + d(v, ).

Lemma  (Talo and Basar []) The following statements hold:
(i) d(uv, ) ≤ d(u, )d(v, ) for all u, v ∈ E.
(ii) If uk −→ u as k −→ ∞, then d(uk , ) −→ d(u, ) as k −→ ∞.

The notion of I-convergence was initially introduced by Kostyrko et al. []. Later on,
it was further investigated from the sequence space point of view and linked with the
summability theory by Salat et al. [, ], Tripathy and Hazarika [–] and Kumar and
Kumar [] and many others. For some other related works, one may refer to Altinok et
al. [], Altin et al. [–], Çolak et al. [], Güngör [] and many others.
Let X be a non-empty set, then a family of sets I ⊂ X (the class of all subsets of X)

is called an ideal if and only if for each A,B ∈ I , we have A ∪ B ∈ I and for each A ∈ I
and each B ⊂ A, we have B ∈ I . A non-empty family of sets F ⊂ X is a filter on X if and
only if φ /∈ F , for each A,B ∈ F , we have A∩ B ∈ F and for each A ∈ F and each A⊂ B, we
have B ∈ F . An ideal I is called non-trivial ideal if I �= φ and X /∈ I . Clearly, I ⊂ X is a
non-trivial ideal if and only if F = F(I) = {X –A : A ∈ I} is a filter on X. A non-trivial ideal
I ⊂ X is called admissible if and only if {{x} : x ∈ X} ⊂ I . A non-trivial ideal I ismaximal
if there cannot exist any non-trivial ideal J �= I containing I as a subset. Further details on
ideals of X can be found in Kostyrko et al. [].

Lemma  (Kostyrko et al. [, Lemma .]) If I ⊂ N is a maximal ideal, then for each
A⊂N , we have either A ∈ I or N –A ∈ I .
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Example  If we take I = If = {A⊆N : A is a finite subset}, then If is a non-trivial admis-
sible ideal ofN and the corresponding convergence coincides with the usual convergence.

Example  If we take I = Iδ = {A ⊆ N : δ(A) = }, where δ(A) denotes the asymptotic
density of the set A, then Iδ is a non-trivial admissible ideal of N and the corresponding
convergence coincides with the statistical convergence.

Recall in [] that anOrlicz functionM is a continuous, convex, nondecreasing function
defined for x >  such thatM() =  andM(x) > . If the convexity of an Orlicz function is
replaced byM(x+ y) ≤M(x) +M(y), then this function is called themodulus function and
characterized by Ruckle []. The Orlicz functionM is said to satisfy �-condition for all
values of u if there exists K >  such thatM(u) ≤ KM(u), u≥ .

Lemma  [] Let M be an Orlicz function which satisfies �-condition, and let  < δ < .
Then, for each t ≥ δ, we have M(t) < Kδ–tM() for some constant K > .

TwoOrlicz functionsM andM are said to be equivalent if there exist positive constants
α, β and x such that

M(α)≤M(x)≤M(β)

for all x with  ≤ x < x.
Lindenstrauss and Tzafriri [] studied some Orlicz-type sequence spaces defined as

follows:

�M =

{
(xk) ∈ w :

∞∑
k=

M
( |xk|

ρ

)
< ∞ for some ρ > 

}
.

The space �M with the norm

‖x‖ = inf

{
ρ >  :

∞∑
k=

M
( |xk|

ρ

)
≤ 

}

becomes a Banach space which is called an Orlicz sequence space. The space �M is closely
related to the space �p which is an Orlicz sequence space withM(t) = |t|p for  ≤ p <∞.
In the later stage, different classes ofOrlicz sequence spaceswere introduced and studied

by Parashar and Choudhary [], Esi and Et [] and many others.
Throughout the article, N and R denote the set of positive integers and the set of real

numbers, respectively. The zero sequence is denoted by θ .
Let A = (aki) be an infinite matrix of real numbers. We write Ax = (Ak(x)) if Ak(x) =∑
i aikxk converges for each i.
Throughout the paper, wF denotes the set of all sequences of fuzzy numbers.

Definition  A set EF ⊂ wF is said to be solid if (bm) ∈ EF whenever d(bm, ) ≤ d(am, )
for allm ∈N and (am) ∈ EF .
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The following well-known inequality will be used throughout the article. Let p = (pk) be
any sequence of positive real numbers with  ≤ pk ≤ supk pk =G, D =max{, G–}, then

|ak + bk|pk ≤D
(|ak|pk + |bk|pk

)

for all k ∈N and ak ,bk ∈ C. Also, |ak|pk ≤max{, |a|G} for all a ∈ C.

2 Some new sequence spaces
Let I be an admissible ideal of the non-empty set S, and let p = (pk)∞k= be a bounded
sequence of positive real numbers. LetM = (Mk)∞k= be a sequence of Orlicz functions, let
A = (aki) be an infinite matrix of real numbers, and let x = (xk)∞k= be a sequence of fuzzy
numbers. Then we introduce the following sequence spaces:

WIF (M,A,p) =

{
(xk) ∈ wF :

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(x),L)

ρ

)]pk
≥ ε

}
∈ I

for some ρ >  and L

}
,

WIF
 (M,A,p) =

{
(xk) ∈ wF :

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
≥ ε

}
∈ I

for some ρ > 

}
,

WF
∞ (M,A,p) =

{
(xk) ∈ wF : sup


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
< ∞ for some ρ > 

}

and

WIF
∞ (M,A,p) =

{
(xk) ∈ wF : ∃K >  such that

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
≥ K

}
∈ I for some ρ > 

}
.

3 Main results
In this section we investigate the main results of this paper.

Theorem The spacesWIF (M,A,p),WIF
 (M,A,p),WIF∞ (M,A,p) andWF∞ (M,A,p) are

linear over the field of reals.

Proof We give the proof for the space WI
 (M,A,p) only, and the others will follow simi-

larly. Let x = (xk) and y = (yk) be two elements in WIF
 (M,A,p). Then there exist ρ > 

and ρ >  such that

A ε

=

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
≥ ε



}
∈ I
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and

B ε

=

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(y), ̄)

ρ

)]pk
≥ ε



}
∈ I .

Let α, β be two reals. By the continuity of the Orlicz functions (Mk)’s, we have the fol-
lowing inequality:


n

n∑
k=

[
Mk

(
d(Ak(αx + βy), ̄)

|α|ρ + |β|ρ

)]pk

≤D

n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
+D


n

n∑
k=

[
Mk

(
d(Ak(y), ̄)

ρ

)]pk

≤D

n

n∑
k=

[ |α|
|α|ρ + |β|ρ

Mk

(
d(Ak(x), ̄)

ρ

)]pk

+D

n

n∑
k=

[ |β|
|α|ρ + |β|ρ

Mk

(
d(Ak(y), ̄)

ρ

)]pk
.

Hence we have the following inclusion:

{
n ∈ N :


n

n∑
k=

[
Mk

(
d(Ak(αx + βy), ̄)

|α|ρ + |β|ρ

)]pk
≥ ε

}

⊆
{
n ∈N :D


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
≥ ε



}

∪
{
n ∈N :D


n

n∑
k=

[
Mk

(
d(Ak(y), ̄)

ρ

)]pk
≥ ε



}
.

This completes the proof. �

It is not possible in general to find some fuzzy number X – Y such that X = Y + (X –
Y ) (called the Hukuhara difference when it exists). Since every real number is a fuzzy
number, we can assume that SwF ⊂ wF is such a set of sequences of fuzzy numbers with
the Hukuhara difference property.
For the next result, we consider SWF∞ (M,A,p) ⊂ WF∞ (M,A,p) to be the space of se-

quences of fuzzy numbers with the Hukuhara difference property.

Theorem The space SWF∞ (M,A,p) is a paranormed space (not totally paranormed)with
the paranorm g defined by

g(x) = inf

{
ρ

pk
H : sup

k
Mk

(
d(Ak(x), ̄)

ρ

)
≤  for some ρ > 

}
,

where H =max{, supk pk}.
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Proof Clearly, g(–x) = g(x) and g(θ ) = . Let x = (xk) and y = (yk) be two elements in
SWF∞ (M,A,p). Now, for ρ,ρ > , we put

A =
{
ρ >  : sup

k
Mk

(
d(Ak(x), ̄)

ρ

)
≤ 

}

and

A =
{
ρ >  : sup

k
Mk

(
d(Ak(y), ̄)

ρ

)
≤ 

}
.

Let us take ρ = ρ + ρ. Then, using the convexity of Orlicz functionsMk ’s, we obtain

Mk

(
d(Ak(x + y), ̄)

ρ

)
≤ ρ

ρ + ρ
Mk

(
d(Ak(x), ̄)

ρ

)
+

ρ

ρ + ρ
Mk

(
d(Ak(y), ̄)

ρ

)
,

which in turn gives us

sup
k

[
Mk

(
d(Ak(x + y), ̄)

ρ

)]pk
≤ 

and

g(x + y) = inf
{
(ρ + ρ)

pk
H : ρ ∈ A,ρ ∈ A

}
≤ inf

{
ρ

pk
H
 : ρ ∈ A

}
+ inf

{
ρ

pk
H
 : ρ ∈ A

}
= g(x) + g(y).

Let tm → L, where tm,L ∈ E, and let g(xm – x) →  as m → ∞. To prove that g(tmxm –
Lx)→  asm → ∞, we put

A =
{
ρm >  : sup

k

[
Mk

(
d(Ak(xm), ̄)

ρm

)]pk
≤ 

}

and

A =
{
ρl >  : sup

k

[
Mk

(
d(Ak(xm – x), ̄)

ρs

)]pk
≤ 

}
.

By the continuity of the sequenceM = (Mk), we observe that

Mk

(
d(Ak(tmxm – Lx), ̄)
|tm – L|ρm + |L|ρs

)
≤Mk

(
d(Ak(tmxm – Lxm), ̄)

|tm – L|ρm + |L|ρs

)

+Mk

(
d(Ak(Lxm – Lx), ̄)
|tm – L|ρm + |L|ρs

)

≤ |tmk – L|ρm

|tm – L|ρm + |L|ρs
Mk

(
d(Ak(xm), ̄)

ρm

)

+
|L|ρs

|tm – L|ρm + |L|ρs
Mk

(
d(Ak(xm – x), ̄)

ρs

)
.
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From the above inequality it follows that

sup
k

[
Mk

(
d(Ak(tmxm – Lx), ̄)
|tm – L|ρm + |L|ρs

)]pk
≤ 

and, consequently,

g
(
tmxm – Lx

)
= inf

{(∣∣tm – L
∣∣ρm + |L|ρs

) pk
H : ρm ∈ A,ρs ∈ A

}
≤ ∣∣tm – L

∣∣ pkH inf
{
(ρm)

pk
H : ρm ∈ A

}
+ |L| pkH inf

{
(ρs)

pk
H : ρs ∈ A

}
≤ max

{∣∣tm – L
∣∣, ∣∣tm – L

∣∣ pkH }
g
(
xm

)
+max

{|L|, |L| pkH }
g
(
xm – x

)
. (.)

Note that g(xm) ≤ g(x) + g(xm – x) for all m ∈ N . Hence, by our assumption, the right-
hand side of relation (.) tends to  asm→ ∞ and the result follows. This completes the
proof. �

Theorem  Let M = (Mk) and S = (Sk) be two sequences of Orlicz functions. Then the
following statements hold:

(i) WIF (S,A,p) ⊆WIF (M ◦ S,A,p) provided p = (pk) is such that G = infpk > .
(ii) WIF (M,A,p)∩WIF (S,A,p) ⊆WIF (M + S,A,p).

Proof (i) Let ε >  be given. Choose ε >  such that max{εG , εG
 } < ε. Choose  < δ < 

such that  < t < δ implies that Mk(t) < ε for each k ∈ N . Let x = (xk) ∈ WIF (S,A,p) be
any element. Put

Aδ =

{
n ∈N :


n

n∑
k=

[
Sk

(
d(Ak(x),L)

ρ

)]pk
≥ δG

}
.

Then, by the definition of ideal, we have Aδ ∈ I . If n /∈ Aδ , we have


n

n∑
k=

[
Sk

(
d(Ak(x),L)

ρ

)]pk
< δG

⇒
n∑
k=

[
Sk

(
d(Ak(x),L)

ρ

)]pk
< nδG

⇒
[
Sk

(
d(Ak(x),L)

ρ

)]pk
< δG for k = , , , . . . ,n

⇒ Sk
(
d(Ak(x),L)

ρ

)
< δG. (.)

Using the continuity of the sequenceM = (Mk) from relation (.), we have

Mk

(
Sk

(
d(Ak(x),L)

ρ

))
< ε for k = , , , . . . ,n.
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Consequently, we get

n∑
k=

[
Mk

(
Sk

(
d(Ak(x),L)

ρ

))]pk
< n ·max

{
εG , ε

G


}
< nε

⇒ 
n

n∑
k=

[
Mk

(
Sk

(
d(Ak(x),L)

ρ

))]pk
< ε.

This implies that

{
n ∈ N :


n

n∑
k=

[
Mk

(
Sk

(
d(Ak(x),L)

ρ

))]pk
≥ ε

}
⊆ Aδ ∈ I .

This completes the proof.
(ii) Let x = (xk) ∈WIF (M,A,p)∩WIF (S,A,p). Then the result follows from the follow-

ing inequality:


n

n∑
k=

[
(Mk + Sk)

(
d(Ak(x),L)

ρ

)]pk
≤D


n

n∑
k=

[
Mk

(
d(Ak(x),L)

ρ

)]pk

+D

n

n∑
k=

[
Sk

(
d(Ak(x),L)

ρ

)]pk
. �

Taking L = ̄ in the proof of the above theorem, we have the following corollary.

Corollary  Let M = (Mk) and S = (Sk) be two sequences of Orlicz functions. Then the
following statements hold:
(i) WIF

 (S,A,p) ⊆WIF
 (M ◦ S,A,p) provided p = (pk) is such that G = infpk > .

(ii) WIF
 (M,A,p)∩WIF

 (S,A,p) ⊆WIF
 (M + S,A,p).

The proofs of the following two theorems are easy and so they are omitted.

Theorem  Let  < pk ≤ qk and ( qkpk ) be bounded, then

WIF
 (M,A,q) ⊆WIF

 (M,A,p).

Theorem  For any two sequences of positive real numbers p = (pk) and q = (qk), the fol-
lowing statement holds:

Z(M,A,p)∩ Z(M,A,q) �= φ for Z =WIF ,WIF
 ,WIF

∞ and WF
∞ .

Proposition  The sequence spaces Z(M,A,p) are solid for Z =WIF
 and WIF∞ .

Proof We give the proof of the proposition for WIF
 (M,A,p) only. Let x = (xk) ∈

WIF
 (M,A,p) and y = (yk) be such that d(yk , ̄) ≤ d(xk , ̄) for all k ∈ N . Then, for given

ε > , we have

B =

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(x), ̄)

ρ

)]pk
≥ ε

}
∈ I .
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Again the set

E =

{
n ∈N :


n

n∑
k=

[
Mk

(
d(Ak(y), ̄)

ρ

)]pk
≥ ε

}
⊆ B.

Hence E ∈ I and so y = (yk) ∈ WIF
 (M,A,p). Thus the spaceWIF

 (M,A,p) is solid. �
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