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Abstract

Let {ani,m € Z9,i < n} be an array of real numbers, and let {X;,i € Z¢} be the
martingale differences with respect to {Ga, n € 279} satisfying

E(EX1GK)|Gm) = EX|Gkam) a.5., where k A m denotes componentwise minimum,
(G ke Zf} is a family of o-algebras such that Vk < n, G C G, C G, and X is any
integrable random variable defined on the initial probability space. The aim of this
paper is to obtain some results concerning complete convergence of weighted sums
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1 Introduction
The concept of complete convergence for sums of independent and identically distributed
random variables was introduced by Hsu and Robbins [1] as follows: A sequence of random

variables {X,,} is said to be completely to a constant c if

ZP(IX,, —c| > e) <oo foralle>0.

n=1

This result has been generalized and extended to the random fields {X,, n € Z%} of random
variables. For example, Fazekas and Témaécs [2] and Czerebak-Mrozowicz et al. [3] for
fields of pairwise independent random variables, and Gut and Stadtmiiller [4] for random
fields of i.i.d. random variables.

Let Z, be the set of positive integers. For fixed d € Z,, set fo ={n=(n,ny,...,ng):n; €
Z.,i=1,2,...,d} with coordinatewise partial order, <, i.e., for m = (my,my,...,my),n =
(n1,m,...,1y) er, m <nifandonlyifm; <n;,i=1,2,...,d.Forn=(n,ny,...,n4) € Zf,
let |n| = ]_[?7:1 n;. For a field {a,,n € fo} of real numbers, the limit superior is defined by
inf,>1 SUp >, an and is denoted by limsup | _, o, @n.

Note that |n| — oo is equivalent to max{n, ny,...,ny} — 00, which is weaker than the
condition min{m, ny,...,ng} — oo when d > 2.

Let {X,,n € Z%} be a field of random variables, and let {a,, n € Z% k < n} be an array
of real numbers. The weighted sums } ; _; @nxXk can play an important role in various
applied and theoretical problems, such as those of the least squares estimators (see Kafles
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and Bhaskara Rao [5]) and M-estimates (see Rao and Zhao [6]) in linear models, the non-
parametric regression estimators (see Priestley and Chao [7]), etc. So, the study of the
limiting behavior of the weighted sums is very important and significant (see Chen and
Hao [8]).

Now, we consider the notion of martingale differences. Let {Gi, k € Z%} be a family of
o -algebras such that

gkcgncgy kaﬂ,
and for any integrable random variable X defined on the initial probability space,
E(E(X|G1)|9m) = E(X|Gkrm) 2., (1.1)

where k A m denotes the componentwise minimum.
An {Gy, k € Z%}-adapted, integrable process {Yi, k € Z%} is called a martingale if and
only if

E(Yn|gm) =Yman as.

Let us observe that for martingale {(Y,,Gn),n € Zf}, the random variables

Xn= Z (_l)zlii:laiyn—a»

ac{0,1}4

wherea = (a1,a,,...,a4)andn € Zf, are martingale differences with respectto {G,,n € Zf}
(see Kuczmaszewska and Lagodowski [9]).

For the results concerning complete convergence for martingale arrays obtained in the
one-dimensional case, we refer to Lagodowski and Rychlik [10], Elton [11], Lesigne and
Volny [12], Stoica [13] and Ghosal and Chandra [14]. Recently, complete convergence for
martingale difference random fields was proved by Kuczmaszewska and Lagodowski [9].

The aim of this paper is to obtain some results concerning complete convergence of

weighted sums ) . __an;Xi, where {ap;,n € Zf,i < n} is an array of real numbers, and

i<n

{Xi,ie Zf} is the martingale differences with respect to {Gy,n € Zﬁf } satisfying (1.1).

2 Results
The following moment maximal inequality provides us a useful tool to prove the main
results of this section (see Kuczmaszewska and Lagodowski [9]).

Lemma 2.1 Let {(Yy, Gu), 0 € Z%} be a martingale, and let {(Xn, Ga),n € Z%} be the mar-
tingale differences corresponding to it. Let q > 1. There exists a finite and positive constant
C depending only on q and d such that

/2
E(r]?gyl( |Yk|‘1) < CE<ZX§>q . @.1)

k<n

Let us denote G = 0{G; : j < i}. Now, we are ready to formulate the next result.
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Theorem 2.2 Let {a,,i,n € Z%i < n} be an array of real numbers, and let {X,, n € Z%} be

the martingale differences with respect to {Ga,n € Z%) satisfying (1.1). Forap >1,p > 1 and

1

a > 3, we assume that

(i) Yo, Im|*"2 Y PllaniXil > [n]*} < oo,

(i) >, In[e-D-3+a2 > i<n lanilTE(1Xi| U [|an;Xi| < [n|*]) < 00 for g > 2,

(i) g D=2 3 lani PE(1Xi| I |aniXi] < In|*]) < 00 for1< g <2 and

(iii) Y, In|*’~>P{max;<y | Ziﬁ E(aniXil[|aniXi| < |n|*]|G)| > €|n|*} < oo for all € > 0.

Then we have

Z |n|"‘p’2P{max 1Sj] > 6|n|“} <oo foralle >0, (2.2)
j<n

n
where Sy = )1 _in @niXi.

Proof Let us notice that the series Y, |n|*?~2 is finite, then (2.2) always holds. Therefore,

we consider only the case such that ) |n|*?~2 is divergent. Let X,; = Xil[|an;Xi| < [n|*],

Xni=Xni—EXnilGf) and S35 = 3
Then

*
i< AniXy ;-

Z |n|"‘”‘2P{max 1Sj] > e|n|“}
. j<n

<> Inl*"PflaniXil > In|*}
n

" Z |n|wp—zp{r}1§anx Z“n,iXiI[m“viXi' = |n|a]
n 15)

<D Y PllaniXil > Inf*} + D '“'“p‘ZP{r}l%,X
n n -

i<n
€
> =|n[*
2

ZE(ﬂn,iXil[|ﬂn,iXi| < n|*]IG;)

i<j

> e|n|"}

Z(ﬂn,ixil[|dn,ixi| < |n|?]

i<j

- E(aniXil[laniXi| < In|*]|G}))

+ Z |n|°"’_2P{max
- j<n

:11 +12 +13.

€
>—|n|“}
2

Clearly, I; < oo by (i), and I3 < oo by (iii). It remains to prove that I; < co. Thus, the proof
will be completed by proving that

Z |n|"‘”‘2P{max|Sj;j| > e|n|°‘} < 00.
. j<n = 7

To prove it, we first observe that {(S;:,j’ G;),j < n} is a martingale. In fact, if i > j, then G;; C
G and by (1.1), we have

E(aniX;;1G;) = E(aniXni — E(aniXnilG;)|Gi)

= E(E(aniXni — E(aniXailG;)1G:)1G;)

Page 3 of 7
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= E(aniXni — E(aniXnilG;)|Ginj)
=0.

Then, by the Markov inequality and Lemma 2.1, there exists some constant C such that
E(maxj<n |S;;17)

In |4

C ql2
2 2
= |n|WE<Z““‘X:"> e

i<n

P{max|5ﬁi| > elnl"‘} <C
j<n ’

Case g > 2; we get
I < imw’“Zﬂa X
‘= |2 i<n e

< CIn|770 Y " E(|aniXi|I[|aniXi| < [n[*]).

i<n
Note that the last estimation follows from the Jensen inequality. Thus, we have
Z |n|“1"2P{max|S* | > e|n|0‘}
j<n '™
n
<CY 1IN " E(|ay X141 |aniXi| < In|*]) < 00
n i<n

by assumption (ii).
Case 1< g<2;weget

C
* |4
s oS Y ety
i<n

< Cln|™1 ) " E(janiXilI[|aniXi < n|*]).

i<n

Therefore, for 1 < g < 2, we obtain
Z |n|°"’_2P{max’S:‘1j’ > e|n|°‘}
. j<n ’

<CY 02N " E(|aniXi|I[|anXi| < [n|*]) <00
by assumption (ii)’. Thus, I; < oo for all g > 1, and the proof of Theorem 2.2 is complete.

d

Corollary 2.3 Let {a,,i,n € Zf,i < n} be an array of real numbers. Let {X,,n € Zf} be
martingale differences with respect to {Gn, n € Z%} satisfying (1.1), and EX, = 0 for n € Z%.
Letp>1,a> % and ap > 1. Assume that (i) and for some q > 1, (ii) or (ii)’ hold respectively. If
max Y " E(an;i Xl [|aniXil < In*]IG;) = o(In|*), (2.3)

na
=S

then (2.2) holds.
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Proof 1t is easy to see that (2.3) implies (iii). We omit details that prove it. O

The following corollary shows that assumption (iii) in Theorem 2.2 is natural, and in the
case of independent random fields, it reduces to the known one.

Corollary 2.4 Let {a,,i,n € Zf,i < n} be an array of real numbers. Let {X,,n € Zf} be a
field of independent random variables such that EXy, =0 forne Z% Letp > 1, a > % and
ap > 1. Assume that (i) and for some q > 1, (ii) or (i)’ hold respectively. If

e X Y E(aniXil[|anXil < n|*]) > 0 as |n| —> oo, (2.4)
=g

then (2.2) holds.

Proof Since {X,,n € fo } is a field of independent random variables, we have

max > E(aniXillaniXil < InI*]IG7) =

In| — [n|*
i<j

max ZE(ﬂn,iXil[lan,iXi| < n|*]).
e

Now, it is easy to see that (2.4) implies (iii) of Theorem 2.2. Thus, by Theorem 2.2, result
(2.2) follows. O

Remark Theorem 2.2 and Corollary 2.4 are extensions of Theorem 4.1 and Corollary 4.1
in Kuczmaszewska and Lagodowski [9] to the weighted sums case, respectively.

Corollary 2.5 Let {ay,i,n € Z%,1 <i < n} be an array of real numbers. Let {Xy,n € Z%)
be the martingale differences with respect to {Gn,n € Z%} satisfying (1.1) and EX, = 0. Let
p>1a>%andap>1and E|Xy|"** < 00 for hy with 0 < An <1 forneZ4.If

DI 2| E Y gy ELXG ] < oo, (25)
n i<n
max E(|aniXil[|aniXil < In|*]IG]) = o(In]*), (2.6)
T ig
then (2.2) holds.

Proof If the series Y |n|*’~2 < 0o, then (2.2) always holds. Hence, we only consider the
case Y, [n|*?~2 = co. It follows from (2.5) that

|n|—0l(1+)\n) Z |an‘i|1+)\nE|Xi|l+An <1

i<n

By (2.5) and the Markov inequality,
> In[**2P(|janiXi| > n|)

<> I[P a0 Y g A EXG [ < oo, 2.7)
n

i<n

which satisfies (i) of Theorem 2.2.
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As the proof of Corollary 2.3, (2.6) implies (iii) of Theorem 2.2.
It remains to show that Theorem 2.2(ii) or (ii)’ is satisfied.

For1<gq<2,take 1+ A, < g. Then we have

Z|n|“<p D2 |ans “E(1X:|I [ |ani Xl < In|*])

1<n

< Z |n|olp—2 |n|—a(1+ln) |n|—0tq+ol(1+)un) |n|0tq—a(l+)\n) Z |ﬂn,i |1+AnE|Xi|1+)\n

n i<n

= " InP2 a0 N g AR ELX P < oo by (2.5),

n i<n
which satisfies Theorem 2.2(ii)’. Hence, the proof is complete. d

Corollary 2.6 Let {a,,i,n € Z%,1 <i < n} be an array of real numbers, and let {Xy,n €
Zﬁf } be the martingale differences with respect to {Gy,n € Zf} satisfying (1.1), EX,, = 0 and
E|Xu? <ooforl<p<?2.Leta > %,ap>1and1<p<2.]f

> laniPEIXilP = O(In]*)  for0 <5 <1, (2.8)

1<i<n
and Theorem 2.2(iii) hold, then (2.2) holds.

Proof By (2.8) and the Markov inequality,

Y I Y " P(|aniXil > n|*)

n i<n

< 3 e EE
In|*?

l<l‘l

<CY In|?" <oo. (2.9)

By taking g < p, we have

Z|n|“<p D2 " and TE(1X|I[|an;i Xi| < €|n|*])

1<n

< Z )" |aniPEIXiI”

1<n

<C) In[" <oo. (2.10)

Hence, by (2.9) and (2.10), conditions (i) and (ii)’ in Theorem 2.2 are satisfied, respectively.
To complete the proof, it is enough to note that by EX,, = 0 for n € Z% and by (2.8), we

getforj<n

In[™ > " |ans | E|Xi|I[|aniXi] < €[n|*] - 0 as [n| > oo. (2.11)

i<j

Hence, the proof is complete. d
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Corollary 2.7 Let {Xn,n € Z%) be the martingale differences with respect to {Ga,n € Z%}
satisfying (1.1), let EX,, = 0 and E|X,|? < 0o for 1 < p < 2 and be stochastically dominated
by a random variable X, i.e., there is a constant D such that P(|Xy,| > x) < DP(|X| > x) for
allx >0 and n € Z%. Let {an,i,n € Z%,i < n} be an array of real numbers satisfying

Z |anilf = O(|n|‘3) forO0<d8<1. (2.12)

If Theorem 2.2(iii) holds, then (2.2) holds.
Proof From (2.12), (2.8) follows. Hence, by Corollary 2.6, we obtain (2.2). O

Remark Linear random fields are of great importance in time series analysis. They arise
in a wide variety of context. Applications to economics, engineering, and physical science
are extremely broad (see Kim et al. [15]).

Let Y = Zizl ax+iXi, where {aj,i € Zj’_l} is a field of real numbers with ) ; > 1|a;| < oo,
and {X;,i € Z%) is a field of the martingale difference random variables.
Define an; = ) ;< @isk- Then we have

Z Yic= Z Ztli+kXi=Z Z ﬂi+kXi=Zﬂn,iXi-

1<k<n 1<k<n i>1 i>1 1<k<n i>1

Hence, we can use the above results to investigate the complete convergence for linear
random fields.
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