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1 Introduction
In [1], KnezZevi¢-Miljanovi¢ considered the Cauchy problem

u'(t) = P(H)t*u(t)®, te(0,1],
u(0) =0, u'(0) = A,

1)

where P is continuous, a,0,A € Rwitho < 0and A > 0,and fol |P(£)|t%° dt < 00. Moreover,

in [2], Kawasaki and Toyoda considered the Cauchy problem

u’(t) =f(t,u(t)), foralmosteveryte [0,1],
u(0) =0, /' (0) = A,

(2)

where f is a mapping from [0,1] x (0,00) into R and A € R with A > 0. They proved the

unique solvability of Cauchy problem (2) using the Banach fixed point theorem. The the-

orem in [2] is as follows.

Theorem Suppose that a mapping f from [0,1] x [0, 00) into R satisfies the following.

(a) The mapping t — f(t, u) is measurable for any u € (0,00), and the mapping
u +—> f(t,u) is continuous for almost every t € [0,1].

(b) |f(¢,m)| = |f(t, uz)| for almost every t € [0,1] and for any u,u, € [0, 00) with
uy < us.

(¢) There exists o € R with 0 <« < A such that

1
/ [f(t,oct)| dt < 00.
0

(d) There exists B € R with B > 0 such that

‘g(w) _ Al
u U

for almost every t € [0,1] and for any u € (0, 00).
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Then there exists h € R with 0 < h <1 such that Cauchy problem (2) has a unique solution

in X, where X is a subset

X{

of C[0, h], which is the class of continuous mappings from [0, h] into R.

u € C[0,h],u(0) = 0,u'(0) = A
and at < u(t) for any t € [0, h]

The case that f(¢, u(t)) = P(t)t*u(t)° in the above theorem is the theorem of Knezevi¢-
Miljanovi¢ [1].

In this paper, we consider the Cauchy problem

u’(t) =f(t,u(t),u'(t)), foralmosteveryt e [0,1],
u(0) =0, ' (0) = A,

where f is a mapping from [0,1] x (0,00) x R into R and A € R with A > 0. We prove the
unique solvability of this Cauchy problem using the Banach fixed point theorem.
In Section 2, we consider the following four cases for # and v.
() Decreasing for u in f(t, u,v) (bl) and decreasing for v in f(¢, u, v) (b3).

(II) Decreasing for u in f(¢,u,v) (bl) and increasing for v in f(¢, u, v) (b4)
(III) Increasing for u in f(t,u,v) (b2) and decreasing for v in f (¢, u, v) (b3)
(IV) Increasing for u in f(t, u,v) (b2) and increasing for v in f (¢, u, v) (b4).

Theorems 2.1, 2.2, 2.3 and 2.4 are the cases of (I), (II), (III) and (IV), respectively.

2 Main results

In this section, we consider the Cauchy problem

u"(t) =f (¢ u(t),u'(t)), foralmostevery ¢ e [0,1], 3)
u(0) =0, ' (0) = A,
where f is a mapping from [0,1] x (0,00) x R into R and A € R with A > 0.

First, we consider the case of (I).

Theorem 2.1 Let A be a real number with A > 0. Suppose that a mapping f from [0,1] x
(0,00) x R into R satisfies the following:
(a) The mapping t — f(t,u,v) is measurable for any (u,v) € (0,00) X R, and the
mapping (u,v) —> f(t,u,v) is continuous for almost every t € [0,1];
(bl) [f(t,m,v)| = |f(¢t, u2,v)| for almost every t € [0,1], for any uy, us € (0,00) with
w1 < uy and for any v € R;
(b3) |f(t,u,v1)| = |f(t, u,v5)| for almost every t € [0,1], for any u € (0, 00) and for any
Vi, V2 € R with vi <o
(c1) There exist a; € R with 0 < ay < A and as € R with oy < A such that

1
/ lf(t, art, O{2)| dt < (oo
0
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(d1) There exists B € R with By > 0 such that

< ﬂl If(t’ u, V)|

u

—(t,u,v)

-
ou

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(d2) There exists By € R with By > 0 such that

’ g—];(t, u,v)

= ﬁZ lf(ti u, V) ’

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(e) There exists the limit

lim 1 /[ sf (s, u(s),u/(s)) ds
0

t—0+ 2

for any continuously differentiable mapping u from [0,1] into [0, c0);
(f1) For ay and ay,

1 L
lim —/ Slf(S,(IlS,az)|dS=0.
0

t—0+ {2

Then there exists h € R with 0 < h <1 such that Cauchy problem (3) has a unique solution

in X, where X is a subset

u e CH0,h],u(0)=0,4/(0) = A,

X=1u| ot <u(t) and a, <u'(t) for any t € [0, h]
tu (£)—u(t)
2

and there exists the limit lim;_, o, ;

of C1[0, 1], which is the class of continuously differentiable mappings from [0, h) into R.

Proof 1t is noted that C'[0, /] is a Banach space by the maximum norm
||l = max{max{’u(t)| |t e [O,h]},max{|u’(t)| |t e [O,h]}}.

Instead of Cauchy problem (3), we consider the integral equation

u(t) =1t + /t(t —8)f (s, u(s), u/(s)) ds.
0

By condition (c1), there exists /; € R with 0 < /; <1 such that

& B -
f V(t,alt,a2)|dt<min{k—a1,k—a2,(— +2,32) }
0

[25]

By condition (f1), there exists # € R with 0 < / < /1; such that

1 [t g
sup L‘_Z/o SV(&Olls,az){dSS/O f(t ent, )| dt.

te(0,h]
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Let A be an operator from X into C'[0, %] defined by

Au(t) =Mt + ft(t —8)f (s, u(s), u/(s)) ds.
0

Since a mapping ¢ —> At belongs to X, X # {). Moreover, we have A(X) C X. Indeed, by
condition (a), Au € C'[0, k], Au(0) = 0 and

(Au)(0) = [)\. + /Otf(s, u(s), u'(s)) ds:| =\

t=0

By conditions (bl) and (b3), we obtain that
Au(t) = At + /t(t - s)f(s, M(S),u/(s)) ds
0
h
> At — t/ [f(s,u(s), u’(s)) | ds
0
h
> At — t/ [f(s, s, oz2)| ds
0
> aqt
and
(Au)'(t) = 1 + /otf(s, u(s), u'(s)) ds
h
> A —/O [f(s,u(s),u/(s))’ds
h
> A—/ If (s, cus,00) | dls
0
> ap

for any t € [0, ]. Moreover, by condition (e), there exists the limit

Au) A t
lim HAu)Y(©) - Ault) = tl_i)r(r)1+ %2 /(; sf (s, u(s), u'(s)) ds.

t—>0+ 2

We will find a fixed point of A. Let ¢ be an operator from X into C'[0, %] defined by

O ifr e (0,h),

S K

Let ¢[X] be a subset defined by
oIX] = {plu] | u € X}.

Then we have

v e CH0, k], v(0) = A, }

plX] = {v ,
a1 < v(t) and oy < v(t) + v/ (¢) for any ¢ € [0, /]
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and ¢[X] is a closed subset of C![0, 4]. Hence it is a complete metric space. Let ® be an
operator from ¢[X] into ¢[X] defined by

D¢[u] = p[Au].
By the mean value theorem, for any u;, u; € X, there exist mappings &, n such that

S (& (0), uy (8)) — f (6 ua (2), s (1))

° d
= %(t,é(t),ui(t))(ul(t) —us(2)) + a_fv
of

= ( E(tf(t), uy(t)) + g—{(t, uy(t), n(t))> (0[m](t) — [u2](2))

(&, ua(0), n(2)) (w1 (£) — 5 (2))

0
. tai; (8,20, (D) (9Lia] ©) - 9] (),

min{ul(t),uz(t)} <& < max{ul(t), uz(t)}
and
min{u}(£), uy(2)} < n(t) < max{u; (), uy(£)}
for almost every ¢ € [0, &]. Therefore, by conditions (b1), (b3), (d1) and (d2), we obtain that

If (&, w1 (8), ) (8)) = f (£, ua (8), u (1)) |

ou

( Y (6@ (0) + g—{(t, s 0, n(t))> (oln)(©) — o lu2)()

a
+ ta—fv (t,u2(0), (@) (@[] (2) - w[uz]/(t))‘

0
- (t‘é(us(n,u;m)

+

7 (b0 ) ol - oluc))

+1

S—fv(t, us(t),1(2)) ’ [(oln] (8) - @lux] @)

< (5% + /32) If (¢, ont, 00) || @[11](2) — @ [u2] (2) |
+ Bot|f (£, ont, )| | (@[] () - @[u2] (1))
for almost every ¢ € [0, /1]. Therefore we have

EPAGERAAIG]

= ‘ % / (= 9)(f (s, u1(5), uy () —f (5, u2(5), s (5))) dls
0
< /0 If (s, 21.(5), 1 (5)) = f (5, 12 (5), 5 () ) | ds

5/0 [<%+ﬁ2) If (s, 15, 002) || [211](5) = @[u2)(5)|
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+ Basf (s, on8,00) || (0[] (s) — @[] (9)) | ] ds
< (— ; Zﬂz) f (5,15, | olan] - ol |

for any ¢ € [0, 1]. Moreover, we have

|(<I><ﬂ[u1])'(t) — (Pplus]) ()|
1
2

s ui (s s)) —f(s, Uy (s), u;(s))) ds

/ (8, u1(5), uy(8)) = f (5, 22(5), w3 (5)) | ds

1 [(& . ,32) 15,015, 0) [ ](5) - 0 [102](5)|

t2

+ Bas|f (s, ans, o) || (@[] (5) — (2] (9)) | ] ds
= — + ,32 V(S, oS, 0[2)’ ds
(231 0

h
‘B /0 (s s, )| ds} o] - plus]|

for any ¢ € [0, /]. Hence we obtain that

| @[] - Po(us]|

h1
< ((’% + 2ﬂz) /0 |f (s, 018, 02) | ds | 0 [ua1] - p[uo] .

By the Banach fixed point theorem, there exists a unique mapping ¢[u] € ¢[X] such that
®plu] = ¢lu]. Then Au = u. u is a solution of (3). O

Next, we consider the case of (II).

Theorem 2.2 Let A be a real number with A > 0. Suppose that a mapping f from [0,1] x
(0,00) x R into R satisfies the following:
(a) The mapping t — f(t, u,v) is measurable for any (u,v) € (0,00) x R, and the
mapping (u,v) —> f(t,u,v) is continuous for almost every t € [0,1];
(bl) |f(t, u1,v)| = |f (¢, uz,v)| for almost every t € [0,1], for any uy,u; € (0,00) with
1 < uy and for anyv e R;
(b4) [f (&, u,v1)| < |f(t u,va)| for almost every t € [0,1], for any u € (0, 00) and for any
v, Vo € R with vi < vy;

(c2) There exist a1 € R with 0 < ay < A and oy € R with ay > A such that

1
/ lf(t;alt,dz)| dt < oo;
0

Page 6 of 14
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(d1) There exists B € R with By > 0 such that

< ﬁl lf(tr u, V)|

b
‘—f(t, u, V)‘
ou 17

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(d2) There exists B, € R with By > 0 such that

‘g—{(t, u,v)| < By [f(t, u, V)|

Jor almost every t € [0,1], for any u € (0,00) and for any v € R;
(e) There exists the limit

lim l/tsf(s,u(s),u/(s)) ds

t—0+ t2 0

for any continuously differentiable mapping u from [0,1] into [0, 00);
(f1) For ay and as,

t

1
t]_l)l;r)l)f A ; s[f(s, s, a2)| ds=0.

Then there exists h € R with 0 < h <1 such that Cauchy problem (3) has a unique solution
in X, where X is a subset

u € C'0,h],u(0) = 0,4'(0) = A,
X=1u| ot <u(t) and u'(£) < ay for any t € [0, h]

tu (t)-u(t)
-z

and there exists the limit lim,_, (., ;

of C'[0, 1].

Proof By condition (c2), there exists /; € R with 0 < /; <1 such that

& B B
/ [f(t,oelt,oez)|dt<min{k—a1,a2—A,<a— +2/32) }
0 1

By condition (f1), there exists # € R with 0 < # < /i3 such that

1t "
sup t_z‘/(; Slf(S;OlIS’OlZ)MSS/O lf(t,O[lt,OZ2)|dt.

te(0,4]

Let A be an operator from X into C'[0, /] defined by

Au(t) =Mt + ft(t —8)f (s, u(s), u/(s)) ds.
0

Since a mapping t —> At belongs to X, X # (). Moreover, we have A(X) C X. Indeed, by
condition (a), Au € C'[0, 4], Au(0) = 0 and

(Au)'(0) = [k + / tf (s, (), ' (s)) ds] = A
0

t=0
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By conditions (bl) and (b4), we obtain that

Au(t) = At + /t(t—sy(s, u(s),u/(s)) ds
0
I
> At— t/ V(s,u(s),u/(s))|ds
0

h
> At — t/ V(s, oS, a2)| ds
0

> ot

and
() = v (s, u(s),1(5) ds
h
<A+ / If (s, u(s), /' (s))| ds
0

h
< )»+/ [f(s,als,ag)‘ds
0

<ap

for any ¢ € [0, i]. Moreover, by condition (e), there exists the limit

lim w = lim l tsf(s,u(s), u'(s)) ds.

t—>0+ 2 T 0+ 2 0

We will find a fixed point of A. Let ¢ be an operator from X into C![0, 4] defined by

0 if¢ e (0,h),

ol = {,\t ift=0,

and

o[X] = {olu] |u e X]

Then ¢[X] is a closed subset of C[0, /] and hence it is a complete metric space. Let ® be

ve CO0, k], v(0) = A,
o < v(t) and v(t) + tV'(¢) <y forany t € [0,/] |

an operator from ¢[X] into ¢[X] defined by

Polul = p[Au].

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there
exists a unique mapping ¢[u] € ¢[X] such that ®¢[u] = ¢[u] and hence Au = u. (|

Next, we consider the case of (III).

Page 8 of 14
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Theorem 2.3 Let A be a real number with A > 0. Suppose that a mapping f from [0,1] x
(0,00) x R into R satisfies the following:
(a) The mapping t — f(t,u,v) is measurable for any (u,v) € (0,00) x R, and the
mapping (u,v) — f(t, u,v) is continuous for almost every t € [0,1];
(b2) |f (¢, u1,v)| < |f(¢, u, V)| for almost every t € [0,1], for any uy, us € (0, 00) with
uy < uy and for any v € R;
(b3) [f(t,u,v1)| = |f (¢, u,v2)| for almost every t € [0,1], for any u € (0, 00) and for any
V1, Vo € R with vi < v
(c3) There exist a; € R with 0 < oy < A and oy € R with oy < A such that

1
/ If (£, 21 — 1)t o2 | dit < 00
0

(d1) There exists B € R with By > 0 such that

|%(t,u,v)’ < lgllf(t:M:VH
u u

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(d2) There exists B, € R with By > 0 such that

‘g—fv(t, w,V)| < Balf(t,u,v)|

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(e) There exists the limit

lim 1 /t sf (s, u(s), u'(s)) ds
0

t—>0+ (2

for any continuously differentiable mapping u from [0,1] into [0, 00);
(f2) For ay and oy,

t
lim l/ s|f (s, (24 — a)s, 2 | ds = 0.
0

t—0+ t2

Then there exists h € R with 0 < h <1 such that Cauchy problem (3) has a unique solution

in X, where X is a subset

u € CH0,h],u(0) =0,4'(0) = A,

X=qu | ot <u(t) <Q2r-o)t and oy < u'(t) for any t € [0, h]

and there exists the limit lim;_, ¢, M

of C1[0, K.

Proof By condition (c3), there exists /; € R with 0 < &; <1 such that

hy -1
/ [f(t,(2k—al)t,a2)|dt<min{k—al,k—az, <% +2ﬁ2> }
0 1
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By condition (f2), there exists # € R with 0 < /1 < /; such that

, h
sup iz s|f (s, (24 — ay)s, 2 | ds < / 1 [f (& 21 = o)t )| it
teo,n 7 Jo 0

Let A be an operator from X into C'[0, %] defined by

Au(t) = Mt + ‘/.t(t - s)f(s, u(s), u’(s)) ds.
0

Since a mapping ¢ —> At belongs to X, X # (). Moreover, A(X) C X. Indeed, by condition
(), Au € C'[0,h], Au(0) = 0,

(Au) (0) = |:A + /:f(s, M(S),u’(s)) dsi| =2,

£=0
by conditions (b2) and (b3),
Au(t) = At + /t(t - s)f(s, u(s), ,,,’(3)) ds
0
h
> At — t/ V(s,u(s), u/(s)) ’ ds
0

h
> At — t/ V(s, 2Ar —ay)s, az) ‘ ds
0

> alt’

Au(t) = At + ft(t - s)f(s, u(s), u’(s)) ds
0
h
<A+ t/ [f(s, u(s), u’(s)) | ds
0

h
<A+ t/ [f(s, 2A —ay)s, az) | ds
0

=< (2)“ - al)t;

W@ =+ [ Flou9009) s
0

h
>A— /0 [f(s, u(s), u/(s)) | ds

h
>A— / If (s, @A — e1)s, 02) | dis
0

>0

for any ¢ € [0, /1], and by condition (e), there exists the limit

lim w = lim tiz‘/tsf(s,u(s), u'(s)) ds.
0

t—>0+ £ t—>0+
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We will find a fixed point of A. Let ¢ be an operator from X into C'[0, %] defined by

0 if ¢ e (0,h]
t — t b 7
L) {x ift=0,

and

o[X] = {plu] | u € X}

Then ¢[X] is a closed subset of C![0, 4], and hence it is a complete metric space. Let ® be

ve CO0, k], v(0) = A,
a1 <v(t) <21 — g and g < v(£) + v/ (¢) for any ¢ € [0, /]

an operator from ¢[X] into ¢[X] defined by
Qplu] = p[Au].

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there
exists a unique mapping ¢[u] € ¢[X] such that ®¢[u] = ¢[u] and hence Au = u. O

Finally, we consider the case of (IV).

Theorem 2.4 Let A be a real number with A > 0. Suppose that a mapping f from [0,1] x
(0,00) x R into R satisfies the following:
(a) The mapping t — f(t, u,v) is measurable for any (u,v) € (0,00) x R, and the
mapping (u,v) — f(t,u,v) is continuous for almost every t € [0,1];
(b2) [f(t, u1,v)| < |f (¢, up,v)| for almost every t € [0,1], for any uy, us € (0,00) with
uy < uy and for any v € R;
(b4) |f(&, u, )| < |f(t u,v2)| for almost every ¢t € [0,1], for any u € (0, 00) and for any
v, Vo € R with vi < vy;
(c4) There exist o € R with 0 < o1 < A and oy € R with ay > A such that

1
/ lf(t’ (A —ay)t, Olz) | dt < o0;
0

(d1) There exists B € R with By > 0 such that

< IBIIf(trur‘/”

‘%(t, u,v) ”

for almost every t € [0,1], for any u € (0,00) and for any v € R;
(d2) There exists By € R with By > 0 such that

’ g_fv(tr u, V) S /32 lf(t’ u, V)|

for almost every t € [0,1], for any u € (0, 00) and for any v € R;

Page 11 of 14
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(e) There exists the limit

lim L /t sf(s, u(s), u’(s)) ds

t—0+ 2 0

for any continuously differentiable mapping u from [0,1] into [0, 00);
(f2) For ay and ay,

t
lim i/ s|f (s, (24 — a)s, 2 | ds = 0.
0

t—0+ {2

Then there exists h € R with 0 < h <1 such that Cauchy problem (3) has a unique solution
in X, where X is a subset

u € C'0, k], u(0) = 0,4/(0) = A,

X=gu|ot<ult)<Q@r-a)tandu'(t) <ay foranyt € [0,h]

and there exists the limit lim,_, ¢, M

of C'[0, h].
Proof By condition (c4), there exists /1; € R with 0 < /;; <1 such that
& A -
/ [f(t, 2Ar - al)t,az) | dt < min{k — 1,0 — A, <— + 2ﬂ2> }
0 a1

By condition (f2), there exists # € R with 0 < # < /; such that

sup —
teon 12 Jo

¢ h
SV(S, (2)» - Oll)S, Olz) | ds < / 1 V(If, (2)\ - Oll)t, Olz) { dt.
0
Let A be an operator from X into C'[0, 4] defined by

Au(t) = Mt + /t(t - s)f(s, u(s), u’(s)) ds.
0

Since a mapping ¢ —> At belongs to X, X # (). Moreover, A(X) C X. Indeed, by condition
(a), Au € C'0, h], Au(0) = 0,

(Au)'(0) = |:A + ftf(s, u(s),u’(s)) ds] =X,

0 t=0
by conditions (b2) and (b4),
Au(t) =Mt + ft(t = 9)f (s, us), u’(s)) ds
0
h
>\t — t/ V(s,u(s), u/(s)) | ds
0

h
> AL — t/ V(s, 2Ar —a)s, az) | ds
0

> altx
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Au(t) =Mt + /t(t —9)f (s, uls), u/(s)) ds
0
h
<A+ t/ [f(s, u(s), u'(s)) | ds
0
h
<A+ t/ [f(s, 2A —ay)s, az) | ds
0

= (2)" - al)t)
Au)' (@) =1+ /Otf(s, u(s), u/(S)) ds

h

<A+ / If (s, u(s), /' (s))| ds

0
h
A L1, d
<A+ /0 [f(s oS a2)| s
=

for any ¢ € [0, /], and by condition (e), there exists the limit

lim w = lim L ‘/tsf(s,u(s), u'(s)) ds.
0

=0+ £2 =0+ (2

We will find a fixed point of A. Let ¢ be an operator from X into C'[0, %] defined by

0 if¢ e (0,h),

¢MKﬂ={k‘ ift=0,

and

olX] = {olu] | u e X}

Then ¢[X] is a closed subset of C[0, /] and hence it is a complete metric space. Let ® be

ve CHO, k], v(0) = A,
a1 <v(t) <21 — g and v(E) + 8V (£) < ap forany £ € [0, /]

an operator from ¢[X] into ¢[X] defined by

Polul = p[Au].

Then we can show, just like Theorem 2.1, that by the Banach fixed point theorem there

exists a unique mapping ¢[u] € ¢[X] such that ®¢[u] = ¢[u] and hence Au = u. O
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