
Zuo and Zuo Journal of Inequalities and Applications 2013, 2013:446
http://www.journalofinequalitiesandapplications.com/content/2013/1/446

RESEARCH Open Access

Weyl-type theorems and
k-quasi-M-hyponormal operators
Fei Zuo and Hongliang Zuo*

*Correspondence:
zuodke@yahoo.com
College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, 453007,
People’s Republic of China

Abstract
In this paper, we show that if E is the Riesz idempotent for a non-zero isolated point λ
of the spectrum of a k-quasi-M-hyponormal operator T , then E is self-adjoint, and
R(E) = N(T – λ) = N(T – λ)∗. Also, we obtain that Weyl-type theorems hold for
algebraically k-quasi-M-hyponormal operators.
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1 Introduction
Let T be a bounded linear operator on a complex Hilbert space H , write it for T ∈ B(H),
take a complex number λ in C, and, henceforth, shorten T – λI to T – λ. One of recent
trends in operator theory is studying natural extensions of normal operators.We introduce
some of these operators as follows.

T is said to be a hyponormal operator if T∗T ≥ TT∗;
T isM-hyponormal [] if there exists a real positive numberM such that

M(T – λ)∗(T – λ) ≥ (T – λ)(T – λ)∗ for all λ ∈C;

T is quasi-M-hyponormal [] if there exits a real positive numberM such that

T∗(M(T – λ)∗(T – λ)
)
T ≥ T∗(T – λ)(T – λ)∗T for all λ ∈C;

T is k-quasi-M-hyponormal [] if there exists a real positive numberM such that

T∗k(M(T – λ)∗(T – λ)
)
Tk ≥ T∗k(T – λ)(T – λ)∗Tk for all λ ∈C,

where k is a natural number.
It is clear that hyponormal⇒ M-hyponormal ⇒ k-quasi-M-hyponormal.
We give the following example to indicate that there exists anM-hyponormal operator,

which is not hyponormal.

Example . Consider the unilateral weighted shift operator as an infinite-dimensional
Hilbert space operator. Recall that given a bounded sequence of positive numbers α:
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α,α,α, . . . (called weights), the unilateral weighted shiftWα associated with α is the op-
erator on H = l defined by Wαen := αnen+ for all n ≥ , where {en}∞n= is the canonical
orthogonal basis for l. It is well known that Wα is hyponormal if and only if α is mono-
tonically increasing. Also, Wα is M-hyponormal if and only if α is eventually increasing.
Hence, if we take the weights α such that α = , α = , α = , α = α = · · · , then Wα is
anM-hyponormal operator, but it is not hyponormal.

Next, we give a -quasi-M-hyponormal operator, which is notM-hyponormal.

Example . Let T =
(  
 

)
defined on C

. Then by simple calculations, we see that T is a
-quasi-M-hyponormal operator, but is notM-hyponormal.

If T ∈ B(H), we shall write N(T) and R(T) for the null space and the range space of T .
Also, let α(T) := dimN(T), β(T) := dimN(T∗), σ (T) and isoσ (T) for the spectrum and the
isolated points of the spectrum of T , respectively.
Let λ ∈ isoσ (T). The Riesz idempotent E of T with respect to λ is defined by E =


π i
∫
∂D(μ – T)– dμ, where D is a closed disk, centered at λ, which contains no other

points of σ (T). It is well known that the Riesz idempotent satisfies E = E, ET = TE,
σ (T |R(E)) = {λ}, andN(T –λ) ⊆ R(E). Stampfli [] showed that ifT satisfies the growth con-
dition G, then E is self-adjoint and R(E) =N(T – λ). Recently, Chō and Tanahashi [] ob-
tained an improvement of Stampfli’s result to p-hyponormal operators or log-hyponormal
operators. Furthermore, Chō and Han extended it toM-hyponormal operators as follows.

Proposition . [, Theorem ] Let T be an M-hyponormal operator, and let λ be an
isolated point of σ (T). If E is the Riesz idempotent for λ, then E is self-adjoint, and R(E) =
N(T – λ) =N(T – λ)∗.

2 Isolated point of spectrum of k-quasi-M-hyponormal operators
Lemma . Let T be a k-quasi-M-hyponormal operator. If  �= λ ∈ C, and assume that
σ (T) = {λ}, then T = λI .

Proof If λ �=  and σ (T) = {λ}, then T is invertible, so T is anM-hyponormal operator, and
hence, T = λI by []. �

Lemma . Let T be a k-quasi-M-hyponormal operator and  �= λ ∈ C. Then Tx = λx
implies that T∗x = λx.

Proof Suppose that Tx = λx. Since T is a k-quasi-M-hyponormal operator, M‖(T –
α)Tky‖ ≥ ‖(T – α)∗Tky‖ for all vectors y ∈ H and α ∈ C. In particular, M‖(T – λ)Tkx‖ ≥
‖(T – λ)∗Tkx‖. Since Tx = λx,  =M|λ|k‖(T – λ)x‖ =M‖(T – λ)Tkx‖ ≥ ‖(T – λ)∗Tkx‖ =
|λ|k‖(T – λ)∗x‖. |λ| �= , therefore ‖(T – λ)∗x‖ = . �

Theorem. Let T be a k-quasi-M-hyponormal operator, and let λ be a non-zero isolated
point of σ (T). Then the Riesz idempotent E for λ is self-adjoint, and

R(E) =N(T – λ) =N(T – λ)∗.

Proof We can derive the result from Lemma ., [, Theorem .] and [, Lemma .].
�
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3 Weyl-type theorems of algebraically k-quasi-M-hyponormal operators
We say thatT is an algebraically k-quasi-M-hyponormal operator if there exists a noncon-
stant complex polynomial p such that p(T) is a k-quasi-M-hyponormal operator. From the
definition above, T is an algebraically k-quasi-M-hyponormal operator, then so is T – λ

for each λ ∈C.
An operator T is called Fredholm if R(T) is closed, and both N(T) and N(T∗) are finite-

dimensional. The index of a Fredholm operator T is given by i(T) = α(T) –β(T). An oper-
ator T is calledWeyl if it is Fredholm of index zero. TheWeyl spectrum of T [] is defined
by w(T) := {λ ∈C : T – λ is not Weyl}. Following [], we say that Weyl’s theorem holds for
T if σ (T)\w(T) = π(T), where π(T) := {λ ∈ isoσ (T) :  < α(T – λ) <∞}.
More generally, Berkani investigated the B-Fredholm theory (see [–]). We define

T ∈ SBF–
+ (H) if there exists a positive integer n such that R(Tn) is closed, T[n] : R(Tn) 


x → Tx ∈ R(Tn) is upper semi-Fredholm (i.e., R(T[n]) = R(Tn+) is closed, dimN(T[n]) =
dimN(T) ∩ R(Tn) < ∞) and i(T[n]) ≤  []. We define σSBF–+ (T) = {λ ∈ C : T – λ /∈
SBF–

+ (H)}. Let Ea(T) denote the set of all isolated points λ of σa(T) with  < α(T – λ).
We say that generalized a-Weyl’s theorem holds for T if σa(T) \ σSBF–+ (T) = Ea(T).
We know that Weyl’s theorem holds for hermitian operators [], which have been ex-

tended to hyponormal operators [], algebraically hyponormal operators by [], alge-
braically M-hyponormal operators [] and algebraically quasi-M-hyponormal operators
[], respectively. In this section, we obtain that generalized a-Weyl’s theorems hold for
algebraically k-quasi-M-hyponormal operators.

Lemma . [] Let T ∈ B(H) be a k-quasi-M-hyponormal operator, let the range of Tk be
not dense and

T =

(
T T

 T

)
on H = R

(
Tk

) ⊕ N
(
T∗k).

Then T is M-hyponormal, Tk
 =  and σ (T) = σ (T)∪ {}.

Theorem . Let T be a quasinilpotent algebraically k-quasi-M-hyponormal operator.
Then T is nilpotent.

Proof We first assume that T is a k-quasi-M-hyponormal operator. Consider two cases,
Case I: If the range of Tk has dense range, then it is anM-hyponormal operator. Hence, by
[, Lemma ], T is nilpotent. Case II: If T does not have dense range, then by Lemma .,
we can represent T as the upper triangular matrix

T =

(
T T

 T

)
on H = R

(
Tk

) ⊕ N
(
T∗k),

where T := T |R(Tk) is anM-hyponormal operator. Since T is quasinilpotent, σ (T) = {}.
But σ (T) = σ (T)∪{}, hence, σ (T) = {}. Since T is anM-hyponormal operator, T = .
Since Tk

 = , simple computation shows that

Tk+ =

(
 TTk



 Tk+


)
= .
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Now, suppose that T is an algebraically k-quasi-M-hyponormal operator. Then there
exists a nonconstant polynomial p such that p(T) is a k-quasi-M-hyponormal operator. If
p(T) has dense range, then p(T) is anM-hyponormal operator. Thus T is an algebraically
M-hyponormal operator. It follows from [, Lemma ] that it is nilpotent. If (p(T))k does
not have a dense range, then by Lemma ., we can represent p(T) as the upper triangular
matrix

p(T) =

(
A B
 C

)
on H = R

((
p(T)

)k) ⊕N
((
p(T)

)∗k),
where A := p(T)|R((p(T))k) is anM-hyponormal operator. Since σ (T) = {} and σ (p(T)) =
p(σ (T)) = {p()}, the operator p(T) – p() is quasinilpotent. But σ (p(T)) = σ (A) ∪ {},
thus σ (A)∪ {} = {p()}. So p() = , and hence, p(T) is quasinilpotent. Since p(T) is a k-
quasi-M-hyponormal operator, by the previous argument p(T) is nilpotent. On the other
hand, since p() = , p(z) = czm(z – λ)(z – λ) · · · (z – λn) for some natural number m.
p(T) = cTm(T – λ)(T – λ) · · · (T – λn). p(T) is nilpotent, therefore, T is nilpotent. �

Recall that an operator T is said to be isoloid if every isolated point of σ (T) is an eigen-
value of T and polaroid if every isolated point of σ (T) is a pole of the resolvent of T . In
general, if T is polaroid, then it is isoloid. However, the converse is not true. In [], it is
showed that every algebraicallyM-hyponormal operator is isoloid, we can prove more.

Theorem . Let T be an algebraically k-quasi-M-hyponormal operator. Then T is po-
laroid.

Proof Suppose that T is an algebraically k-quasi-M-hyponormal operator. Then p(T) is
a k-quasi-M-hyponormal operator for some nonconstant polynomial p. Let λ ∈ isoσ (T)
and Eλ be the Riesz idempotent associated to λ defined by Eλ := 

π i
∫
∂D(μ–T)– dμ, where

D is a closed disk of center λ, which contains no other point of σ (T). We can represent T
as the direct sum in the following form:

T =

(
T 
 T

)
,

where σ (T) = {λ} and σ (T) = σ (T)\{λ}. Since T is an algebraically k-quasi-M-hypo-
normal operator, so is T – λ. But σ (T – λ) = {}, it follows from Theorem . that T – λ

is nilpotent, thus T – λ has finite ascent and descent. On the other hand, since T – λ is
invertible, clearly, it has finite ascent and descent. T – λ has finite ascent and descent, and
hence, λ is a pole of the resolvent of T , therefore, T is polaroid. �

Corollary . Let T be an algebraically k-quasi-M-hyponormal operator. Then T is
isoloid.

We say that T has the single valued extension property (abbreviated SVEP) if, for every
open set U of C, the only analytic solution f : U →H of the equation

(T – λ)f (λ) =  for all λ ∈ U

is a zero function on U .
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Theorem . Let T be an algebraically k-quasi-M-hyponormal operator. Then T has
SVEP.

Proof Suppose that T is an algebraically k-quasi-M-hyponormal operator. Then p(T) is a
k-quasi-M-hyponormal operator for somenonconstant complex polynomial p, and hence,
p(T) has SVEP by [, Theorem .]. Therefore, T has SVEP by [, Theorem ..]. �

In the following theorem, H(σ (T)) denotes the space of functions analytic in an open
neighborhood of σ (T).

Theorem . Let T or T∗ be an algebraically k-quasi-M-hyponormal operator. Then
Weyl’s theorem holds for f (T) for every f ∈H(σ (T)).

Proof Firstly, suppose that T is an algebraically k-quasi-M-hyponormal operator.We first
show thatWeyl’s theoremholds forT . Using the fact [, Theorem.] that ifT is polaroid,
then Weyl’s theorem holds for T if and only if T has SVEP at points of λ ∈ σ (T) \ w(T).
We have that T is polaroid by Theorem ., and T has SVEP by Theorem .. Hence,
T satisfies Weyl’s theorem.
Next, suppose that T∗ is an algebraically k-quasi-M-hyponormal operator. Now we

show that Weyl’s theorem holds for T . We use the fact [, Theorem .] that if T or
T∗ has SVEP, then Weyl’s theorem holds for T if and only if π(T) = p(T). Since T∗

has SVEP, it is sufficient to show that π(T) = p(T). p(T) ⊆ π(T) is clear, so we
only need to prove π(T) ⊆ p(T). Let λ ∈ π(T). Then λ is an isolated point of σ (T).
Hence, λ is a pole of the resolvent of T , since T is polaroid by Theorem ., that is,
p(λ – T) = q(λ – T) < ∞. By assumption, we have α(λ – T) < ∞, so β(λ – T) < ∞. Hence,
we conclude that λ ∈ p(T). Therefore, Weyl’s theorem holds for T .
Finally, we can derive the result by Theorem . and [, Theorem .]. �

Following [, Theorem .], we obtain the following result.

Theorem . Let f be an analytic function on σ (T), and f is not constant on each con-
nected component of the open set U containing σ (T).

(i) If T∗ is an algebraically k-quasi-M-hyponormal operator, then f (T) satisfies a
generalized a-Weyl’s theorem.

(ii) If T is an algebraically k-quasi-M-hyponormal operator, then f (T∗) satisfies a
generalized a-Weyl’s theorem.
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5. Chō, M, Tanahashi, K: Isolated point spectrum of p-hyponormal, log-hyponormal operators. Integral Equ. Oper.

Theory 43, 379-384 (2002)
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