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Abstract

In the present paper, we introduce the g-Bernstein-Schurer-Kantorovich operators.
We give the Korovkin-type approximation theorem and obtain the rate of
convergence of this approximation by means of the first and the second modulus of
continuity. Moreover, we compute the order of convergence of the operators in terms
of the elements of Lipschitz class functions and the modulus of continuity of the
derivative of the function.
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1 Introduction

Some authors have defined general sequences of linear positive operators where the clas-
sical sequences can be achieved as particular cases. For instance, Schurer [1] proposed the
following generalization of Bernstein operators in 1962. Let C[a, b] denote the space of a
continuous function on [4,b]. Foralln € N, f € C[0,p + 1] and fixed p € Ny = {0,1,2,...},

the Bernstein-Schurer operators are defined by (see also, [2])

n+p

B(f;x) = Zf(%) (" or )x’u —x, xe[0,1].
r=0

In 1987, g-based Bernstein operators were defined and studied by Lupas [3]. In 1996,
another g-based Bernstein operator was proposed by Phillips [4]. Then the g-based oper-
ators have become an active research area (see [5-9] and [10]).

Muraru [11] introduced and investigated the g-Bernstein-Schurer operators. She ob-
tained the Korovkin-type approximation theorem and the rate of convergence of the op-
erators in terms of the first modulus of continuity. These operators were defined, for fixed
p €Ny and for all x € [0,1], by

n+p n+p-r-1
Bﬁ(f;q;x)=2_0:f<%) [":p]x 1‘! (1-¢'%), (11)

where 0 < g < 1. If we choose p = 0 in (1.1), we get the classical g-Bernstein operators [4].
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Recall that for each nonnegative integer r, [r] is defined as

(1-4"/10-q), q#1,
[r] =
r, q=1,

and the g-factorial of the integer r is defined by

]! = Flr=1]---11], r=12,3,...,
gt r=0.

For integers n and r, with 0 <r < n, g-binomial coefficients are defined by [12]

ni_ [n]!
r| m=rtr]

Afterwards, several properties and results of the operators defined by (1.1), such as the
order of convergence of these operators by means of Lipschitz class functions, the first
and the second modulus of continuity and the rate of convergence of the approximation
process in terms of the first modulus of continuity of the derivative of the function, were
given by the authors [13]. On the other hand, g-Szasz-Schurer operators were discussed
in [14].

Kantorovich considered the linear positive operators K, (f;x) : L;[0,1] — L;[0,1] which
are defined for f € L,[0,1] as follows:

n (k+1)/(n+1)
Kulfis) = 00 ) Yopss) [ S
k=0 /n+1

where p,, i (x) = (Z)xk (1 — x)"~*. After this definition, the integral variants of classical and
general operators have attracted a great interest (see [15-18] and [19]).
In 2007, Dalmanoglu defined Kantorovich-type g-Bernstein operators by [20]

[k+1]/[n+1]

(1-q'%) / f(&)dyt.

[k]/[n+1]

By(figx)=[n+11) q* [:} a
k=0

n—-k-1
s=0

Notice that, the g-Jackson integral is defined on the interval [0, ] as follows:
b [eS)
/ f()dst=(1-q)b E f(db)d, 0<gq<l. (1.2)
0 -
j=0

Then she obtained the first three moments and gave the rate of convergence of the ap-
proximation process in terms of the first modulus of continuity [20].
In our definition, the integral that we consider in the g-Schurer-Bernstein-Kantorovich

operator is

VO 14(g-Di N
/o([n+1]+ 0+ 1] t) dst, keNy0<g<l
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So, throughout this paper, we will use the following results, which are computed directly
by the tools of g-calculus.
Using (1.2), we can find the following results:

1
dyt= = — = .
[ an=a- q)ZqJ (g -1 13)

where 0 < g <1. On the other hand, by (1.2) and (1.3) we get
YOl 1+(g-Dn
/o ([n+1] MNPPSY t)‘iqt
C1+(g-D0 [ [
TS /0 Eat+ L] fo dqt
qlr]

_ 1 2j
_[n+1](1_q);ql+[n+l [n+1] 2+

1 qlr]
T 2l[n+1] +2 2][n+1]° (14)

Since

/ltzdt—u S =g ]
o TR LTI T g g T B

we have

1
/( [r] +1+(q DM)dt
o \[nz+1] [7+1]
/1<[ [r]? +2[r](1+(61—1)[r])t+ (1+(61—1)[r])2t2> d,t
0

n+1]2 [n+1]?2 (1 +1]2

1 1 1 1
=—[n+1]2((1+(q—1)[r])2/0 tqut+z[r](1+(q—1)[r])fo tdqt+[r]2/0 dqt>

1 20¢-1) (@-D*\ ., (2 24-1 1
‘[n+112{<“ VR >” ([2] 5] )““[3]}' (13)

Recall that the first three moments of the g-Bernstein-Schurer operators were given by

Muraru in [11] as follows.

Lemma 1.1 For the first three moments of B,(f; q;x) we have:
(i) Bu(Lgx) =1,
(ii) Byt gw) = 12x,

1
(i) Br(t%q;x) = {””’[n]]z[”*p]qx + [[”y:r]’;]x

We organize the paper as follows.

Firstly, in section two, we define the g-Bernstein-Schurer-Kantorovich operators and
obtain the moments of them. In section three, we obtain the rate of convergence of the g-
Bernstein-Schurer-Kantorovich operators in terms of the first modulus of continuity. Also
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we give the order of approximation by means of Lipschitz class functions and the first and
the second modulus of continuity. Furthermore, we compute the degree of convergence
of the approximation process in terms of the first modulus of continuity of the derivative
of the function.

2 Construction of the operators
For fixed p € Ny, we introduce the g-Bernstein-Schurer-Kantorovich operators K% (f; g; x):
C[0,p+1] — C[0,1]

n+p n+p-r-1 1 1 _1
K2(f;qx) =) [":p} 2 ] (l—qsx)/o f([n[:]l] N +[(Z+ I]M t) dit (21)

r=0 s=0

for any real number 0 < g <1, and f € C[0,p + 1]. It is clear that K¥(f;¢; x) is a linear and
positive operator for x € [0,1].
For the first three moments and the first and the second central moment, we state the

following lemma.

Lemma 2.1 For the q-Bernstein-Schurer-Kantorovich operators we have

(i)
KE(Lq;x) =1,
(ii)

2[n+plgx+1

Kiwsgx) = =50 =T

’

(iii)

1 4q* + ¢° + ¢*
K?(u*;q;%) = {( 4979

[ +1]? [2](3]
<4q3 +5¢% + 3q)
[2](3]

)[;/1+p—1][n+p]x2

[+ plx+ é},

(iv)

Kf ((u—x);q5x) = (2 [2][n+1]‘~"1>"+ [2][n +1]’

v)
2 N (AP +q (1 + p] )
K2 ((u—x)%q;%) = (—[2][3][n+1]2[n +p—-1][n+p] —47[2][n+1]q+1)x

4q3+5q2+3q[ | 2 1
<[2][3][n+1]2 np ‘[2J[n+11)’”[3][n+112‘

Proof (i) From (1.3), we get

n+p n+p-r—-1
KGgx)=Y [” ”’} ¥ [] (- -1
r

r=0
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(ii) Using (1.1), (1.4) and Lemma 1.1, we have

Kp(”)_i’”: n+p rmﬁ_ll q ( : 2] )
n\ s g5 %) = , x (1-7%) [2][n+1]+[2][n+1]

r=0

s=0
) 1 n+p ntp rn+p—r—l )
- [2][n+1]; ;I )

s=0

+§Ii n+p x’mﬁil(l—q%) 2q[r] [n]
=l r 0 [2][n +1] [n]
o1 24l paso

SR R o)

B 1 . 2g(n] [n+p]

S RIn+1] 0 R2l+1] (]
_2[n+plgx+1

 [2lm+1]

(iii) From (1.1), (1.4), (1.5) and then Lemma 1.1, we can calculate the K7 (u?; g;x) as fol-

lows:

K? (uz;q; x)
n+p

1 (n+pl . 2q-1) (g-1)°
=—[n+1]2{z . :|x 1_[ (l—qu)(l+ 7] + 3] )[r]z

r=0 L

n+p n n+p-r-1 _
S T e (250

s=0

n+p "+ n n+p-r-1 1
+Z[ Pl (1—q5x)ﬁ]

=0
n+p-r-1

1 3g-1 (q-1*\<n|n+p| , 2 [n]?
_[n+1]2{( Tt B >Z|: Rt [ (l—qsx)[r]W

r=0 s=0

! 1 2 2(g-1) P nsp] [l
‘[n+1]2:ﬁ+<ﬁ+ 3] )[”],0[ . }‘ [T @-a95,
3¢-1 (q—-12\, ,i|[n+p] T [r?
+< 2 B )[”] 3 N L VO

1 (1 (2 2g-) -
IS {E ' (E ) )["]Bﬁ(t’q’x)
+ (—3q_1 + (q_l)z)[n]zBﬁ(fz;q;x)}'

(2] (3]


http://www.journalofinequalitiesandapplications.com/content/2013/1/444

Ozarslan and Vedi Journal of Inequalities and Applications 2013, 2013:444
http://www.journalofinequalitiesandapplications.com/content/2013/1/444

Finally, we get

K2 (u?; q3x) =

1 aq* + ¢® + ¢*
[n+1]? { ( (2](3]

(A ey, L)
[21(3] PET 1)

)[n+p—1][n+p]x2

where Bh(t; q;x) and Bﬁ(tz;q;x) are the corresponding moments of the g-Bernstein-
Schurer operators.

(iv) It is obvious that

) K ) oy (o Pl 1
Kﬁ((u—x),q,x) = KP(u; g;x) — xK2 (L; 3 x) = (2 20+ 1]q 1>x + DICESik

(v) Direct calculations yield,
Kﬁ((u -0)%q; x)
= Kﬁ(uz;q;x) — 2xK? (u; q; x) + x> KP(1; q; x)

1 {(4q4+q3+q2

>[n+p—1][rz+p]ac2

CERIE 21[3]

<4q3 +5¢% +3q>[n+ x4 i} . 2[n+plgx+1 2

[21(3] SN [+ 1[2]
(4" + P+ 4 [ + p] )
- ([2][3][n+1]2 A T PRSI )x
4q® +5¢% + 3q 2 1
( Bl 12 P Rl >" Bl 22
By Korovkin’s theorem, we can state the following theorem. 0

Theorem 2.2 Forall f € C[0,p + 1], we have
: P(Fog ) —f(. =
HIEEO”Kn (f3qn-) = S( )HC[O,l] 0
provided that q .= q, with lim,_, », q,, = 1 and that lim,_, », ﬁ =0.

3 Rate of convergence
In this section, we compute the rate of convergence of the operators in terms of the mod-
ulus of continuity, elements of Lipschitz classes and the first and the second modulus of
continuity of the function. Furthermore, we calculate the rate of convergence in terms of
the first modulus of continuity of the derivative of the function.

Now, we give the rate of convergence of the operators by means of the first modulus of
continuity. Recall that the first modulus of continuity of f on the interval C[0,p + 1] for
8 > 0 is given by

o(f,8) = max |Ahf(x)|: max [f(x+h)—f(x)|

|h|<s |h|<8
xx+he[0,p+1] xx+hel0,p+1]

Page 6 of 15
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or equivalently,

o(f,8) = max [f ! (3.1)

[t—x|<8
txe[0,p+1]

It is known that for all f € C[0, p + 1], we have
Slirg (f,8) =
and for any § > 0,
110 < otr5( 52 1),
Theorem 3.1 Let 0 < g < 1. Iff € C[0,p + 1], we have

|K2(f3q5%) = f(x)| < 20(f>/8nq(x))

where o(f, ) is the modulus of continuity of f and &, 4(x) := K ((u—x)%; q; x), which is given

as Lemma 2.1.

Proof Using the linearity and positivity of the operator, we get

|KE(f; g5 %) — f (%)

577 T e [ (2 ) o)

r=0 s=0
n+p n+p rl
1 1

AP T 0 [ DY g,

r=0 r sO n+1 [n+1]

n+p |[[V]] 1+ Eq 1}[7]t | ntp n+p-r-1
< n+l n+l +1)w ,(S X 1—a'x) d.t
B rO‘/O\( 8 (f ) r g ( qs) q

o3[ )

r=0 s=0
a)(f 8) (<& 1 +(g-1Ir] n+p| mprel
(Z/ [n+1] e 1] t—x‘|: . :|x g (l—q‘x)dqt .

By the Cauchy-Schwarz inequality,
1
J
3 /1 1 1+@-Di, N ) /11d Rk
+ -x
- 0 [}’1 + 1] [l’l + 1] 1 0 1

Y 1 1+(q-DIr] 2 4
_[./o <[n+1]+ [n+1] t_x) dqt} = {an,x)}?.

—x|dgt

( [r] . 1+(61—1)[V]t)
[7+1] [ +1]

N\»—A
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Now we have

n+p

Z {dn,r(x) } %pn,r(qi x),

r=0

|K2(f; q:%0) — f(x)| < o(f,8) + w(/;;S)

where p,, ,(q;x) = [":p ]x’ [125~ - g°x). Again applying the Cauchy-Schwarz inequality,

we get

|KE(f3 43%) — f (%)
5) n+p 3 [ n+p
= w(f 8) + —— w(f {Zan,r(x)pn,r(q’ ] :an (g% }

r=0

ac "l 1+(g-DIr] 2
{me(q,x)/<n+l 0 1] t—x) dyt

l

1
2

= w(f,d) + 2
=olf.8)+ w(}; d (KD (= 5 5) .
So, we have
’I(f:(f; q;X) - x)‘ < a)(f,S) + a)();,(g) {1<£((1/l _x)z;q;x)}l/z.

Choosing 8 : 8,,4(x) = K% ((u — x)*; q;x), we obtain
K2 (f; 50) — f ()] < 2a)(f, K2 ((u - x)Z;q;x)).
The proof is concluded. O

Now we give the rate of convergence of the operators K} in terms of the Lipschitz class
Lip,,(a), for 0 < @ < 1. Note that a function f € C[0, p + 1] belongs to Lip,,(«) if

If(&) - f@)| =Mt -x* (t,xe[0,p+1]) (3.2)
is satisfied.
Theorem 3.2 Let f € Lip,, (), then

K23~ £ 0] = M(51g()
where 8,,4(x) is the same as in Theorem 3.1.
Proof By the linearity and positivity, we have

K (f; ;%) — f ()|

nip n+p r-1 1 1
520[”:”} ~7) / P( nel] +[(Z+1])mt>_ | dat
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Considering (3.2) and then applying the Holder’s inequality with p = 2 and ¢ = 5, we get

o

/'f( 1+(q 1)[r] )_ ol ds
n+1] [n+1] K
[r]  1+(g-DIr] “

EM/O [n+1]+ [n+1] L‘—x‘ gt

Y 1+ (g-1)r] 2 $( rl e
SM{/O ([n+1] " [n+1] t_x) dqt} {/0 ldqt}
P O I C Ut VI s PR S L5 .
_M{/o ([n+1] * [n+1] t—x) dqt} = M{a,,(x)}?.

So, we have

n+p

K2 (i qs0) @) <MY {r )} pos (i),

r=0

where p,,,(q; x) = ["”’ ]x’ A Y1 - g'x). Again applying Holder’s inequality with p = =

r

and g = 5=, we get

|KE(f343%) — f (%)

n+p S ( np 2%“
< M[ > an,r(x)pn,r(q;x)} :Z 1-pos q,x)}

r=0

<L r 1+ (g-1)[r] 2 E
{anr(q,x)/ ([n+1] PESY t—x) dyt

= MIK? ((u - 2% q;%)] %

Hence, the desired result is obtained. O

Now let us denote by C2[0,p + 1] the space of all functions f € C[0,p + 1] such that
f.f" € C[0,p +1]. Let ||f|| denote the usual supremum norm of f. The classical Peetre’s
K-functional and the second modulus of smoothness of the function f € C[0,p + 1] are

defined, respectively, by

K(f,8):= inf [If —gll +8]e"]]
geC2[0,p+1]

and

wo(f,8):=  sup V(
0<h<$,
xx+he[0,p+1]

where § > 0. It is known that [21, p.177] there exists a constant A > 0 such that

K(f,8) < Awn(f,/3). (3.3)

Page 9 of 15
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Theorem 3.3 Let g € (0,1), x € [0,1] and f € C[0,p + 1]. Then, for fixed p € Ny, we have

[K2(f;q35) = f(%)| < Can(fy/@ng(®)) + O (f, Bug())

for some positive constant C, where

A, mtp? A+ [+ p) >
enal) = (4 DTSR 6 TS A A R oY PRSTE 2)x
4q3+5q2+3q[ 144 (1 + p] 4
( 2B+ 12 T Pl 2T Rl 1])x
1 1 G4)
"Bl " 2P '
and
_(, n+p]
Pra®) = (2 Pk 1)’“ Rl 39
Proof Define an auxiliary operator K3 ,(f; ¢;x) : C[0,p + 1] — C[0,1] by
1
K, (fsq5%) := K (f3 q; %) —f(m (2[n + plgx + 1)) +f(x). (3.6)
Then, by Lemma 2.1, we get
K (Lq:x) =1,
po B (3.7)

K, ((u—x);q5x) = 0.

Then, for a given g € C?[0,p + 1], it follows by the Taylor formula that

y
g0)-g) = 0-2g @)+ [ (r-wg'tdu, ye 0.1
X
Taking into account (3.7) and using (3.7), we get, for every x € (0,1), that

K (@5 45%) - g()|
= |K;,(e() - g g:%) |

y
&K (- %) g5 x) + K, (/ (v —w)g" (u) du; q; x)

y
Ky </x v —u)g" (u) du; q;x> .
Then by (3.6),

K, (g5 q5%) — ()|
2[n+plgx+l

K, (/y(y— u)g" (u) du; q;x> —/ Al <% _ u)g”(u) du
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=

y
K, ( / (= g () dts x)

2[n+plgx+l

2l (2[n + plgx +1 p
' / ( [+ 1112] ‘”)g ()

Since

= ¢ 13 (0 =27 5)

y
K? (/ (y - w)g" (u) du; q;x)

and

2[[”2?]‘1’161+1 2[n+plgx +1
L A I d
/x ( 2+ 1] ”)g 0

we get

, [+ p] Ly
< Hg ”<<2mq—l>x+m) )

K, (g 5%) — g()]
) /4 2 " [Vl +l9] 1 2
< [¢"|KE (6~ %)% g5) + [ ¢ ((qu - 1>x * m) :
Hence Lemma 2.1 implies that

K (g 3:%) — g()]

4, 3. 2
§||g””[x2(—4q i} +q2[n+p—1][n+p]—47[n+p] q+1)

[2][3][n + 1] [2][n +1]
4q4° +5¢% + 3q 2 1
”( 2iEm e P [z][n+11) T Bl + 12
[n+ p] 1 2
' ((2[21[n+1]"'1>’” [2][n+11) ] (38

Since ||K,’f,p(f; q;-)|l <3, considering (3.4) and (3.5), for all f € C[0,p +1] and g € C?[0,p +
1], we may write from (3.8) that
[KE(f5 q5%) = f )| < |K;: (f = g:4%) = (f — @) )|

. 2[n + plgx +1

, 2[n +plgx +1
<4l gl +an e’ + (2L ) i)

<4(If - gll + otng@)|g"]) + @ (fs Brg®)),

which yields that

\K2(f; q%) — f (%) | < 4K (f 0tng (%)) + @ (f Bug(®))
< Caun (fr v an,q(x)) + U)(f: ,Bn,q(x))7
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where
,_ [n+pl> , 44*+P+q [+ p] )
%”““‘[(4DPM+H2q*[nmun+uﬂ”+”‘”M+P]‘Sunn+uq+2)x
4q3+5q2+3q[ 144 (1 + p] 4
<[ﬂwun+u2”+p'*[ﬂ%n+u2q‘mnn+u>
1 1
"Bl 2P+ 1]2]
and
8 M,:(zjziqu_l>x+_____
A [2][n +1] 2l[n+1]
Hence we get the result. 0

Now, we compute the rate of convergence of the operators K% in terms of the modulus
of continuity of the derivative of the function.

Theorem 3.4 Let 0 < g <1 and p € Ny be fixed. If f(x) has a continuous derivative f’(x)
and o(f’,8) is the modulus of continuity of f'(x) on [0,p + 1], then

|K2(f3q5%) = f ()| < MPug) + o(f,8) (1 +y/Sngp()),

where M is a positive constant such that |f'(x)] <M (0 <x <p+1),

(Sn,q,p(x)
~ 4q4- +q3 + qZ
_[<DHNM+H2
4q® +5¢% + Bq[ | 2 1
([ﬂBMn+H2n+p'_DMn+H>x+BMn+HJ

[n+p—1][n+p]—4%q+l)x2

and

(7 + p]

PgX) = (2 7[2] e 1] q- l)x + 7[2] a1l (3.9)

Proof Using the mean value theorem, we have

[r] 1+(g-1)[r]
f([n+1] TRy t) /&)

(M 1+@-Di, )\,
_([11+1]Jr [n+1] t—x)f(é)
(1 1+(g-Di) ,
_<[rz+1]Jr [7+1] —x>f(x)

+( [7] +1+(61—1)[r
[7+1] [m+1]

t

]t—x)owa—fwwy
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[ +(g-1)]

where x < £ < Tus] O]

"I+, Hence, we have
K2 (f3 ¢5%) —f(x)l

<F [7] 1+(q—1)[r] n+p ,mp_r_l
<L r 1+ (g-1)Ir]
+2:/<r1+1 [7+1] t—x>

n+p-r-1

x (F(&) - f (%) [":p}a [T (-q%)dt

s=0

< |f' )| K2 ((u - x); g; x)

- rl 1+(g-Dr]
+Z/<n+1 [n+1] t—x>

n+p-r-1
x |f'(&) f()![””’] [T a-a%)dyt
s=0
< Mpyq(x)
A 1 1+(g-Dr]
+Z/(n+1 [n+1] t—x)
na n+p-r-1
< |f (&) f()![ 1”] "] (-ax)dgt
s=0

where p,,(x) is given in (3.9). Hence,

|KE(f; g5 %) - f (%)
n+p

l+(q l)[r]t x)
<Mpyy, x)+Z/ o(f',8) ( nﬂ] [(;”1] +1)

[7] 1+(g—1)[r] n+p ,nw—r_l
X([n+1]+ [+ 1] t_x)[ }C [T Q=g

r s=0

since,

[7] 1+(g-DIr]
o=t ey

From the Cauchy-Schwarz inequality, for the first term, we get
KL (3 45%) ~ £ ()]

< Mpyq4(x)

n+p

1+ (g—1)[r] n+p ,mp_r_l
rolfs Z/(Vl+l [m+1] t—x)|: :|x l_[ (=) dyt
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w(f’ 8) W/ ([nil] 1+[(Z;11])[r]t—x>2 n:p x’nil’j_l(l—qsx)dt
< Mpyq(x)
+ol/9) W/ ([n:u 1+[(Z+_11])[r]t_x)2
y n:P xr"+ij_l(1_qsx)dt "
08 (e 7] T 0o

= Mpuq(®) + o(f',8)\/ Ky (u — )% g %) + a)(f’

= Mpy () + o(f,8) (1 +/8ngp (%)),

———K?((u - %)% g %)

where

8:=8,gp(x) = [(w[ n+p-1][n+p] - [nép]]q+l>x2

[21(3][n + 12 12
4q° + 54 + 3q 2 1
( 2iBEm e P [2][n+1]>“ 311 + 1]

Finally, we have

|K2(f; q3%) = f ()| < Mpug®) + o(f,8) (1 + /Sngp(®)).

This completes the proof. g

4 Concluding remarks

In this paper, we obtain many results in the pointwise sense. On the other hand, we see
that the interval is bounded and closed, and also f is continuous on it, so these results can
be given in the uniform sense.
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