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Abstract

In this paper, some new Gronwall-type inequalities, which can be used as a handy
tool in the qualitative and quantitative analysis of the solutions to certain fractional
differential equations, are presented. The established results are extensions of some
existing Gronwall-type inequalities in the literature. Based on the inequalities
established, we investigate the boundedness, uniqueness, and continuous
dependence on the initial value and parameter for the solution to a certain fractional
differential equation.
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1 Introduction

In the research of the theory of differential equations, if their solutions are unknown, then
it is important to seek for their qualitative and quantitative properties including bound-
edness, uniqueness, continuous dependence on initial data and so on. It is known that
Gronwall’s inequality is very useful in the research of this domain. This inequality reads

as follows:

Gronwall’s inequality Suppose i, 4, b are continuous functions with b(x) > 0. Then

ulx) <a(x) + /x b(t)u(t) dt

X0
implies

X

u(x) < a(x) +/

X0

a(t)b(t) exp(/x b(t)dt) dt.

Furthermore, if 4 is nondecreasing, then we have

u(x) < a(x) exp (/x b(t) dt).

0
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The inequality above has proved to be very effective in the research of boundedness,
uniqueness, and continuous dependence on initial data for the solutions to certain dif-
ferential equations, as it can provide explicit bounds for the unknown function u(¢). In
the last few decades, motivated by the analysis of solutions to differential equations with
more and more complicated forms, various generalizations of this inequality have been
presented (see [1-23] for example). But we notice that most of these developed Gronwall-
type inequalities are aimed for the research of differential equations of integer order, while
less results are concerned with research of fractional differential equations. In order to
obtain the desired analysis of the qualitative and quantitative properties of solutions to
certain fractional differential equations, it is necessary to further present some new such
inequalities suitable for fractional calculus analysis.

In this paper, we establish some new generalized Gronwall-type inequalities suitable
for the qualitative and quantitative analysis of the solutions to fractional differential equa-
tions. In Section 2, we present the main results, in which new explicit bounds for unknown
functions concerned are established. Then, in Section 3, we investigate a certain fractional
differential equation, in which the boundedness, uniqueness, and continuous dependence
on initial data for the solution to the fractional differential equation are investigated by
use of the generalized Gronwall-type inequalities established.

2 Main results
Lemma 1 [24] Assume thata >0, p > q > 0 with p #0. Then, for any K > 0, we have

agEZqu%p qu
p

p

Theorem 2 Suppose that « >0, p > 1 are constants, L € C(R, x R,,R,) with 0 < L(t,u) —
L(t,v) < T(u—v) for u>v >0, where T is the Lipschitz constant, u, a, h are nonnegative
functions locally integrable on [0, X) with h nondecreasing and bounded by M, where M is
a positive constant. If the following inequality is satisfied:

w(x) <ax)+ —h(x)/ (x—1)*" 1L(L‘ u(t)) , 0<x<X, (1)

then we have the following explicit estimate for u:

u(x) < [Zi(x) + /Ox [Z(;K ) I}’l:;ioe)) (x— t)""“lﬁ(t):| dt}p, 0<wx<X, (2)

n=1

where d(x) = a(x) + 15 h(x) Jo e =) L(s, = 11(1’ )dt, and K > 0 is a constant.

F(

Proof Denote the right-hand side of (1) by v(x). Then we have

ulx) < vll’ (x), 0<x<X. (3)
Furthermore,
v(x) < alx) + mh(x)/ (x =) 1L(t Ve (t)) , 0<x<X. (4)
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By use of Lemma 1, we obtain that

V(%) < alx) + mh(x) / (-5 IL( ;K%pv(t) + ’%11017) dt

—a()+ mh(x) /0 (- 1) [L (t, ;K%pv(t) N ’%11@2)
—L(t, p—_lK%) + L<t,p;ll(ll’):| dt
P »
<a(x)+ Lh(x) f T t)a-l[ZK%”v(t) +L<t,p;11(1%>] dt
I'(«) p
- a) + mh(x) / (x— )" lL(t ”71@)611:

+ ZK h(x)/ (x— )" u(t) dt

T X
=) + —1<7” h(z) / (x— )" u(e) dt. (5)
p ['(a) 0
Applying Theorem 1 in [25] to (5), we can get the desired inequality (2). d

Corollary 3 Under the conditions of Theorem 2, furthermore, assume that a is nonde-
creasing. Then we have the following estimate:

o (T 12\ (h(x)x®)" ;
u(x)f{u(x)%(;](lﬂ> m} , 0<x<X. (6)

Proof Since a is nondecreasing, then d(x) is also nondecreasing, and from (2) we obtain

~ I (T i\ M) a1~ ’
u(x)f{a(x)+/0 [;(;K ) F(w)(x—t) a(t):| dt}
fzzz%(x){u /0 [X_;GK%”) lfl(:lz))(x—t)"“_l]dt}

" (h(x)x)" | ¥
o 3o (L) i)

which is the desired result.

O

Theorem 4 Suppose thata, u, a, h are defined as in Theorem 2, b is a nonnegative function
locally integrable on [0, X), and p, q are constants with p > q > 1. If a is nondecreasing and
the following inequality is satisfied:

u? (x) §zz(x)+/0xb(t)uq(t)dt+ mh(x / x-0*'L(tu@®)dt, 0<x<X, (7)
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then we have

ulx) < exp(i2 717/ b(t)dt)

= An(x) no—1- Ilj
x{a(x)+ ZI: l"(na)(x t) a(t):| }, 0<x<X, (8

where

_ 1
aw =at) + 2K / b(e)dt + —h(x) / (x— )2 1L< L <%> dt,
V4 p
hx) = exp<@1<qf / b(t) dt)h(x).
V4 0
Proof Denote the right-hand side of (1) by v(x). Then we have
ulx) < vll’ (x), 0<x<X. 9)

Furthermore, an application of Lemma 1 yields that

v(x) < a(x) + /Ox b(t)w%(t) dt + %‘x)h(x) /Ox(x 0" 'L(t, vp (t)) dt

a(x) + /Ox b(t) EK% v(t) + ‘?Kﬂ dt

a-1 - p P~y
T )h(x)/ (x—1) [ (t pK wt) + 2 p 1()
—L(t,’;Ké)u(t,p;Ké)}dt
p p
ax) + /x b(t)[zK%pV(t) + Iﬂlﬁ%} dt
0 p p
‘e )h(x)/ (x t)al[TKp v(t)+L<t ”71@)],#, 0<x<X. (10)

Let

z(x)=a(x)+p_ql(1ﬂf be)dt + h(x)/ (- ) IL(t P_Kp>d
p p

Z Lr - ¥ _ po-1
+ » K7? e )h(x)/ (x—)*v(t) dt.
Then we have
v(x) < z(x) + zI(% /x b(t)v(t)dt, 0=<x<X. (11)
p 0

Since a is nondecreasing, then z is also nondecreasing, and by use of Gronwall’s inequality,
we get that

v(x)sz(x)exp<zl<%p /xb(t)dt>, 0<x<X. 12)
p 0
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Moreover,

20 <a) + 2K /b(t)dt+—h(x)f (x— 1) 1L( p-1, é)dt
p p
+—K7

T 1» 1 a1 q .5
» F(a)h(x)/ (x—1) |:z(t)exp< K /b(r)dr>:|dt

<al)+ LA f b(t)dt+l_ he) / (x— ) 1L<t %Kp)dt

T 1 g, %r _ el
+;K @) exp(pl( /Ob(t)dt)h(x)/o (x—0)*"z(t) dt

- I~ * a-1
F(oz)h(x)/o(x_t) z(t)dt, 0<x<X. 13)

Since the structure of (13) is the same as that of (5), following in a similar manner to the

proof in Theorem 2, we get that

~ (T (%) i
z(x) <a(x) + Kr x—t)""a(k) |dt, 0<x<X. 14
@) <aw) /O[Enlﬁ(p ) Fos (=1 ()} (14)
Combining (9), (12) and (14), we get the desired result. O

Corollary 5 For Theorem 4, similar to the proof of Corollary 3, we can obtain the following

estimate for u:

u(x)gexp( KP / b(t)dt)[a(x)Z( >%]p, 0<x<X.

Remark In Theorem 2, if we let p = 1, L(¢, u(t)) = u(¢), then Theorem 2 becomes Theo-
rem 1 in [25].

3 Applications
In this section, we show that the inequalities established above are useful in the research of
boundedness, uniqueness, continuous dependence on the initial value and parameter for

the solutions to fractional differential equations. Consider the following IVP for a certain

fractional differential equation:

DiuP(x) = f(x,u(x)), 0=<x<X, (15)
with the initial condition

DY P () -0 = 8, (16)

where 0 < <1, f € C(R x R R), D¢ denotes the Riemann-Liouville fractional derivative
defined by D%v(x) = 1 fo x —£)~%v(t) dt.
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Theorem 6 For IVP (15)-(16), if |f (x,u)| < L(x, |u|), where L is defined as in Theorem 2,
then we have the following estimate:

s xo-1 o0 T 2 n x(n+1)ot—1
u(x)g\] F(a)|8|+;[<§1< z) mw], 0<x<X, 17)

where K > 0 is a constant, and T is defined as in Theorem 1.

Proof The equivalent integral form of IVP (15)-(16) is denoted as follows:

ud(x) = %x"’l + ﬁ fox(x - t)“_lf(t,u(t)) dt.

So,

5
T(a)

xa—l 1 X wel
F(a)|5|+m\/0\ (x—t) L(t,

Then a suitable application of Theorem 2 (with p = 3) to (18) yields

|u(x) |3 < ‘ P

L e
+F(oa)f0 x—0*f(6u)| dt

=<

u(t)|)dt, 0<x<X. (18)

3 x! Ten(T _2 "1 no— gt
M(x)f\lr(a)|5|+/0 |:,,Z<§I 3) F(noz)(x_t) 1m|5|i|dt

=1

a—1 & T " y(nl)a-1B
=Sl +Z[(_K%) "—(“’”"‘)w@
\ IM'a) ~[\3 I'(no)T ()
-1 o0 T no L (n+l)a-1
= s+ Y| (2K ) ———18l|, 0=x<X,
I'(a) 3 I'((n+1)x)
\ n=1
which is the desired result. O

Theorem 7 If |f(x,u) — f(x,v)| < L(x, |u® — v?|), where L is defined as in Theorem 2, and
L(¢,0) = 0, then IVP (15)-(16) has a unique solution.

Proof Suppose that IVP (15)-(16) has two solutions #; (x), u3(x). Then we have

_ 3 a-1 1 * _ -1

u1(x) = —(a)x + _F(a) /0 (x—1) f(t, ul(t)) dt, 19)
_ § o—1 1 ¥ _ -1

us(x) = —F(a)x + —F(a) /(; (x—1) f(t, uz(t)) dt. (20)

Furthermore,

1 X
w3 (%) — ud(x) = @ /0 (x— t)“‘l[f(t, w () —f (¢, uz(t))] dt, (21)
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which implies

1 X
|uf(x) -u (x)| < ) / (-t [f(t, w1 (t)) —f (& uz(0)) | dt

a)/ 0L

Treating |u3 (x) — u3(x)| as one independent function, applying Theorem 2 to (22), we ob-

W) - ud)) d. (22)

tain |u3(x) — u3(x)| < 0, which implies u;(x) = u,(x). So, the proof is complete. O

Now we study the continuous dependence on the initial value and parameter for the
solution of IVP (15)-(16).

Theorem 8 Let u be the solution of IVP (15)-(16), and let u(x) be the solution of the follow-
ing IVP:

ch‘ﬁ3(x) =f(x7 ﬂ(x))r

_ (23)
DT (%) |o0 = 8.

If |6 — 8| < &, where ¢ is arbitrarily small, and |f(x,u) — f(x,v)| < L(x, |u® — v?|), where L is
defined as in Theorem 2, and L(t,0) = 0, then we have

3 3 2 n x(n+1)a—1

Proof The equivalent integral form of IVP (23) is denoted as follows:

—3 _ a-1
u(x) = F(a a),/ — )" (¢, u(0)) d. (25)
So, we have
3 —3 5-38 -1 1 * a-1 —
x)—u’(x) = mx + m /0 (x—=12) [f(t, u(t)) —f(t, u(t))] dt. (26)
Furthermore,

-3 ., 1 [* . _
x)|_ F(a)x 1+%/0 -0 f (6 u®) - f(t,u@))]| dt,

xot—l 1 x ol 3
=T " Ta)/o =L o

Applying Theorem 2 to (27), after some basic computation, we can get the desired result.
O

| (x) —

(t) - u3(t)|) dt. (27)

4 Conclusions
In this paper, we have established some new generalized Gronwall-type inequalities, which
are generalizations of some existing results in the literature. Based on these inequalities,
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we investigated the boundedness, uniqueness, and continuous dependence on the initial
value and parameter for the solution to a certain fractional differential equation. Finally,
we note that the presented results in Theorems 2 and 4 can be generalized to Gronwall-
type inequalities with more general forms involving arbitrary nonlinear functional terms

¢(u(x)), and also can be generalized to the 2D case.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
QF carried out the main part of this article. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referees very much for their valuable suggestions on improving this paper.

Received: 7 May 2013 Accepted: 26 August 2013 Published: 11 September 2013

References
1. Pachpatte, BG: Inequalities for Differential and Integral Equations. Academic Press, New York (1998)
2. Lipovan, O: A retarded integral inequality and its applications. J. Math. Anal. Appl. 285, 436-443 (2003)
3. Li, WN: Some delay integral inequalities on time scales. Comput. Math. Appl. 59, 1929-1936 (2010)
4. Zhang, HX, Meng, FW: Integral inequalities in two independent variables for retarded Volterra equations. Appl. Math.
Comput. 199, 90-98 (2008)
. Li, WN: Some Pachpatte type inequalities on time scales. Comput. Math. Appl. 57, 275-282 (2009)
. Agarwal, RP, Deng, SF, Zhang, WN: Generalization of a retarded Gronwall-like inequality and its applications. Appl.
Math. Comput. 165, 599-612 (2005)
7. Cheung, WS, Ren, JL: Discrete non-linear inequalities and applications to boundary value problems. J. Math. Anal.
Appl. 319, 708-724 (2006)
8. Meng, FW, Li, WN: On some new nonlinear discrete inequalities and their applications. J. Comput. Appl. Math. 158,
407-417 (2003)
9. Ma, QH: Estimates on some power nonlinear Volterra-Fredholm type discrete inequalities and their applications.
J. Comput. Appl. Math. 233, 2170-2180 (2010)
10. Wang, WS: A class of retarded nonlinear integral inequalities and its application in nonlinear differential-integral
equation. J. Inequal. Appl. 2012(154), 1-10 (2012)
11. Gallo, A, Piccirillo, AM: About some new generalizations of Bellman-Bihari results for integro-functional inequalities
with discontinuous functions and applications. Nonlinear Anal. 71, e2276-e2287 (2009)
12. Lipovan, O: Integral inequalities for retarded Volterra equations. J. Math. Anal. Appl. 322, 349-358 (2006)
13. Saker, SH: Some nonlinear dynamic inequalities on time scales and applications. J. Math. Inequal. 4, 561-579 (2010)
14. Saker, SH: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633-645 (2011)
15. Sun, YG: On retarded integral inequalities and their applications. J. Math. Anal. Appl. 301, 265-275 (2005)
16. Ferreira, RAC, Torres, DFM: Generalized retarded integral inequalities. Appl. Math. Lett. 22, 876-881 (2009)
17. Meng, FW, Li, WN: On some new integral inequalities and their applications. Appl. Math. Comput. 148, 381-392 (2004)

o

18. Kim, YH: Gronwall, Bellman and Pachpatte type integral inequalities with applications. Nonlinear Anal. 71,
€2641-e2656 (2009)

19. Li, WN, Han, MA, Meng, FW: Some new delay integral inequalities and their applications. J. Comput. Appl. Math. 180,
191-200 (2005)

20. Zhang, HX, Meng, FW: On certain integral inequalities in two independent variables for retarded equations. Appl.
Math. Comput. 203, 608-616 (2008)

21. Pachpatte, BG: Explicit bounds on certain integral inequalities. J. Math. Anal. Appl. 267, 48-61 (2002)

22. Yuan, ZL, Yuan, XW, Meng, FW: Some new delay integral inequalities and their applications. Appl. Math. Comput. 208,
231-237 (2009)

23. Ma, QH, Pecari¢, J: The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales.
Comput. Math. Appl. 61, 2158-2163 (2011)

24. Jiang, FC, Meng, FW: Explicit bounds on some new nonlinear integral inequality with delay. J. Comput. Appl. Math.
205, 479-486 (2007)

25. Ye, HP, Gao, JM, Ding, YS: A generalized Gronwall inequality and its application to a fractional differential equation.
J. Math. Anal. Appl. 328, 1075-1081 (2007)

doi:10.1186/1029-242X-2013-429
Cite this article as: Feng and Meng: Some new Gronwall-type inequalities arising in the research of fractional
differential equations. Journal of Inequalities and Applications 2013 2013:429.



http://www.journalofinequalitiesandapplications.com/content/2013/1/429

	Some new Gronwall-type inequalities arising in the research of fractional differential equations
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Applications
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


