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Abstract
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1 Introduction and preliminaries
Fixed point theory is one of the most crucial tools in nonlinear functional analysis, and it
has application in distinct branches of mathematics and in various sciences, such as eco-
nomics, engineering and computer science. The most impressed fixed point result was
given by Banach [] in . He concluded that each contraction has a unique fixed point
in the complete metric space. Since then, this pioneer work has been generalized and ex-
tended in different abstract spaces. One of the interesting generalization of Banach fixed
point theoremwas given byMatthews [] in . In this remarkable paper, the author in-
troduced the following notion of partial metric spaces and proved the Banach fixed point
theorem in the context of complete partial metric space.
For the sake of completeness, we recall basic definitions and fundamental results from

the literature.
Throughout this paper, by R+, we denote the set of all nonnegative real numbers, while

N is the set of all natural numbers.

Definition  [] A partial metric on a nonempty set X is a function p : X ×X →R+ such
that for all x, y, z ∈ X

(p) x = y if and only if p(x,x) = p(x, y) = p(y, y);
(p) p(x,x)≤ p(x, y);
(p) p(x, y) = p(y,x);
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

Apartial metric space is a pair (X,p) such thatX is a nonempty set, and p is a partial metric
on X.
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Remark  It is clear that if p(x, y) = , then from (p) and (p), we have x = y. But if x = y,
the expression p(x, y) may not be .

Each partialmetric p onX generates a T topology τp onX, which has as a base the family
of open p-balls {Bp(x,γ ) : x ∈ X,γ > }, where Bp(x,γ ) = {y ∈ X : p(x, y) < p(x,x) + γ } for all
x ∈ X and γ > . If p is a partial metric on X, then the function dp : X ×X →R+ given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.
We recall some definitions of a partial metric space, as follows.

Definition  [] Let (X,p) be a partial metric space. Then
() a sequence {xn} in a partial metric space (X,p) converges to x ∈ X if and only if

p(x,x) = limn→∞ p(x,xn);
() a sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if and

only if limm,n→∞ p(xm,xn) exists (and is finite);
() a partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x,x) = limm,n→∞ p(xm,xn);
() a subset A of a partial metric space (X,p) is closed if whenever {xn} is a sequence in

A such that {xn} converges to some x ∈ X , then x ∈ A.

Remark  The limit in a partial metric space is not unique.

Lemma  [, ]
() {xn} is a Cauchy sequence in a partial metric space (X,p) if and only if it is a Cauchy

sequence in the metric space (X,dp);
() a partial metric space (X,p) is complete if and only if the metric space (X,dp) is

complete. Furthermore, limn→∞ dp(xn,x) =  if and only if
p(x,x) = limn→∞ p(xn,x) = limn→∞ p(xn,xm).

Recently, fixed point theory has developed rapidly on partial metric spaces, see, e.g., [–
] and the reference therein. Very recently, Haghi et al. [] proved that some fixed point
results in partial metric space results are equivalent to the results in the context of a usual
metric space. On the other hand, this case is not valid for our main results, that is, the
recent result of Haghi et al. [] is not applicable to the main theorems.
Let (X,d) be a metric space, and let CB(X) denote the collection of all nonempty, closed

and bounded subsets of X. For A,B ∈ CB(X), we define

H(A,B) :=max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

where d(x,B) := inf{d(x,b) : b ∈ B}, and it is well known thatH is called theHausdorffmet-
ric induced the metric d. A multi-valued mapping T : X → CB(X) is called a contraction
if

H(Tx,Ty) ≤ kd(x, y),
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for all x, y ∈ X and k ∈ [, ). The study of fixed points for multi-valued contractions using
the Hausdorff metric was introduced in Nadler [].

Theorem  [] Let (X,d) be a complete metric space, and let T : X → CB(X) be a multi-
valued contraction. Then there exists x ∈ X such that x ∈ Tx.

Very recently, Aydi et al. [] established the notion of partial Hausdorff metric Hp in-
duced by the partial metric p. Let (X,p) be a partial metric space, and let CBp(X) be the
collection of all nonempty, closed and bounded subset of the partial metric space (X,p).
Note that closedness is taken from (X, τp), and boundedness is given as follows: A is a
bounded subset in (X,p) if there exist x ∈ X and M ∈ R such that for all a ∈ A, we have
a ∈ Bp(x,M), that is, p(x,a) < p(a,a) +M. For A,B ∈ CBp(X) and x ∈ X, they define

p(x,A) := inf
{
p(x,a) : a ∈ A

}
,

δp(A,B) := sup
{
p(a,B) : a ∈ A

}
,

δp(B,A) := sup
{
p(b,A) : b ∈ B

}
,

Hp(A,B) =max
{
δp(A,B), δp(B,A)

}
.

It is immediate to get that if p(x,A) = , then dp(x,A) = , where dp(x,A) = inf{dp(x,a) : a ∈
A}.

Remark  [] Let (X,p) be a partial metric space, and let A be a nonempty subset of X.
Then

a ∈ A if and only if p(a,A) = p(a,a).

Aydi et al. [] also introduced the following properties of mappings δp : CBp(X) ×
CBp(X)→R andHp : CBp(X)×CBp(X)→R.

Proposition  [] Let (X,p) be a partial metric space. For A,B ∈ CBp(X), the following
properties hold:
() δp(A,A) = sup{p(a,a) : a ∈ A};
() δp(A,A) ≤ δp(A,B);
() δp(A,B) =  implies that A⊂ B;
() δp(A,B) ≤ δp(A,C) + δp(C,B) – infc∈C p(c, c).

Proposition  [] Let (X,p) be a partial metric space. For A,B ∈ CBp(X), the following
properties hold:
() Hp(A,A) ≤Hp(A,B);
() Hp(A,B) =Hp(B,A);
() Hp(A,B)≤Hp(A,C) +Hp(C,B) – infc∈C p(c, c);
() Hp(A,B) =  implies that A = B.

Aydi et al. [] proved the following important result.
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Lemma  Let (X,p) be a partial metric space, A,B ∈ CBp(X) and h > . For any a ∈ A,
there exists b = b(a) ∈ B such that

p(a,b)≤ hHp(A,B).

In this study, we also recall theMeir-Keeler-type contraction [] and α-admissible [].
In , Meir and Keeler [] introduced the following notion of Meir-Keeler-type con-
traction in a metric space (X,d).

Definition  Let (X,p) be a metric space, f : X → X. Then f is called a Meir-Keeler-type
contraction whenever for each η > , there exists γ >  such that

η ≤ d(x, y) < η + γ �⇒ d(fx, fy) < η.

The following definition was introduced in [].

Definition  Let f : X → X be a self-mapping of a set X and α : X × X → R+. Then f is
called an α-admissible if

x, y ∈ X, α(x, y)≥  �⇒ α(fx, fy) ≥ .

2 Main results
We first introduce the following notions of a strictly α-admissible and and an α-Meir-
Keeler contraction with respect to the partial Hausdorff metricHp.

Definition  Let (X,p) be a partial metric space, T : X → CBp(X) and α : X × X →
R+�{}. We say that T is strictly α-admissible if

α(x, y) >  implies that α(y, z) > , x ∈ X, y ∈ Tx, z ∈ Ty.

Definition  Let (X,p) be a partial metric space and α : X × X → R+�{}. We call T :
X → CBp(X) an α-Meir-Keeler contraction with respect to the partial Hausdorff metric
Hp if the following conditions hold:

(c) T is strictly α-admissible;
(c) for each η > , there exists γ >  such that

η ≤ p(x, y) < η + γ implies that α(x, y)Hp(Tx,Ty) < η.

Remark  Note that if T : X → CBp(X) is a α-Meir-Keeler contraction with respect to the
partial Hausdorff metricHp, then we have that for all x, y ∈ X

α(x, y)Hp(Tx,Ty)≤ p(x, y).

Further, if p(x, y) = , then Hp(Tx,Ty) = . On the other hand, if p(x, y) = , then
α(x, y)Hp(Tx,Ty) < p(x, y).

We now state and prove our main result.
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Theorem  Let (X,p) be a complete partial metric space. Suppose that T : X → CBp(X)
is an α-Meir-Keeler contraction with respect to the partial Hausdorff metric H and that
there exists x ∈ X such that α(x, y) >  for all y ∈ Tx. Then T has a fixed point in X (that
is, there exists x∗ ∈ X such that x∗ ∈ Tx∗).

Proof Let x ∈ Tx. Since T : X → CBp(X) is an α-Meir-Keeler contraction with respect
to the partial Hausdorff metricHp, by Remark , we have that

α(x,x)Hp(Tx,Tx) ≤ p(x,x). ()

Put α(x,x) = k > , and let x ∈ Tx. From Lemma  with h =
√
k, we have that

p(x,x) ≤
√
kHp(Tx,Tx). ()

Using () and (), we obtain

p(x,x) ≤ √
k

p(x,x). ()

So, we can obtain a sequence xn ∈ X recursively as follows:

xn ∈ Txn– for all n ∈N.

Since T is strictly α-admissible, we deduce that α(x,x) = k > . Continuing this process,
we have that

α(xn,xn+) = kn >  for all n ∈N∪ {}. ()

Since T : X → CBp(X) is an α-Meir-Keeler contraction with respect to the partial Haus-
dorff metricHp, by Remark , we have that

α(xn,xn+)Hp(Txn,Txn+) ≤ p(xn,xn+) for all n ∈ N∪ {}. ()

From Lemma  with h =
√
kn, we have that

p(xn+,xn+)≤
√
knHp(Txn,Txn+), n ∈ N∪ {}. ()

Using () and (), we obtain

p(xn+,xn+)≤ √
kn

p(xn,xn+), n ∈N∪ {}. ()

Now, from () and by the mathematical induction, we obtain

p(xn+,xn+)≤ √
kn

p(xn,xn+)

≤ √
kn

√
kn–

p(xn–,xn)

http://www.journalofinequalitiesandapplications.com/content/2013/1/410
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≤ · · ·

≤ √
kn

√
kn–

· · · √
k

p(x,x). ()

Since kn >  for all n ∈N∪ {}, we get
√
kn

<  for all n ∈N∪ {}.

Put

k =max

{
√
kn

: n ∈N∪ {}
}
. ()

Using () and (), we obtain

p(xn+,xn+)≤ (k)n+p(x,x) for all n ∈N∪ {}. ()

Letting n → ∞ in (). Then

lim
n→∞p(xn,xn+) = . ()

By the property (p) of a partial metric and using (), we have

lim
n→∞p(xn,xn) = . ()

Using () and the property (p) of a partial metric, for anym ∈N, we have

p(xn,xn+m) ≤
m∑
i=

p(xn+i–,xn+i) –
m–∑
i=

p(xn+i,xn+i)

≤
m∑
i=

(k)n+i–p(x,x) –
m–∑
i=

p(xn+i,xn+i)

≤ (k)n

( – k)
p(x,x) –

m–∑
i=

p(xn+i,xn+i). ()

Using () and (), we get

lim
n→∞p(xn,xn+m) = .

By the definition of dp, we get that for anym ∈N,

lim
n→∞dp(xn,xn+m) ≤ lim

n→∞p(xn,xn+m) = . ()

This yields that {xn} is a Cauchy sequence in (X,dp). Since (X,p) is complete, from
Lemma , (X,dp) is a complete metric space. Therefore, {xn} converges to some x∗ ∈ X
with respect to the metric dp, and we also have

p
(
x∗,x∗) = lim

n→∞p
(
xn,x∗) = lim

n→∞p(xn,xm) = . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/410
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Since T : X → CBp(X) is an α-Meir-Keeler contraction with respect to the partial Haus-
dorff metricH, by Remark , we have that

α
(
xn,x∗)Hp

(
Txn,Tx∗) ≤ p

(
xn,x∗).

By the definition of the mapping α, we have that α(xn,x∗) > . Using (), we get

lim
n→∞Hp

(
Txn,Tx∗) = . ()

Now xn+ ∈ Txn gives that

p
(
xn+,Tx∗) ≤ δp

(
Txn,Tx∗) ≤Hp

(
Txn,Tx∗).

Using (), we get

lim
n→∞p

(
xn+,Tx∗) = . ()

By the property (p) of a partial metric, we have

p
(
x∗,Tx∗) ≤ p

(
x∗,xn+

)
+ p

(
xn+,Tx∗) – p(xn+,xn+),

Taking limit as n→ ∞, and using (), () and (), we obtain

p
(
x∗,Tx∗) = .

Therefore, from (), p(x∗,x∗) = , we obtain

p
(
x∗,x∗) = p

(
x∗,Tx∗),

which implies that x∗ ∈ Tx∗ by Remark . �

The following theorem, the main result of [], is a consequence of Theorem  by taking
α(x, y) = 

k for k ∈ (, ).

Theorem  [] Let (X,p) be a complete partial metric space. If T : X → CBp(X) is a
multi-valued mapping such that for all x, y ∈ X, we have

Hp(Tx,Ty)≤ kp(x, y),

where k ∈ (, ). Then T has a fixed point.
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