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1 Introduction
The concept of complete convergence was introduced by Hsu and Robbins [], i.e., a se-
quence of random variables {Xn,n ≥ } is said to converge completely to a constant C if∑∞

n= P(|Xn – C| ≥ ε) < ∞ for all ε > . In view of Borel-Cantelli lemma, this implies that
Xn → C almost surely (a.s.). The converse is true if {Xn,n ≥ } is independent. Hsu and
Robbins [] obtained that the sequence of arithmetic means of independent and identi-
cally distributed (i.i.d.) random variables converges completely to the expected value if
the variance of the summands is finite. Erdös [] proved the converse. The result of Hsu-
Robbins-Erdös is a fundamental theorem in probability theory, and it has been generalized
and extended in several directions bymany authors. Baum and Katz [] gave the following
generalization to establish a rate of convergence in the sense of Marcinkiewicz-Zygmund-
type strong law of large numbers.

Theorem . Let α > /, αp >  and {Xn,n ≥ } be a sequence of i.i.d. random variables.
Assume that EX =  if α ≤ . Then the following statements are equivalent

(i) E|X|p < ∞;
(ii)

∑∞
n= nαp–P(max≤k≤n |∑k

i=Xi| > εnα) < ∞ for all ε > .

Many authors have extendedTheorem . for the i.i.d. case to some dependent cases. For
example, Shao [] investigated themoment inequalities for theϕ-mixing randomvariables
and gave its application to the complete convergence for this stochastic process; Yu [] ob-
tained the complete convergence for weighted sums of martingale differences; Ghosal and
Chandra [] gave the complete convergence of martingale arrays; Stoica [, ] investigated
the Baum-Katz-Nagaev-type results formartingale differences and the rate of convergence
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in the strong law of large numbers for martingale differences; Wang et al. [] also studied
the complete convergence and complete moment convergence for martingale differences,
which generalized some results of Stoica [, ]; Yang et al. [] obtained the complete con-
vergence for the moving average process of martingale differences and so forth. For other
works about convergence analysis, one can refer to Gut [], Chen et al. [], Sung [–],
Sung and Volodin [], Hu et al. [] and the references therein.
Recently, Thanh and Yin [] studied the complete convergence for randomly weighted

sums of independent random elements in Banach spaces. On the other hand, Cabrera et
al. [] investigated some theorems on conditional mean convergence and conditional
almost sure convergence for randomly weighted sums of dependent random variables.
Inspired by the papers above, we will investigate the complete moment convergence for
randomly weighted sums of martingale differences in this paper, which implies the com-
plete convergence andMarcinkiewicz-Zygmund-type strong law of large numbers for this
stochastic process. We generalize the results of Stoica [, ] and Wang et al. [] for the
nonweighted sums of martingale differences to the case of randomly weighted sums of
martingale differences. For the details, one can refer to the main results presented in Sec-
tion . The proofs of the main results are presented in Section .
Recall that the sequence {Xn,n ≥ } is stochastically dominated by a nonnegative ran-

dom variable X if

sup
n≥

P
(|Xn| > t

) ≤ CP(X > t) for some positive constant C and for all t ≥ .

Throughout the paper, let F = {∅,�}, x+ = xI (x ≥ ), I(B) be the indicator function of
set B and C,C,C, . . . denote some positive constants not depending on n, which may be
different in various places.
To prove the main results of the paper, we need the following lemmas.

Lemma . (cf. Hall and Heyde [], Theorem .) If {Xi,Fi,  ≤ i ≤ n} is a martingale
difference and p > , then there exists a constant C depending only on p such that

E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xi

∣∣∣∣∣
p)

≤ C

{
E

( n∑
i=

E
(
X
i |Fi–

))p/

+ E
(
max
≤i≤n

|Xi|p
)}

, n≥ .

Lemma . (cf. Sung [], Lemma .) Let {Xn,n≥ } and {Yn,n≥ } be sequences of ran-
dom variables. Then for any n≥ , q > , ε >  and a > ,

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Xi + Yi)

∣∣∣∣∣ – εa

)+

≤
(


εq

+


q – 

)


aq–
E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣
q)

+ E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Yi

∣∣∣∣∣
)
.

Lemma . (cf.Wang et al. [], Lemma .) Let {Xn,n≥ } be a sequence of random vari-
ables stochastically dominated by a nonnegative random variable X. Then for any n ≥ ,
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a >  and b > , the following two statements hold

E
[|Xn|aI

(|Xn| ≤ b
)] ≤ C

{
E
[
XaI(X ≤ b)

]
+ baP(X > b)

}
and

E
[|Xn|aI

(|Xn| > b
)] ≤ CE

[
XaI(X > b)

]
,

where C and C are positive constants.

2 Main results
Theorem . Let α > /,  < p < ,  ≤ αp <  and {Xn,Fn,n ≥ } be a martin-
gale difference sequence stochastically dominated by a nonnegative random variable X
with EXp < ∞. Assume that {An,n ≥ } is a random sequence, and it is independent of
{Xn,n≥ }. If

n∑
i=

EA
i =O(n), (.)

then for every ε > ,

∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα

)+

< ∞ (.)

and for αp > ,

∞∑
n=

nαp–E
(
sup
k≥n

∣∣∣∣
∑k

i=AiXi

kα

∣∣∣∣ – ε

)+

< ∞. (.)

Theorem . Let α > /, p ≥  and {Xn,Fn,n ≥ } be a martingale difference sequence
stochastically dominated by a nonnegative random variable X with EXp <∞. Let {An,n≥
} be a random sequence, which is independent of {Xn,n≥ }. Denote G = {∅,�} and Gn =
σ (X, . . . ,Xn), n ≥ . For some q > (αp–)

α– , we assume that E[supn≥ E(X
n|Gn–)]q/ <∞ and

n∑
i=

E|Ai|q =O(n). (.)

Then for every ε > , (.) and (.) hold.

Meanwhile, for the case p = , we have the following theorem.

Theorem . Let α >  and {Xn,Fn,n ≥ } be a martingale difference sequence stochas-
tically dominated by a nonnegative random variable X with E[X ln( + X)] < ∞. Assume
that (.) holds and {An,n ≥ } is a random sequence, which is independent of {Xn,n ≥ }.
Then for every ε > ,

∞∑
n=

n–E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα

)+

< ∞ (.)
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and for α > ,

∞∑
n=

nα–E
(
sup
k≥n

∣∣∣∣
∑k

i=AiXi

kα

∣∣∣∣ – ε

)+

< ∞. (.)

In particular, for α > , it has

∞∑
n=

nα–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εnα

)
<∞, (.)

and for α > , it has

∞∑
n=

nα–P
(
sup
k≥n

∣∣∣∣
∑k

i=AiXi

kα

∣∣∣∣ > ε

)
< ∞. (.)

On the other hand, for α ≥  and EX < ∞, we have the following theorem.

Theorem . Let α ≥  and {Xn,Fn,n≥ } be a martingale difference sequence stochasti-
cally dominated by a nonnegative random variable X with EX < ∞.DenoteG = {∅,�} and
Gn = σ (X, . . . ,Xn), n≥ . Let (.) hold, and let {An,n ≥ } be a random sequence, which is
independent of {Xn,n ≥ }.We assume (i) under the case of α = , there exists a δ >  such
that

lim
n→∞

max≤i≤n E[|Xi|+δ|Gi–]
nδ

= , a.s.

and (ii) under the case of α > , it has for any λ >  that

lim
n→∞

max≤i≤n E[|Xi||Gi–]
nλ

= , a.s.

Then for α ≥  and every ε > , it has (.). In addition, for α > , it has (.).

Remark . If the conditions of Theorem . or Theorem . hold, then for every ε > ,

∞∑
n=

nαp–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εnα

)
< ∞, (.)

and for αp > ,

∞∑
n=

nαp–P
(
sup
k≥n

∣∣∣∣
∑k

i=AiXi

kα

∣∣∣∣ > ε

)
< ∞. (.)

In fact, it can be checked that for every ε > ,

∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα

)+

=
∞∑
n=

nαp––α

∫ ∞


P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα > t

)
dt
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≥
∞∑
n=

nαp––α

∫ εnα


P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα > t

)
dt

≥ ε

∞∑
n=

nαp–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εnα

)
. (.)

So (.) implies (.).
On the other hand, by the proof of Theorem . of Gut [] and the proof of (.) in

Yang et al. [], for αp > , it is easy to see that

∞∑
n=

nαp–P
(
sup
k≥n

∣∣∣∣
∑k

i=AiXi

kα

∣∣∣∣ > αε

)
≤ C

∞∑
n=

nαp–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εnα

)
.

Thus (.) follows from (.).

Remark . In Theorem ., if α = /p, then for every ε > , we get by (.) that

∞∑
n=

n–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εn/p
)
< ∞. (.)

By using (.), one can easily get the Marcinkiewicz-Zygmund-type strong law of large
numbers of randomly weighted sums of martingale difference as following

lim
n→∞


n/p

n∑
i=

AiXi = , a.s.

If An = an is non-random (the case of constant weighted), n ≥ , then one can get the
results of Theorems .-. for the non-randomweighted sums of martingale differences.
Meanwhile, it can be seen that our condition E[supn≥ E(X

n|Gn–)]q/ < ∞ in Theo-
rem . is weaker than the condition supn≥ E(X

n|Fn–) ≤ C, a.s. in Theorem ., The-
orem . and Theorem . of Wang et al. []. In fact, it follows from Gn– ⊆ Fn– that

E
(
X
n|Gn–

)
= E

[
E
(
X
n|Fn–

)|Gn–
] ≤ E

[
sup
n≥

E
(
X
n|Fn–

)|Gn–

]
.

If supn≥ E(X
n|Fn–) ≤ C, a.s., then it has E[supn≥ E(X

n|Gn–)]q/ < ∞. For α ≥  and
E[X ln( + X)] < ∞, Wang et al. [] obtained the result of (.) (see Theorem . of Wang
et al. []). Therefore, by Theorems .-. in this paper, we generalize Theorems .-. of
Wang et al. [] for the nonweighted sums ofmartingale differences to the case of randomly
weighted sums of martingale differences.
On the other hand, let the hypothesis that {An,n ≥ } is independent of {Xn,n ≥ } be

replaced by that An is Fn–-measurable and An is independent of Xn for each n ≥  in
Theorem ., and the other conditions of Theorem. hold, one can get (.) and (.) (the
proof is similar to the one of Theorem .). LetAn beFn–-measurable,An be independent
of Xn for each n ≥ , E[supn≥ E(X

n|Fn–)]q/ < ∞ and other conditions of Theorem .
hold, one can also obtain (.) and (.). We can obtain some similar results if we only
require An is Fn–-measurable for all n ≥  (without any independence hypothesis). This
case would have many interesting applications (see Huang and Guo [], Thanh et al. []
and the references therein).
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3 The proofs of main results

Proof of Theorem . Let G = {∅,�}, for n≥ , Gn = σ (X, . . . ,Xn) and

Xni = XiI
(|Xi| ≤ nα

)
,  ≤ i≤ n.

It can be seen that

AiXi = AiXiI
(|Xi| > nα

)
+

[
AiXni – E(AiXni|Gi–)

]
+ E(AiXni|Gi–),  ≤ i≤ n.

So, by Lemma . with a = nα , for q > , one has that

∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα

)+

≤ C

∞∑
n=

nαp––qαE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣
q)

+
∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXiI

(|Xi| > nα
)
+ E(AiXni|Gi–)

]∣∣∣∣∣
)

≤ C

∞∑
n=

nαp––qαE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣
q)

+
∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXiI
(|Xi| > nα

)∣∣∣∣∣
)

+
∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E(AiXni|Gi–)

∣∣∣∣∣
)

:=H +H +H. (.)

Obviously, it follows from Hölder’s inequality and (.) that

n∑
i=

E|Ai| ≤
( n∑

i=

EA
i

)/( n∑
i=



)/

=O(n). (.)

By the fact that {An,n ≥ } is independent of {Xn,n ≥ }, we can check by Markov’s in-
equality, Lemma ., (.) and EXp < ∞ (p > ) that

H ≤
∞∑
n=

nαp––α

n∑
i=

E|Ai|E
[|Xi|I

(|Xi| > nα
)]

≤
∞∑
n=

nαp––αE
[
XI

(
X > nα

)]

=
∞∑
n=

nαp––α

∞∑
m=n

E
[
XI

(
mα < X ≤ (m + )α

)]
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=
∞∑
m=

E
[
XI

(
mα < X ≤ (m + )α

)] m∑
n=

nαp––α

≤ C

∞∑
m=

mαp–αE
[
XI

(
mα < X ≤ (m + )α

)]
≤ CEXp <∞. (.)

On the other hand, one can see that {Xn,Gn,n≥ } is also a martingale difference, since
{Xn,Fn,n≥ } is a martingale difference. Combining with the fact that {An,n≥ } is inde-
pendent of {Xn,n≥ }, we have that

E(AnXn|Gn–) = E
[
E(AnXn|Gn)|Gn–

]
= E

[
XnE(An|Gn)|Gn–

]
= EAnE[Xn|Gn–] = , a.s., n≥ .

Consequently, by the proof of (.), it follows that

H =
∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E
[
AiXiI

(|Xi| ≤ nα
)|Gi–

]∣∣∣∣∣
)

=
∞∑
n=

nαp––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E
[
AiXiI

(|Xi| > nα
)|Gi–

]∣∣∣∣∣
)

≤
∞∑
n=

nαp––α

n∑
i=

E|Ai|E
[|Xi|I

(|Xi| > nα
)]

≤ C

∞∑
n=

nαp––αE
[
XI

(
X > nα

)] ≤ CEXp < ∞. (.)

Next, we turn to prove H < ∞. It can be found that for fixed real numbers a, . . . ,an,

{
aiXni – E(aiXni|Gi–),Gi,  ≤ i ≤ n

}
is also a martingale difference. Note that {A,A, . . . ,An} is independent of {Xn,Xn,
. . . ,Xnn}. So, by Markov’s inequality, (.), (.) with q = , Lemma . with p =  and
Lemma ., we get that

H = C

∞∑
n=

nαp––αE

{
E max

≤k≤n

k∑
i=

[
aiXni – E(aiXni|Gi–)

]∣∣∣A = a, . . . ,An = an

}

≤ CE

( n∑
i=

E(aiXni)
∣∣∣∣A = a, . . . ,An = an

)

= C

∞∑
n=

nαp––α
n∑
i=

E(AiXni) = C

∞∑
n=

nαp––α
n∑
i=

EA
i EX


ni

≤ C

∞∑
n=

nαp––αE
[
XI

(
X ≤ nα

)]
+C

∞∑
n=

nαp–P
(
X > nα

)
=: CH +CH. (.)
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By the condition EXp < ∞ with p < , it follows

H =
∞∑
n=

nαp––α
n∑
i=

E
[
XI

(
(i – )α < X ≤ iα

)]

=
∞∑
i=

E
[
XI

(
(i – )α < X ≤ iα

)] ∞∑
n=i

nαp––α

≤ C

∞∑
i=

E
[
XpX–pI

(
(i – )α < X ≤ iα

)]
iαp–α ≤ CEXp < ∞. (.)

From (.), it has

H ≤
∞∑
n=

nαp––αE
[
XI

(
X > nα

)] ≤ CEXp < ∞. (.)

Consequently, by (.) and (.)-(.), we obtain (.) immediately.
For αp > , we turn to prove (.). Denote Sk =

∑k
i=AiXi, k ≥ . It can be seen that

αp <  <  + α. So, similar to the proof of (.) in Yang et al. [], we can check that

∞∑
n=

nαp–E
(
sup
k≥n

∣∣∣∣ Skkα

∣∣∣∣ – εα
)+

≤ C

∞∑
l=

l(αp––α)
∫ ∞


P
(
max
≤k≤l

|Sk| > εα(l+) + s
)
ds

≤ C+α–αp
∞∑
n=

nαp––αE
(
max
≤k≤n

|Sk| – εnα
)+

.

Combining with (.), we get (.) finally. �

Proof of Theorem . To prove Theorem ., we use the same notation as that in the proof
of Theorem .. For p ≥ , it is easy to see that q > (αp – )/(α – ) ≥ . Consequently,
for any  ≤ s ≤ , by Hölder’s inequality and (.), we get

n∑
i=

E|Ai|s ≤
( n∑

i=

E|Ai|q
)s/q( n∑

i=



)–s/q

=O(n). (.)

By (.), (.) and (.), one can find that H < ∞ and H < ∞. So we need to prove that
H < ∞ under the conditions of Theorem .. For p ≥ , noting that {A,A, . . . ,An} is
independent of {Xn,Xn, . . . ,Xnn}, similar to the proof of (.), one has by Lemma . that

H = C

∞∑
n=

nαp––qαE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣
q)

≤ C

∞∑
n=

nαp––qαE

( n∑
i=

E
{[
AiXni – E(AiXni|Gi–)

]|Gi–
})q/

+C

∞∑
n=

nαp––qα
n∑
i=

E
∣∣AiXni – E(AiXni|Gi–)

∣∣q
=: CH +CH. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/396
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Obviously, for  ≤ i≤ n, it has

E
{[
AiXni – E(AiXni|Gi–)

]|Gi–
}

= E
[
A
i X


i I

(|Xi| ≤ nα
)|Gi–

]
–

[
E
(
AiXiI

(|Xi| ≤ nα
)|Gi–

)]
≤ E

[
A
i X


i I

(|Xi| ≤ nα
)|Gi–

] ≤ EA
i E

(
X
i |Gi–

)
, a.s.

Combining (.) with E[supi≥ E(X
i |Gi–)]q/ <∞, we obtain that

H ≤
∞∑
n=

nαp––qα

( n∑
i=

EA
i

)q/

E
(
sup
i≥

E
(
X
i |Gi–

))q/

≤ C

∞∑
n=

nαp––qα+q/ < ∞, (.)

following from the fact that q > (αp–)/(α–). Meanwhile, by Cr inequality, Lemma .
and (.),

H ≤ C

∞∑
n=

nαp––qα
n∑
i=

E|Ai|qE
[|Xi|qI

(|Xi| ≤ nα
)]

≤ C

∞∑
n=

nαp––qαE
[
XqI

(
X ≤ nα

)]
+C

∞∑
n=

nαp–P
(
X > nα

)

≤ C

∞∑
n=

nαp––qαE
[
XqI

(
X ≤ nα

)]
+C

∞∑
n=

nαp––αE
[
XI

(
X > nα

)]
=: CH∗

 +CH∗
. (.)

By the condition p ≥  and α > /, we have that (αp – )/(α – ) – p≥ , which implies
that q > p. So, one gets by EXp <∞ that

H∗
 =

∞∑
n=

nαp––qα
n∑
i=

E
[
XqI

(
(i – )α < X ≤ iα

)]

=
∞∑
i=

E
[
XqI

(
(i – )α < X ≤ iα

)] ∞∑
n=i

nαp––qα

≤ C

∞∑
i=

E
[
XpXq–pI

(
(i – )α < X ≤ iα

)]
iαp–qα ≤ CEXp < ∞. (.)

By the proof of (.), it follows

H∗
 =

∞∑
n=

nαp––αE
[
XI

(
X > nα

)] ≤ CEXp < ∞. (.)

Therefore, by (.)-(.), it has H <∞. Consequently, it completes the proof of (.).
Finally, by the fact that αp > , similar to the proof of (.) in Yang et al. [], it is easy to

see that (.) holds for the case αp <  + α and the case αp≥  + α. �
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Proof of Theorem . Similar to the proof of Theorem ., by Lemma ., it can be checked
that

∞∑
n=

n–E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ – εnα

)+

≤ C

∞∑
n=

n––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣
)

+
∞∑
n=

n–E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXiI
(|Xi| > nα

)∣∣∣∣∣
)

+
∞∑
n=

n–E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E(AiXni|Gi–)

∣∣∣∣∣
)

:= J + J + J. (.)

Similarly to the proof of (.), we have

J ≤ C

∞∑
n=

n–E
[
XI

(
X > nα

)]

= C

∞∑
n=

n–
∞∑
m=n

E
[
XI

(
mα < X ≤ (m + )α

)]

= C

∞∑
m=

E
[
XI

(
mα < X ≤ (m + )α

)] m∑
n=

n–

≤ C

∞∑
m=

ln( +m)E
[
XI

(
mα < X ≤ (m + )α

)]
≤ CE

[
X ln( +X)

]
<∞. (.)

Meanwhile, by the proofs of (.) and (.), we get

J ≤ C

∞∑
n=

n–E
[
XI

(
X > nα

)] ≤ CE
[
X ln( +X)

]
< ∞. (.)

On the other hand, by the proof of (.), it can be checked that for α > ,

J ≤ C

∞∑
n=

n––α

n∑
i=

E(AiXni) = C

∞∑
n=

n––α

n∑
i=

EA
i EX


ni

≤ C

∞∑
n=

n––αE
[
XI

(
X ≤ nα

)]
+C

∞∑
n=

nα–P
(
X > nα

)

≤ C

∞∑
n=

n––α

n∑
i=

E
[
XI

(
(i – )α < X ≤ iα

)]
+C

∞∑
n=

n–E
[
XI

(
X > nα

)]

≤ C

∞∑
i=

E
[
XI

(
(i – )α < X ≤ iα

)] ∞∑
n=i

n––α +CE
[
X ln( +X)

]
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≤ C

∞∑
i=

E
[
XI

(
(i – )α < X ≤ iα

)]
i–α +CE

[
X ln( +X)

]
≤ CEX +CE

[
X ln( +X)

]
< ∞. (.)

Therefore, by (.)-(.), one gets (.) immediately. Similar to the proof of (.), it is
easy to have (.). Obviously, by the proof of (.) in Remark ., (.) also holds under
the conditions of Theorem .. Finally, by the proof of Theorem . of Gut [] and the
proof of (.) in Yang et al. [], for α > , it is easy to get (.). �

Proof of Theorem . For n≥ , we also denote Xni = XiI(|Xi| ≤ nα),  ≤ i ≤ n. It is easy to
see that

P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXi

∣∣∣∣∣ > εnα

)
≤

n∑
i=

P
(|Xi| > nα

)
+ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

AiXni

∣∣∣∣∣ > εnα

)
. (.)

For the case of α = , there exists a δ >  such that limn→∞
max≤i≤n E[|Xi|+δ |Gi–]

nδ = , a.s. So
by E(AnXn|Gn–) = , a.s., n≥ , we can check that


nα

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E(AiXni|Gi–)

∣∣∣∣∣
)

=

n

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E
[
AiXiI

(|Xi| ≤ n
)|Gi–

]∣∣∣∣∣
)

=

n

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E
[
AiXiI

(|Xi| > n
)|Gi–

]∣∣∣∣∣
)

≤ 
n

n∑
i=

E|Ai|E
[|Xi|I

(|Xi| > n
)|Gi–

]

≤ 
n+δ

n∑
i=

E|Ai|E
[|Xi|+δ|Gi–

]

≤ K
nδ

max
≤i≤n

E
[|Xi|+δ|Gi–

] → , a.s.,

as n→ ∞.
Otherwise, for the case of α > , it is assumed that limn→∞

max≤i≤n E[|Xi||Gi–]
nλ = , a.s., for

any λ > . Consequently, for any α > , it follows that


nα

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E(AiXni|Gi–)

∣∣∣∣∣
)

=

nα

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

E
[
AiXiI

(|Xi| ≤ n
)|Gi–

]∣∣∣∣∣
)

≤ 
nα

n∑
i=

E|Ai|E
[|Xi|I

(|Xi| ≤ n
)|Gi–

]

≤ K

nα– max
≤i≤n

E[|Xi||Gi–] → , a.s.,

as n→ ∞. Meanwhile,

∞∑
n=

nα–
n∑
i=

P
(|Xi| > nα

) ≤ K

∞∑
n=

nα–P
(
X > nα

) ≤ KEX <∞. (.)
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By (.) and (.), to prove (.), it suffices to show that

I =
∞∑
n=

nα–P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣ > εnα



)
< ∞.

Obviously, by Markov’s inequality and the proofs of (.), (.), (.), one can check that

I ≤ 
ε

∞∑
n=

n––αE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

[
AiXni – E(AiXni|Gi–)

]∣∣∣∣∣
)

≤ K

∞∑
n=

n––αE
[
XI

(
X ≤ nα

)]
+K

∞∑
n=

nα–P
(
X > nα

)
≤ KEX <∞.

On the other hand, by proof of Theorem . of Gut [] and the proof of (.) in Yang
et al. [], we can easily obtain (.) for α > . �
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