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Abstract

Let G be a simple connected graph of order n, m edges, maximum degree A; and
minimum degree §. Li et al. (Appl. Math. Lett. 23:286-290, 2010) gave an upper bound
on number of spanning trees of a graph in terms of n, m, A, and é:

t(G)§5(2m_Aw —5—1)” 3.
n-3

The equality holds ifand only if G = Ky po1, G= Ky, G= K V (KT UKya) or GE K, — e,

where e is any edge of K. Unfortunately, this upper bound is erroneous. In particular,

we show that this upper bound is not true for complete graph K,,.

In this paper we obtain some upper bounds on the number of spanning trees of
graph G in terms of its structural parameters such as the number of vertices (n), the
number of edges (m), maximum degree (A), second maximum degree (A»),
minimum degree (8), independence number (a), clique number (w). Moreover, we
give the Nordhaus-Gaddum-type result for number of spanning trees.

MSC: 05C50; 15A18

Keywords: graph; spanning trees; independence number; clique number; first
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1 Introduction

Let G = (V,E) be a simple connected graph with a vertex set V(G) = {vy,v,...,v,} and
an edge set E(G). Its order is |V(G)|, denoted by #, and its size is |E(G)|, denoted by m.
For v; € V(G), the degree (= number of the first neighbors) of the vertex v; is denoted by
d;. The maximum vertex degree is denoted by A; , the second maximum by A,, and the
minimum vertex degree §. The number of spanning trees of G, denoted by £(G), is the total
number of distinct spanning subgraphs of G that are trees.

The Laplacian matrix of a graph G is L(G) = D(G) — A(G), where D(G) is the diagonal
matrix of vertex degrees, and A(G) is the (0,1)-adjacency matrix of graph G. Let A >
Ay > --- > A, = 0 denote the eigenvalues of L(G). They are usually called the Laplacian
eigenvalues of G. When more than one graph is under discussion, we may write 1,(G)

instead of A;. For a connected graph of order #, it has been proven [1] that

1 n-1
#G) =~ TTn (1)
i=1
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The normalized Laplacian matrix of G is denoted by £ and defined to be

where L(G) is the Laplacian matrix and D(G) is the diagonal matrix of vertex degrees of
graph G. The eigenvalues of £ are non-negative, we label them so that 0 = p, < p,; <

-++ < pa < p1. For a connected graph of order #, it has been proven [2] that

n n-1
46 =5 T4 ] @)
i=1 i=1

We now give some known popular upper bounds on #(G)
1. Grimmett [3].

n-1
#HG) < l( 2m ) . 3)

T n\n-1

2. Grone and Merris [4].

n n-1 1—[:1= di
©=(,") () @

3. Nosal [5].

n-1
#G) < n"-2< ! ) . )
n—-1

4. Kelmans [6, p.222].

HG) < (1- E)m. (6)
n
5. Das [7].
2m— A —1\"2
tG) < <7) . (7)
n—2

The third bound only applies to regular graphs of degree r. The first three bounds are
sharp for complete graphs only. The fifth bound is sharp for star or complete graph. More-
over, the bound in (5) was also obtained by McKay [8]. Chung et al. [9] studied the number
of spanning trees for regular graphs. As usual, K, K, 4 (p + ¢ = n) and Kj,,_; denote, re-
spectively, the complete graph, the complete bipartite graph and the star on # vertices.

The paper is organized as follows. In Section 2, we give a list of some previously known
results. In Section 3, we obtain some upper bounds on the number of spanning trees. In
Section 4, we obtain Nordhaus-Gaddum-type result for the number of spanning trees of
graph G.
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2 Lemmas
In this section, we shall list some previously known results that will be needed in the next
two sections. The next lemma is firstly obtained in Theorem 2.6 [7].

Lemmal ([7]) Let G be a connected graph of order n. Then Ay = Ay = - - - = L1 if and only
ifG=K,.

We now give a lower bound on the sum of the largest two Laplacian eigenvalues of
graph G.

Lemma 2 ([10]) Let G be a connected graph of order n > 2. Then Ay + kg > A1 + Ay + 1.

Lemma 3 ([10]) Let G be a graph on n vertices, which has at least one edge. Then
)\.1 > Al + 1. (8)
Moreover, if G is connected, then the equality in (8) holds if and only if Ay =n—1.

A well-known theorem in an algebraic graph theory is the interlacing of the Laplacian

spectrum in Theorem 13.6.2 [1].

Lemma 4 ([1]) Let G be a graph of n vertices, and let H be a subgraph of G obtained by
deleting an edge in G. Then

M(G) = M(H) = 12(G) = A (H) = - - = 2,1(G) = Ayra (H) = 14(G) = Ay(H) = 0,

where 1;(G) is the ith largest Laplacian eigenvalue of G, and \;(H) is the ith largest Lapla-

cian eigenvalue of H.

Lemma 5 ([11]) Let G be a simple graph with the Laplacian spectrum
{0 = )‘-VU )"n—lr ceed )‘-27 )"1}

Then the Laplacian spectrum of@ is{0, =AM, m—=Agy... M= hyg, N — Ay}, where G is the
complement graph of G.

We also have the following result, which is obtained in [12].

Lemma 6 ([12]) Let G be a graph of order n without isolated vertices. Then p; = py = p3 =
o= py ifand only if G = K,,.

The result is the following lemma, known as Kober’s inequality.

Lemma 7 ([13]) Let x1,x,...,%, be non negative numbers, and also let

1 n n 1/n
o=- in and y = (l_[x,»)
n
i=1 i=1
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be their arithmetic and geometric means. Then

1 1
Y ;(ﬁ—ﬁ)zsa—y < ;;(ﬁ—ﬁ)z«
Moreover, the equality holds if and only if x; = x5 = - - = x,,.

3 Bounds on the number of spanning trees
In [14], an upper bound for #(G) is obtained as follows.

Theorem 1 ([14]) Let G be a connected graph of order n (n > 3) with m edges, maximum

degree A1 and minimum degree §. Then

2m—A1-5—1>”‘3

t(G)§8< 3

The equality holds if and only if G = K1,,.1, G= K,;, G K1 V(K1 UK, 3) or GZ K, — ¢,
where e is any edge of K,,.

Here we show that Theorem 1 is not true for complete graph K,,. For this, we need the

following lemma.

Lemma 8 For positive integer a > 0,

1 —1 ’ 1 ! 9
( +a(a+3)) RPT) ©)
Proof We have
1 1 ‘
< +a(a+3))
_1 1 a 1 a 1 a 1 10
- +m+(2>a2(a+3)2+<3)a3(a+3)3+m+(a)¢z“(a+3)“' 10)

In fact, this satisfies

1 1 1 1 1
+ + + + Fod ——
a+3 2a+3)2 3Wa+3)> 4la+3)* alla + 3)*

1 1 1 1 1 1 1
<1+ + + + o —
a+3 a+3\2@a+3) 2%a+3)* 23a+3)3 24-1(q 4 3)a-1

1
1 1 1 1- 2a-1(543)a-1
=1+ + 2 1
a+3 2(ﬂ + 3) 1- 2(a+3)

Now, we have to show that

1
1 1 I—W 1

+ . <
2 1 )
a+3 2(a+3) 1—2(a+3) a+2
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that is,
2 Va+3)%>—(a+2),
which is always true, as a is a positive integer. This completes the proof. O

Upper bound of £(G) in Theorem 1 is not true for K, (n > 3). It is well known that #(K},) =
n"~2. Here, we have to show that

n-3
(n— 1)(%) <t(K,) = "2, (11)

Now, putting a = n — 3 in (9), we get

1 "3 1
1+ ——— <1+ —,
n(n—3) n-1

which gives result (11).
Hence the correct statement is as follows.

Theorem 2 ([14]) Let G (# K,,) be a connected graph of order n (n > 3) with m edges, max-
imum degree Ay and minimum degree 8. Then

2m— A -5-1\"3
m—l) 12)

t(G)g(S( _—

with the equality holding in (12) ifand only if G = Ky,,.1, G = K1 V (K1 UK, 3) or G = K, —e¢,
where e is any edge of K,,.

Proof Since G 2 K, , we have p,,.; < 8, where § is the minimum degree in G. The remain-

ing part of the proof is same as in Theorem 3.1 [14]. O

We now give an upper bound on the number of spanning trees £(G) in terms of n, m, Ay
and §.

Theorem 3 Let G be a connected graph on n vertices with m edges, maximum degree A,

and minimum degree §. Then

1 2m— Ay -8\" e
t(G)f—AI(S( m- A ) ( " > (13)
2m n-2 n-1

with the equality holding in (13) if and only if G = K,,.

Proof By the arithmetic-geometric mean inequality, we have

n-1

2m— Ay -8\"? é
Hdif(mié> as2m=Zdi
n_
i=1

i=2

Page 50of 13
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and

n-1 n-p n-2 n-1

— M
l:[pii(n—2> aSVl:E'l'Oi'
i= i=

Using the above results in (2), we get

1 2m—A -8\ (n-p\"
@2 (M) () o

Let us consider the function

f@) =x(n-x)"2 0<x<2.
Then we have

f'x)=(n —x)”‘g[n —(n- l)x], 0<x<2.

_n_
? n-1

n

l 2]. Hence

Thus, f(x) is an increasing function on [0 ] and a decreasing function on [

the maximum value of f(x) is

n-1
n n-2
(n—l) (n-2)"".

Using (14), we get the required result in (13). Thus, the first part of the proof is done.

Now, we suppose that the equality holds in (13). Then all inequalities in the argument
above must be equalities. Thus, we have p; = -*. From the equality in (14), we get d» = d3 =
cv=dyand py=p3=---=p,1 = ﬁ Therefore, p1 = py = p3 =+ = py-1. By Lemma 6,
G=K,.
Conversely, one can easily see that the equality holds in (13) for complete graph K,,. O

Here, we give an upper bound on the number of spanning trees £(G) in terms of n, m,
Aqand A,.

Theorem 4 Let G be a connected graph on n vertices, m edges with maximum degree A,

and second maximum degree A,. Then

tHG) < W(A1 + Ay +1)2@2m = Ay = Ay —1)" 73, (15)

Proof By the arithmetic-geometric mean inequality, we have

2
AMAy < <)\1 ;k2>

and

Page 6 of 13
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Using the above results in (1), we get

2 n-3
t(G)§l<M+A2) .<2’”‘M‘“) . (16)
n 2 n-3

Let us consider a function
f(x) = x*(2m —x)" 5.
We, thus, have
F/5) = x(2m = 2" (4 — (1~ 1)x).

Forx=A; + Ay, wehave f'(x) <Oas (n-1)x > 4m=2 Zi:l Ai. Thus, f(x) is a decreasing
function and A; + Ay > A; + Ay +1, by Lemma 2, and hence

£( (A1 + Ay +1)22m— Ay — Ay —1)"3, (17)

1
G = 4n(n - 3)"-3

By contradiction, we will show that the inequality in (17) is strict. Suppose that the equal-
ity holds in (17). Then all the inequalities in the argument above must be equalities. Thus,
we have A; + A5 = Aj + Ay + 1. From equality in (16), we get . = Ay and A3 = Ag = -+ = A,3.
By Lemma 3, we have A+ Ay +1 = A1+ Ap =241 > 2(A; +1) > Aj + Ay +2,a contradiction.

This completes the proof. d

For 1 <« <n—1,let CI(n,a) be a split graph on 7 vertices consisting of a K,, (comple-
ment of the complete graph on « vertices) and a K,,_, (complete graph on the remaining

n—a vertices), in which each vertex of the K, is adjacent to each vertex of the K,,_,,. There-
fore,

Cl(n,a) = Ky_g V K.

We now give another upper bound on the number of spanning trees in terms of 7 and «.

Theorem 5 Let G be a simple connected graph of order n with an independence number «.
Then

HG) <n" M n-a)*! (18)
with the equality holding in (18) if and only if G = CI(n, a).
Proof By Lemma 4, we have

ri(G+e)=2(G), i=12,...,n,

where e is an edge. So if we add one by one edges in G such that independence number «
is fixed of the resultant graph, then finally, we obtain a split graph CI(n, «). One can easily

Page 7 of 13
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see that
HG) < t(CI(n a)) W — )%

as Laplacian spectrum of Cl(n,) is a,,...,,0,0,...,0, that is, Laplacian spectrum of
N, .’

a-1 n—a+l
Clin,a)ism,n,...,m,n—a,n—a,...,n—«,0, by Lemma 5.
——

n-o o-1

Since G is connected, one can easily see that

t(G +e) > t(Q).
This completes the proof of this theorem. O
We now give another upper bound on #(G) in terms of n, m and w.

Theorem 6 Let G be a connected graph of order n, m edges and clique number w. Then

w2 (2m - w(w - 2))"eH

HG) < 19
(@)= n(n—o+1)r-ot a9)
with the equality holding if and only if G = K,,.
Proof By the arithmetic-geometric mean inequality, we have
w— w 2 -2 n 1 n-w+l
Ai A
’ d A< | =t .
e (523) " e 0= (E225)
Since w is the clique number of G, by using (1), we get
Zw -2 )“i -2 Z}Cl_l )Li n-w+1
@) = A A < =Eem
©) = 1_[ 11:[1 - ( w—-2 x n-w+l
— 1 Aa)—2 (21’}’1 _ A)n—w+1
n(w - 2)272(n— w + 1)r-o+l ’
w-2
where A = Z A (20)

i=1
Let us consider a function
fx) = x72(2m — x)"",
Then, we have
f(x) =272 (2m — x)" (Zm(w -2)—(n- l)x).

Since Ay > Ay > --- > A,_1, we have

n-1

(n - w+1Z n-w+D)@-2hp2>@-2) Y A
i=1

i=w-1
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that is,

n-1

w-2
n-DA=(m-1> A= (@-2)) A =2mw-2).
i=1

i=1

By using this inequality above, we conclude that f(x) is a decreasing function, as
f'(x) <0. Since w is a clique number of G, we must have ; > w, i =1,2,...,0 — 1, and
hence A = Zj‘;z Ai > w(w — 2). Thus, we have

n-w+1

f®) <0 (0-2)"(2m - o(w - 2))

Using the above result with (20), we get the required result (19). The first part of the proof
is done.

Now, we suppose that the equality holds in (19). Then all the inequalities in the argument
above must be equalities. Thus, we have A1 = Ay =---=A, 0 =wand A, 1 =Xr, =+ =
Ap-1=w.Hence A;=w,i=1,2,...,n—1.ByLemmal, G = K,.

Conversely, one can easily see that the equality holds in (19) for complete graph K,,. O

The first Zagreb index M;(G) is defined as follows:

M\(G)=) d}.
i=1
The first Zagreb index M;(G) was introduced in [15] and elaborated in [16]. The main
properties of M;(G) were summarized in [17]. Some recent results on the first Zagreb

index are reported in [18—21]. Now, we are ready to give some lower and upper bounds on
the number of spanning trees.

Theorem 7 Let G be a connected graph of order n with m edges and first Zagreb index
Mi(G). Then

n-1
1 [4m? - (n-2)(M(G) +2 K
t(G)Z_[ m? = (n - 2)(Mi(G) + m)} on
n n-1
with the equality holding in (21) if and only if G = K,,. Moreover,
n-1
1[4m* - My(G) +2m7 2
HG) < — 22
( )_n[ (n-1)(n-2) } 22

with the equality holding in (22) if and only if G = K,,.

Proof We have

—

n-1 n—

1
(A7 +27 —20:0)
1

N | =

Y (=)=

i<j i

j=

n—-1 n-1 n-1 n—-1
[(n-l)ZA? +n=1)) 27 —221,42/\,1
i=1 j=1 j=1

i=1 j=

1
—

N =

Page9of 13
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n-1 n n 2
=(n—1)ZA?—<ZA) (n-1) Zdi(di+l)—<2di>
i=1 i i=1
n-1 n n-1 n
s A=) didi+1)and Y xi=) d;
i=1 i=1 i=1 i=1
=(n- 1)(M1( )+ 2m as Z d;=2m. (23)

Since G is connected, A,_1 > 0. Now, by setting x; = A?,i=1,2,...,n—1and by Lemma 7,
we obtain

n-1,9 n-1 1/n-1 9
Z ¥ 4
<| |A2> < My(G) +2m - ml, by (23)

that is, by considering (1),

rdild+1 . 4m?
i A1) ) < (G) +2m -
n-1 n-1

since Y /'A% = 37 di(d; +1). From this last inequality, we then get

(nt(G))Z/n 1

4m? (n—2> S,
- (M(G) +2m), asM(G)=) d7,
“n-1 n-1 =

which gives the required result (21). Similarly, by Lemma 7, we obtain

1

2/n— 1
)= e

(4m* - Mi(G) +2m),
as required in (22). Hence the first part of the proof is completed.

Now, we suppose that the equality holds in (21) or (22). Then all the inequalities in the
argument above must be equalities. By Lemma 7, we have A; = Ay = A3 = --- = A,1. By
Lemma 1, we get G = K.

Conversely, one can easily see that the equalities in (21) and (22) hold for complete
graphs K,. O

Example 1 For the three graphs G;, G, and Gs in Figure 1, £(G;), £(G2) and t(Gs) are 3,
8 and 9, respectively. The numerical results related to the bounds (that were mentioned
above) are listed in the following. At this point, we should note that these results are pre-
senting as rounded the one decimal place.

(G (3 @ (7 (12) @13) (15 @8 @19) (22)
G 3 78 39 46 4 45 55 20 76 98
G, 8 162 98 127 9 103 128 20 162 207

Gs 9 162 13 127 125 13 20 75 162 214
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G Gy Gs

Figure 1 Three graphs G1, G, and G3.

4 Nordhaus-Gaddum-type results for the number of spanning trees of a graph

For a graph G, the chromatic number x (G) is the minimum number of colors needed to
color the vertices of G in such a way that no two adjacent vertices are assigned the same
color. In 1956, Nordhaus and Gaddum [22] gave bounds involving the chromatic number

x(G) of a graph G and its complement G :
2Vn<x(@)+x(G)<n+1L

Motivated by the results above, we now obtain analogous conclusions for the number

of spanning trees.

Theorem 8 Let G be a connected graph on n > 4 vertices and m edges with a connected

complement G. Then

t(G) + t(G)
1

= -2y
x [(Ar+ 1)@m= A =12+ (n= A =) (n(n—-2) —2m+ A +1)"7],  (24)

where A is the maximum degree in G.

Proof By Lemma 5, from (1), we have

HG) + t(G)

1 n-1 1 n-1
o 5 T
n- n-

i=1 i=1

< l[kl(Zm—)q)"_z +(n_kl)(n(n—Z)—2m+)\1)”_2j|
n n-—2 n-—2

by the arithmetic-geometric mean inequality

- alhm =) =) -2 -2 )] (25)

Page 11 0f 13
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Let us consider a function
fx) =x(2m—x)""2 + (n - x)(n(n —2)-2m+ x)"_z forAi+1<x<n.
We have

fl(x) = 2m —x)"3 (2m —(n- l)x) - (n(n -2)-2m+ x)m3 ((n —1x - 2m)

—((n “Dx— 2m) [(2m —x)"3 4 (n(n -2)-2m+ x)n_s] <0.

Thus, f(x) is a decreasing function on A; + 1 < x < n. Using the result above in (25), we
obtain the required result (24). O

The next result presents another upper bound for £(G) + t(G). In fact, the proof of it is
clear by considering Theorem 7.

Theorem 9 Let G be a graph on n vertices and m edges. Then

HG) + t(G)

1
= l’l(l/l _ 1)(n—1)/2(n _ 2)(n—1)/2

[(4m® - My(G) + Zm)(n_l)/2
+ (nn=1)(1? = 21+ 2) + 2m(2m - 2(n - 1)> 1) - M, (G)) "], (26)

where My(G) is the first Zagreb index of graph G. Moreover, the equality in (26) holds if
and only if G = K, or G = K,,.
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