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Abstract
Let p be a real density function defined on a compact subset � of Rm, and let
E(f ,p) =

∫
� pf dω be the expectation of f with respect to the density function p. In this

paper, we define a one-parameter extension Varγ (f ,p) of the usual variance
Var(f ,p) = E(f 2,p) – E2(f ,p) of a positive continuous function f defined on �. By means
of this extension, a two-parameter mean Vr,s(f ,p), called the Dresher variance mean, is
then defined. Their properties are then discussed. In particular, we establish a Dresher
variance mean inequality mint∈�{f (t)} ≤ Vr,s(f ,p) ≤ maxt∈�{f (t)}, that is to say, the
Dresher variance mean Vr,s(f ,p) is a true mean of f . We also establish a Dresher-type
inequality Vr,s(f ,p) ≥ Vr∗ ,s∗ (f ,p) under appropriate conditions on r, s, r∗, s∗; and finally, a
V-E inequality Vr,s(f ,p) ≥ ( sr )

1/(r–s)E(f ,p) that shows that Vr,s(f ,p) can be compared with
E(f ,p). We are also able to illustrate the uses of these results in space science.
MSC: 26D15; 26E60; 62J10

Keywords: power mean; Dresher mean; γ -variance; Dresher variance mean; Dresher
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1 Introduction andmain results
As indicated in the monograph [], the concept of mean is basic in the theory of inequal-
ities and its applications. Indeed, there are many inequalities involving different types of
mean in [–], and a great number of them have been used in mathematics and other
natural sciences.
Dresher in [], by means of moment space techniques, proved the following inequality:

If ρ ≥  ≥ σ ≥ , f , g ≥ , and φ is a distribution function, then

[∫
(f + g)ρ dφ∫
(f + g)σ dφ

]/(ρ–σ )

≤
(∫

f ρ dφ∫
f σ dφ

)/(ρ–σ )

+
(∫

gρ dφ∫
gσ dφ

)/(ρ–σ )

.

This result is referred to as Dresher’s inequality by Daskin [], Beckenbach and Bellman
[] (§ in Ch. ) and Hu [] (p.). Note that if we define

E(f ,φ) =
∫

f dφ,

and

Dr,s(f ,φ) =
(
E(f r ,φ)
E(f s,φ)

)/(r–s)

, r, s ∈R, ()
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then the above inequality can be rewritten as

Dρ,σ (f + g,φ) ≤ Dρ,σ (f ,φ) +Dρ,σ (g,φ).

Dr,s(f ,φ) is the well-known Dresher mean of the function f (see [, , –]), which
involves two parameters r and s and has applications in the theory of probability.
However, variance is also a crucial quantity in probability and statistics theory. It is,

therefore, of interest to establish inequalities for various variances as well. In this paper,
we introduce generalized ‘variances’ and establish several inequalities involving them. Al-
thoughwemay start out under amore general setting, for the sake of simplicity, we choose
to consider the variance of a continuous function f with respect to a weight function p (in-
cluding probability densities) defined on a closed and bounded domain � in Rm instead
of a distribution function.
More precisely, unless stated otherwise, in all later discussions, let � be a fixed,

nonempty, closed and bounded domain in Rm and let p : � → (,∞) be a fixed function
which satisfies

∫
�
pdω = . For any continuous function f :� →R, we write

E(f ,p) =
∫

�

pf dω,

which may be regarded as the weighted mean of the function f with respect to the weight
function p.
Recall that the standard variance (see [] and []) of a random variable f with respect

to a density function p is

Var(f ,p) = E
(
f ,p

)
– E(f ,p).

Wemay, however, generalize this to the γ -variance of the function f :� → (,∞) defined
by

Varγ (f ,p) =

⎧⎪⎪⎨
⎪⎪⎩


γ (γ–) [E(f

γ ,p) – Eγ (f ,p)], γ �= , ,

[lnE(f ,p) – E(ln f ,p)], γ = ,

[E(f ln f ,p) – E(f ,p) lnE(f ,p)], γ = .

According to this definition, we know that γ -variance Varγ (f ,p) is a functional of the
function f : � → (,∞) and p : � → (,∞), and such a definition is compatible with the
generalized integral means studied elsewhere (see, e.g., [–]). Indeed, according to the
power mean inequality (see, e.g., [–]), we may see that

Varγ (f ,p) ≥ , ∀γ ∈R.

Let f :� → (,∞) and g :� → (,∞) be two continuous functions. We define

Covγ (f , g) = E
{[
f γ – Eγ (f ,p)

] ◦ [gγ – Eγ (g,p)
]
,p
}
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is the γ -covariance of the function f :� → (,∞) and the function g :� → (,∞), where
γ ∈R and the function a ◦ b :R →R is defined as follows:

a ◦ b =

⎧⎪⎪⎨
⎪⎪⎩

√
ab, a �= b,ab ≥ ,

–
√
–ab, a �= b,ab < ,

a, a = b.

According to this definition, we get

Cov(f , g) ≡ , Cov(f , f )≡ 

and

Varγ (f ,p) =

⎧⎪⎪⎨
⎪⎪⎩


γ (γ–) Covγ (f , f ), γ �= , ,

limγ→


γ (γ–) Covγ (f , f ), γ = ,

limγ→


γ (γ–) Covγ (f , f ), γ = .

If we define

Abscovγ (f , g) = E
{∣∣[f γ – Eγ (f ,p)

] ◦ [gγ – Eγ (g,p)
]∣∣,p}

is the γ -absolute covariance of the function f : � → (,∞) and the function g : � →
(,∞), then we have that

∣∣∣∣ Covγ (f , g)√
Abscovγ (f , f )

√
Abscovγ (g, g)

∣∣∣∣≤ 

for γ �=  by the Cauchy inequality

∣∣∣∣
∫

�

pfg dω

∣∣∣∣≤
√∫

�

pf  dω

√∫
�

pg dω.

Therefore, we can define the γ -correlation coefficient of the function f : � → (,∞) and
the function g : � → (,∞) as follows:

ργ (f , g) =

⎧⎪⎨
⎪⎩

Covγ (f ,g)√
Abscovγ (f ,f )

√
Abscovγ (g,g)

, γ �= ,

limγ→
Covγ (f ,g)√

Abscovγ (f ,f )
√

Abscovγ (g,g)
, γ = ,

where ργ (f , g) ∈ [–, ].
Bymeans ofVarγ (f ,p), wemay then define another two-parametermean. This new two-

parameter mean Vr,s(f ,p) will be called the Dresher variance mean of the function f . It is
motivated by () and [, , –] and is defined as follows. Given (r, s) ∈ R and the
continuous function f : � → (,∞). If f is a constant function defined by f (x) = c for any
x ∈ �, we define the functional

Vr,s(f ,p) = c,

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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and if f is not a constant function, we define the functional

Vr,s(f ,p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[Varr(f ,p)Vars(f ,p) ]
/(r–s), r �= s,

exp[ E(f
r ln f ,p)–Er(f ,p) lnE(f ,p)

E(f r ,p)–Er (f ,p) – ( r +


r– )], r = s �= , ,

exp{ E(ln f ,p)–ln E(f ,p)
[E(ln f ,p)–lnE(f ,p)] + }, r = s = ,

exp[ E(f ln
 f ,p)–E(f ,p) ln E(f ,p)

[E(f ln f ,p)–E(f ,p) lnE(f ,p)] – ], r = s = .

Since the function f : � → (,∞) is continuous, we know that the functions pf γ and
pf γ ln f are integrable for any γ ∈R. Thus Varγ (f ,p) and Vr,s(f ,p) are well defined. Since

lim
γ→γ ∗ Varγ (f ,p) =Varγ ∗ (f ,p),

lim
(r,s)→(r∗ ,s∗)

Vr,s(f ,p) = Vr∗ ,s∗ (f ,p),

Varγ (f ,p) is continuous with respect to γ ∈ R and Vr,s(f ,p) continuous with respect to
(r, s) ∈R.
We will explain why we are concerned with our one-parameter variance Varγ (f ,p) and

the two-parameter mean Vr,s(f ,p) by illustrating their uses in statistics and space science.
Before doing so, we first state three main theorems of our investigations.

Theorem  (Dresher variance mean inequality) For any continuous function f : � →
(,∞), we have

min
t∈�

{
f (t)

}≤ Vr,s(f ,p) ≤ max
t∈�

{
f (t)

}
. ()

Theorem  (Dresher-type inequality) Let the function f : � → (,∞) be continuous. If
(r, s) ∈R, (r∗, s∗) ∈R, max{r, s} ≥ max{r∗, s∗} and min{r, s} ≥ min{r∗, s∗}, then

Vr,s(f ,p) ≥ Vr∗ ,s∗ (f ,p). ()

Theorem  (V -E inequality) For any continuous function f : � → (,∞), we have

Vr,s(f ,p) ≥
(
s
r

) 
r–s
E(f ,p), ()

moreover, the coefficient ( sr )

r–s in () is the best constant.

From Theorem , we know that Vr,s(f ,p) is a certain mean value of f . Theorem  is
similar to the well-known Dresher inequality stated in Lemma  below (see, e.g., [], p.
and [, ]). By Theorem , we see that Vr,s(f ,p) and Vr∗ ,s∗ (f ,p) can be compared under
appropriate conditions on r, s, r∗, s∗. Theorem  states a connection of Vr,s(f ,p) with the
weighted mean E(f ,p).
Let � be a fixed, nonempty, closed and bounded domain in Rm, and let p = p(X) be

the density function with support in � for the random vector X = (x,x, . . . ,xm). For any
function f :� → (,∞), the mean of the random variable f (X) is

E
[
f (X)

]
=
∫

�

pf dω = E(f ,p);
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moreover, its variance is

Var
[
f (X)

]
= E

[
f (X)

]
– E[f (X)] = ∫

�

p
{
f – E

[
f (X)

]} dω =Var(f ,p).

Therefore,

Varγ
[
f (X)

]
=Varγ (f ,p), γ ∈R

may be regarded as a γ -variance and

Vr,s
[
f (X)

]
= Vr,s(f ,p), (r, s) ∈R



may be regarded as a Dresher variance mean of the random variable f (X).
Note that by Theorem , we have

min
X∈�

{
f (X)

}≤ Vr,s
[
f (X)

]≤ max
X∈�

{
f (X)

}
, (r, s) ∈R

; ()

and by Theorem , we see that for any r, s, r∗, s∗ ∈R such that

max{r, s} ≥ max
{
r∗, s∗

}
and min{r, s} ≥ min

{
r∗, s∗

}
,

then

Vr,s
[
f (X)

]≥ Vr∗ ,s∗
[
f (X)

]
; ()

and by Theorem , if r > s ≥ , then

Varr[f (X)]
Vars[f (X)]

≥ s
r
Er–s[f (X)], ()

where the coefficient s/r is the best constant.
In the above results,� is a closed and bounded domain ofRm. However, we remark that

our results still hold if � is an unbounded domain of Rm or some values of f are , as long
as the integrals in Theorems - are convergent. Such extended results can be obtained
by standard techniques in real analysis by applying continuity arguments and Lebesgue’s
dominated convergence theorem, and hence we need not spell out all the details in this
paper.

2 Proof of Theorem 1
For the sake of simplicity, we employ the following notations. Let n be an integer greater
than or equal to , and let Nn = {, , . . . ,n}. For real n-vectors x = (x, . . . ,xn) and p =
(p, . . . ,pn), the dot product of p and x is denoted by A(x,p) = p · x =

∑n
i= pixi, where

p ∈ Sn and Sn = {p ∈ [,∞) n | ∑n
i= pi = }, Sn is an (n – )-dimensional simplex. If φ is

a real function of a real variable, for the sake of convenience, we set the vector function

φ(x) =
(
φ(x),φ(x), . . . ,φ(xn)

)
.
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Suppose that p ∈ Sn and γ , r, s ∈R. If x ∈ (,∞)n, then

Varγ (x,p) =

⎧⎪⎪⎨
⎪⎪⎩


γ (γ–) [A(x

γ ,p) –Aγ (x,p)], γ �= , ,

[lnA(x,p) –A(lnx,p)], γ = ,

[A(x lnx,p) –A(x,p) lnA(x,p)], γ = 

is called the γ -variance of the vector x with respect to p. If x ∈ (,∞)n is a constant n-
vector, then we define

Vr,s(x,p) = x,

while if x is not a constant vector (i.e., there exist i, j ∈Nn such that xi �= xj), then we define

Vr,s(x,p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[Varr(x,p)Vars(x,p) ]

r–s , r �= s,

exp[A(x
r lnx,p)–Ar(x,p) lnA(x,p)

A(xr ,p)–Ar(x,p) – ( r +


r– )], r = s �= , ,

exp{ A(ln x,p)–ln A(x,p)
[A(lnx,p)–lnA(x,p)] + }, r = s = ,

exp{ A(x ln x,p)–A(x,p) ln A(x,p)
[A(x lnx,p)–A(x,p) lnA(x,p)] – }, r = s = .

Vr,s(x,p) is called the Dresher variance mean of the vector x.
Clearly, Varγ (x,p) is nonnegative and is continuous with respect to γ ∈ R. Vr,s(x,p) =

Vs,r(x,p) and is also continuous with respect to (r, s) in R.

Lemma  Let I be a real interval. Suppose the function φ : I →R is C(), i.e., twice contin-
uously differentiable. If x ∈ In and p ∈ Sn, then

A
(
φ(x),p

)
– φ

(
A(x,p)

)
=
∑

≤i<j≤n

pipj
{∫ ∫

	

φ′′[wi,j(x,p, t, t)
]
dt dt

}
(xi – xj), ()

where 	 is the triangle {(t, t) ∈ [,∞)  | t + t ≤ } and

wi,j(x,p, t, t) = txi + txj + ( – t – t)A(x,p).

Proof Note that

∫ ∫
	

φ′′[wi,j(x,p, t, t)
]
dt dt

=
∫



dt
∫ –t


φ′′[wi,j(x,p, t, t)

]
dt

=


xj –A(x,p)

∫ 


dt
∫


–t
φ′′[wi,j(x,p, t, t)

]
d
[
wi,j(x,p, t, t)

]

=


xj –A(x,p)

∫ 


dtφ′[txi + txj + ( – t – t)A(x,p)

]∣∣∣–t


=


xj –A(x,p)

∫ 



{
φ′[txi + ( – t)xj

]
– φ′[txi + ( – t)A(x,p)

]}
dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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=


xj –A(x,p)

{
φ[txi + ( – t)xj]

xi – xj
–

φ[txi + ( – t)A(x,p)]
xi –A(x,p)

}∣∣∣∣


=


xj –A(x,p)

[
φ(xi) – f (xj)

xi – xj
–

φ(xi) – φ(A(x,p))
xi –A(x,p)

]

=


(xi – xj)[xj –A(x,p)][xi –A(x,p)]

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
φ(xj) xj 

∣∣∣∣∣∣∣ .

Hence,

∑
≤i<j≤n

pipj
{∫ ∫

	

φ′′[txi + txj + ( – t – t)A(x,p)
]
dt dt

}
(xi – xj)

=
∑

≤i<j≤n

pipj
xi – xj

[xj –A(x,p)][xi –A(x,p)]

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
φ(xj) xj 

∣∣∣∣∣∣∣
=


∑

≤i,j≤n

pipj
[


xj –A(x,p)

–


xi –A(x,p)

] ∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
φ(xj) xj 

∣∣∣∣∣∣∣
=



⎡
⎢⎣ ∑

≤i,j≤n

pipj


xj –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
φ(xj) xj 

∣∣∣∣∣∣∣
–
∑

≤i,j≤n

pipj


xi –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
φ(xj) xj 

∣∣∣∣∣∣∣
⎤
⎥⎦

=



⎡
⎢⎣ n∑

j=

pj
xj –A(x,p)

n∑
i=

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 
piφ(xi) pixi pi
φ(xj) xj 

∣∣∣∣∣∣∣
–

n∑
i=

pi
xi –A(x,p)

n∑
j=

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
pjφ(xj) pjxj pj

∣∣∣∣∣∣∣
⎤
⎥⎦

=



⎡
⎢⎣ n∑

j=

pj
xj –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) ∑n
i= piφ(xi)

∑n
i= pixi

∑n
i= pi

φ(xj) xj 

∣∣∣∣∣∣∣
–

n∑
i=

pi
xi –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi ∑n
j= pjφ(xj)

∑n
j= pjxj

∑n
j= pj

∣∣∣∣∣∣∣
⎤
⎥⎦

=



⎡
⎢⎣ n∑

j=

pj
xj –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 
A(φ(x),p) A(x,p) 

φ(xj) xj 

∣∣∣∣∣∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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–
n∑
i=

pi
xi –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) A(x,p) 

φ(xi) xi 
A(φ(x),p) A(x,p) 

∣∣∣∣∣∣∣
⎤
⎥⎦

=



⎡
⎢⎣ n∑

j=

pj
xj –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) –A(φ(x),p)  

A(φ(x),p) A(x,p) 
φ(xj) xj 

∣∣∣∣∣∣∣
–

n∑
i=

pi
xi –A(x,p)

∣∣∣∣∣∣∣
φ(A(x,p)) –A(φ(x),p)  

φ(xi) xi 
A(φ(x),p) A(x,p) 

∣∣∣∣∣∣∣
⎤
⎥⎦

=



{ n∑
j=

pj
xj –A(x,p)

[
φ
(
A(x,p)

)
–A

(
φ(x),p

)][
A(x,p) – xj

]

–
n∑
i=

pi
xi –A(x,p)

[
φ
(
A(x,p)

)
–A

(
φ(x),p

)][
xi –A(x,p)

]}

=



{ n∑
j=

pj
[
A
(
φ(x),p

)
– φ

(
A(x,p)

)]
+

n∑
i=

pi
[
A
(
φ(x),p

)
– φ

(
A(x,p)

)]}

= A
(
φ(x),p

)
– φ

(
A(x,p)

)
.

Therefore, () holds. The proof is complete. �

Remark  The well-known Jensen inequality can be described as follows [–]: If the
function φ : I → R satisfies φ′′(t) ≥  for all t in the interval I , then for any x ∈ In and
p ∈ Sn, we have

A
(
φ(x),p

)≥ φ
(
A(x,p)

)
. ()

The above proof may be regarded as a constructive proof of ().

Remark Weremark that theDresher variancemeanVr,s(x,p) extends the variancemean
Vr,(x,p) (see [], p., and [, ]), and Lemma  is a generalization of (.) of [].

Lemma  If x ∈ (,∞)n, p ∈ Sn and (r, s) ∈R, then

min{x} =min{x, . . . ,xn} ≤ Vr,s(x,p) ≤ max{x, . . . ,xn} =max{x}. ()

Proof If x is a constant vector, our assertion is clearly true. Let x be a non-constant vector,
that is, there exist i, j ∈ Nn such that xi �= xj. Note that Vr,s(x,p) = Vs,r(x,p) and Vr,s(x,p) is
continuous with respect to (r, s) in R, we may then assume that

r(r – )s(s – ) �=  and r – s > .

In (), let φ : (,∞)→ R be defined by φ(t) = tγ , where γ (γ – ) �= . Then we obtain

Varγ (x,p) = 
∑

≤i<j≤n

pipj
{∫ ∫

	

[
wi,j(x,p, t, t)

]γ– dt dt}(xi – xj). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Since

min{x} =min{x, . . . ,xn} ≤ wi,j(x,p, t, t)≤ max{x, . . . ,xn} =max{x}, ()

by (), (), r – s >  and the fact that

Vr,s(x,p)

=
[
Varr(x,p)
Vars(x)

] 
r–s

=
[∑

≤i<j≤npipj(xi – xj)
∫ ∫

	
wr–
i,j (x,p, t, t)dt dt∑

≤i<j≤npipj(xi – xj)
∫ ∫

	
ws–
i,j (x,p, t, t)dt dt

] 
r–s

=
[∑

≤i<j≤npipj(xi – xj)
∫ ∫

	
ws–
i,j (x,p, t, t)×wr–s

i,j (x,p, t, t)dt dt∑
≤i<j≤npipj(xi – xj)

∫ ∫
	
ws–
i,j (x,p, t, t)dt dt

] 
r–s
, ()

we obtain (). This concludes the proof. �

Wemay now turn to the proof of Theorem .

Proof First, we may assume that f is a nonconstant function and that

r(r – )s(s – ) �= , r – s > .

Let

T = {
�,
�, . . . ,
�n}

be a partition of �, and let

‖T‖ = max
≤i≤n

max
X,Y∈
�i

{‖X – Y‖}
be the ‘norm’ of the partition T , where

‖X – Y‖ =√(X – Y ) · (X – Y )

is the length of the vector X – Y . Pick any ξi ∈ 
�i for each i = , , . . . ,n, set

ξ = (ξ, ξ, . . . , ξn), f (ξ ) =
(
f (ξ), f (ξ), . . . , f (ξn)

)
,

and

p(ξ ) =
(
p(ξ ),p(ξ ), . . . ,pn(ξ )

)
=
(p(ξ)|
�|,p(ξ)|
�|, . . . ,p(ξn)|
�n|)∑n

i= p(ξi)|
�i| ,

then

lim‖T‖→

n∑
i=

p(ξi)|
�i| =
∫

�

pdω = ,

where |
�i| is them-dimensional volume of 
�i for i = , , . . . ,n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Furthermore, when γ (γ – ) �= , we have

Varγ (f ,p) =


γ (γ – )

[
lim‖T‖→

n∑
i=

p(ξi)f γ (ξi)|
�i| –
(

lim‖T‖→

n∑
i=

p(ξi)f (ξi)|
�i|
)γ]

=


γ (γ – )

[(
lim‖T‖→

n∑
i=

p(ξi)|
�i|
)(

lim‖T‖→

n∑
i=

pi(ξ )f
γ (ξi)

)

–

(
lim‖T‖→

n∑
i=

p(ξi)|
�i|
)γ(

lim‖T‖→

n∑
i=

pi(ξ )f (ξi)

)γ]

=


γ (γ – )

[
lim‖T‖→

n∑
i=

pi(ξ )f
γ (ξi) –

(
lim‖T‖→

n∑
i=

pi(ξ )f (ξi)

)γ]

= lim‖T‖→


γ (γ – )

[ n∑
i=

pi(ξ )f
r(ξi) –

( n∑
i=

pi(ξ )f (ξi)

)γ]

= lim‖T‖→
Varγ

(
f (ξ ),p(ξ )

)
. ()

By (), we obtain

Vr,s(f ,p) =
[
Varr(f ,p)
Vars(f ,p)

] 
r–s

= lim‖T‖→

[
Varr(f (ξ ),p(ξ ))
Vars(f (ξ ),p(ξ ))

] 
r–s

= lim‖T‖→
Vr,s

(
f (ξ ),p(ξ )

)
. ()

By Lemma , we have

min
{
f (ξ )

}≤ Vr,s
(
f (ξ ),p(ξ )

)≤ max
{
f (ξ )

}
. ()

From () and (), we obtain

min
t∈�

{
f (t)

}
= lim‖T‖→

min
{
f (ξ )

}≤ lim‖T‖→
Vr,s

(
f (ξ ),p(ξ )

)
= Vr,s(f ,p) ≤ lim‖T‖→

max
{
f (ξ )

}
=max

t∈�

{
f (t)

}
.

This completes the proof of Theorem . �

Remark  By [], if the function φ : I → R has the property that φ′′ : I → R is a contin-
uous and convex function, then for any x ∈ In and p ∈ Sn, we obtain

φ′′(V,(x,p)
) ≤ [A(φ(x),p) – φ(A(x,p))]

Var(x,p)

≤ 


{
max
≤i≤n

{
φ′′(xi)

}
+A

(
φ′′(x),p

)
+ φ′′(A(x,p))}. ()

Thus, according to the proof of Theorem , wemay see that: If the function f :� → (,∞)
is continuous and the function φ : f (�) → R has the property that φ′′ : f (�) → R is a

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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continuous convex function, then

φ′′(V,(f ,p)
) ≤ [E(φ ◦ f ,p) – φ(E(f ,p))]

Var(f ,p)

≤ 


{
max
t∈�

{
φ′′(f (t))} + E

(
φ′′ ◦ f ,p) + φ′′(E(f ,p))}, ()

where φ ◦ f is the composite of φ and f . Therefore, the Dresher variance mean Vr,s(f ,p)
has a wide mathematical background.

3 Proof of Theorem 2
In this section, we use the same notations as in the previous section. In addition, for fixed
γ , r, s ∈ R, if x ∈ (,∞)n and p ∈ Sn, then the γ -order power mean of x with respect to p
(see, e.g., [–]) is defined by

M[γ ](x,p) =

⎧⎨
⎩[A(x

γ ,p)]

γ , γ �= ,

expA(lnx,p), γ = ,

and the two-parameter Dresher mean of x (see [, ]) with respect to p is defined by

Dr,s(x,p) =

⎧⎨
⎩[

A(xr ,p)
A(xs ,p) ]


r–s , r �= s,

exp[A(x
s lnx,p)

A(xs ,p) ], r = s.

We have the following well-known power mean inequality [–]: If α < β , then

M[α](x,p)≤ M[β](x,p).

We also have the following result (see [], p., and [, ]).

Lemma  (Dresher inequality) If x ∈ (,∞)n, p ∈ Sn and (r, s), (r∗, s∗) ∈ R, then the in-
equality

Dr,s(x,p) ≥ Dr∗ ,s∗ (x,p) ()

holds if and only if

max{r, s} ≥ max
{
r∗, s∗

}
and min{r, s} ≥ min

{
r∗, s∗

}
. ()

Proof Indeed, if () hold, sinceDr,s(x,p) =Ds,r(x,p), wemay assume that r ≥ r∗ and s≥ s∗.
By the power mean inequality, we have

Dr,s(x,p) =M[r–s]
(
x,

xsp
A(xs,p)

)
≥ M[r∗–s]

(
x,

xsp
A(xs,p)

)

=M[s–r∗]
(
x,

xr∗p
A(xr∗ ,p)

)
≥ M[s∗–r∗]

(
x,

xr∗p
A(xr∗ ,p)

)
= Dr∗ ,s∗ (x,p).

If () holds, by [], p. and [, ], () hold. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Lemma  Let x ∈ (,∞)n, p ∈ Sn and (r, s), (r∗, s∗) ∈R. If () holds, then

Vr,s(x,p) ≥ Vr∗ ,s∗ (x,p).

Proof If x is a constant n-vector, our assertion clearly holds. We may, therefore, assume
that there exist i, j ∈ Nn such that xi �= xj. We may further assume that

r(r – )s(s – )(r – s) �= .

Let G = {
	,
	, . . . ,
	l} be a partition of 	 = {(t, t) ∈ [,∞)  |t + t ≤ }. Let the
area of each 
	i be denoted by |
	i|, and let

‖G‖ = max
≤k≤l

max
x,y∈
	k

{‖x – y‖}
be the ‘norm’ of the partition, then for any (ξk,, ξk,) ∈ 
	k , we have

∫ ∫
	

[
wi,j(x,p, t, t)

]r– dt dt = lim‖G‖→

l∑
k=

[
wi,j(x,p, ξk,, ξk,)

]r–|
	k|.

By (), when γ (γ – ) �= , we have

Varγ (x,p) = 
∑

≤i<j≤n

pipj(xi – xj)
∫ ∫

	

[
wi,j(x,p, t, t)

]γ– dt dt
= 

∑
≤i<j≤n

pipj(xi – xj) lim‖G‖→

l∑
k=

[
wi,j(x,p, ξk,, ξk,)

]γ–|
	k|

= lim‖G‖→

{

∑

≤i<j≤n

pipj(xi – xj)
l∑

k=

[
wi,j(x,p, ξk,, ξk,)

]γ–|
	k|
}

= lim‖G‖→

{ ∑
≤i<j≤n,≤k≤l

pipj|
	k|(xi – xj)
[
wi,j(x,p, ξk,, ξk,)

]γ–}. ()

By () and Lemma , we then see that

Vr,s(x,p) =
[
Varr(x,p)
Vars(x,p)

] 
r–s

= lim‖G‖→

{∑
≤i<j≤n,≤k≤lpipj|
	k|(xi – xj)[wi,j(x,p, ξk,, ξk,)]r–∑
≤i<j≤n,≤k≤lpipj|
	k|(xi – xj)[wi,j(x,p, ξk,, ξk,)]s–

} 
(r–)–(s–)

≥ lim‖G‖→

{∑
≤i<j≤n,≤k≤lpipj|
	k|(xi – xj)[wi,j(x,p, ξk,, ξk,)]r

∗–∑
≤i<j≤n,≤k≤lpipj|
	k|(xi – xj)[wi,j(x,p, ξk,, ξk,)]s∗–

} 
(r∗–)–(s∗–)

= Vr∗ ,s∗ (x,p).

This ends the proof. �

Wemay now easily obtain the proof of Theorem .

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Proof Indeed, by (), () and Lemma , we get that

Vr,s(f ,p) = lim‖T‖→
Vr,s

(
f (ξ ),p(ξ )

)≥ lim‖T‖→
Vr∗ ,s∗

(
f (ξ ),p(ξ )

)
= Vr∗ ,s∗ (f ,p).

This completes the proof of Theorem . �

4 Proof of Theorem 3
In this section, we use the same notations as in the previous two sections. In addition, let
In = (, , . . . , ) be an n-vector and

Q+ =
{
s
r

∣∣∣ r ∈ {, , , . . .}, s ∈ {, , , . . .}
}
,

let Sn be the (n – )-dimensional simplex that

Sn =

{
x ∈ (,∞)n

∣∣∣∣ n∑
i=

xi = n

}
,

and let

Fn(x) =
n∑
i=

xγ

i lnxi –


γ – 

( n∑
i=

xγ

i – n

)

be defined on Sn.

Lemma  Let γ ∈ (,∞). If x is a relative extremum point of the function Fn : Sn →R, then
there exist k ∈Nn and u, v ∈ (,n) such that

ku + (n – k)v = n, ()

and

Fn(x) = kuk lnu + (n – k)vk ln v –


γ – 
[
kuk + (n – k)vk – n

]
. ()

Proof Consider the Lagrange function

L(x) = Fn(x) +μ

( n∑
i=

xi – n

)
,

with

∂L
∂xj

= xγ–
j (γ lnxj + ) –

γ

γ – 
xγ–
j +μ = xγ–

j L(xj) = , j = , , . . . ,n,

where the function L : (,n) →R is defined by

L(t) = γ ln t +μt–γ –


γ – 
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Then

xj ∈ (,n), L(xj) = , j = , , . . . ,n. ()

Note that

L′(t) =
γ

t
–

γ – 
tγ

μ =
γ

tγ

(
tγ– –

γ – 
γ

μ

)
.

Hence, the function L : (,n) → R has at most one extreme point, and L(t) has at most
two roots in (,n). By (), we have

∣∣{x,x, . . . ,xn}∣∣≤ ,

where |{x,x, . . . ,xn}| denotes the count of elements in the set {x,x, . . . ,xn}. Since Fn :
Sn →R is a symmetric function, we may assume that there exists k ∈Nn such that

x = x = · · · = xk = u,

xk+ = xk+ = · · · = xn = v.

That is, () and () hold. The proof is complete. �

Lemma Let γ ∈ (,∞). If x is a relative extremumpoint of the function Fn : Sn →R, then

Fn(x)≥ . ()

Proof By Lemma , there exist k ∈ Nn and u, v ∈ (,n) such that () and () hold. If
u = v = , then () holds. We may, therefore, assume without loss of generality that  <
u <  < v. From (), we see that

k
n
=
 – v
u – v

. ()

Putting () into (), we obtain that

Fn(x) = n
{
k
n
uγ lnu +

(
 –

k
n

)
vγ ln v –


γ – 

[
k
n
uγ +

(
 –

k
n

)
vγ – 

]}

= n
{
 – v
u – v

uγ lnu +
u – 
u – v

vγ ln v –


γ – 

[
 – v
u – v

uγ +
u – 
u – v

vγ – 
]}

= n
{
 – v
u – v

uγ lnu +
u – 
u – v

vγ ln v –


γ – 

[
 – v
u – v

(
uγ – 

)
+
u – 
u – v

(
vγ – 

)]}

=
n( – v)(u – )

u – v

{
uγ lnu
u – 

+
vγ ln v
 – v

–


γ – 

[
uγ – 
u – 

+
vγ – 
 – v

]}

=
n( – u)(v – )

v – u

{
vγ ln v
v – 

–
uγ lnu
u – 

–


γ – 

[
vγ – 
v – 

–
uγ – 
u – 

]}

=
n( – u)(v – )
(γ – )(v – u)

[
ψ(v,γ ) –ψ(u,γ )

]
, ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/366


Wen et al. Journal of Inequalities and Applications 2013, 2013:366 Page 15 of 29
http://www.journalofinequalitiesandapplications.com/content/2013/1/366

Figure 1 The graph of the function ψ : (0, 2)× { 32 } → R.

Figure 2 The graph of the function ψ : (0, 2)× (1, 2] → R.

where the auxiliary function ψ : (,∞)× (,∞)→ R is defined by

ψ(t,γ ) =
(γ – )tγ ln t – (tγ – )

t – 
.

Since n(–u)(v–)
(γ–)(v–u) > , by (), inequality () is equivalent to the following inequality:

ψ(v,γ )≥ ψ(u,γ ), ∀u ∈ (, ),∀v ∈ (,∞),∀γ ∈ (,∞). ()

By the softwareMathematica, we can depict the image of the functionψ : (, )×{  } →R

in Figure , and the image of the function ψ : (, )× (, ]→R in Figure .
Now, let us prove the following inequalities:

ψ(u,γ ) < –, ∀u ∈ (, ),∀γ ∈ (,∞); ()

ψ(v,γ ) > –, ∀v ∈ (,∞),∀γ ∈ (,∞). ()

By Cauchy’s mean value theorem, there exists ξ ∈ (u, ) such that

ψ(u,γ ) =
(γ – )uγ lnu – (uγ – )

u – 
=
(γ – ) lnu –  + u–γ

u–γ – u–γ

=
∂[(γ – ) lnu –  + u–γ ]/∂u

∂(u–γ – u–γ )/∂u

∣∣∣
u=ξ

=
(γ – )ξ– – γ ξ–γ–

( – γ )ξ–γ + γ ξ–γ–

=
(γ – )ξγ – γ

–(γ – )ξ + γ
<

(γ – )ξ – γ

–(γ – )ξ + γ
= –.

Therefore, inequality () holds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/366
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Next, note that

ψ(v,γ ) > – ⇔ (γ – )vγ ln v – (vγ – )
v – 

> –

⇔ (γ – )vγ ln v – vγ + v > 

⇔ ψ∗(v,γ ) = (γ – ) ln v –  + v–γ > . ()

By Lagrange’s mean value theorem, there exists ξ∗ ∈ (, v) such that

ψ∗(v,γ ) = ψ∗(v,γ ) –ψ∗(,γ )

= (v – )
∂ψ∗(v,γ )

∂v

∣∣∣
v=ξ∗

= (v – )
[
(γ – )ξ–

∗ + ( – γ )ξ–γ
∗
]

= (γ – )(v – )ξ–γ
∗
(
ξγ–
∗ – 

)
> .

Hence, () holds. It then follows that inequality () holds.
By inequalities () and (), we may easily obtain inequality (). This ends the proof

of Lemma . �

Lemma  If γ ∈ (,∞), then for any x ∈ Sn, inequality () holds.

Proof We proceed by induction.
(A) Suppose n = . By the well-known non-linear programming (maximum) principle

and Lemma , we only need to prove that

lim
x→,(x,x)∈S

F(x,x) ≥  and lim
x→,(x,x)∈S

F(x,x) ≥ .

We show the first inequality, the second being similar.
Indeed, it follows from Lagrange’s mean value theorem that there exists γ∗ ∈ (,γ ) such

that

lim
x→,(x,x)∈S

F(x,x) = γ ln –
γ – 
γ – 

= γ (γ – ) ln –  + –γ

γ – 

= γ d[(γ – ) ln –  + –γ ]
dγ

∣∣∣
γ=γ∗

= γ ln
(
 – –γ∗)

> .

(B) Assume by induction that the function Fn– : Sn– → R satisfies Fn–(y) ≥  for all
y ∈ Sn–. We prove inequality () as follows. By Lemma , we only need to prove that

lim
x→,x∈Sn

Fn(x)≥ , . . . , lim
xn→,x∈Sn

Fn(x)≥ .
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We will only show the last inequality. If we set

y = (y, y, . . . , yn–) =
n – 
n

(x,x, . . . ,xn–),

then y ∈ Sn–. By Lagrange’s mean value theorem, there exists γ∗ ∈ (,γ ) such that


γ – 

[
(γ – )

(
ln

n
n – 

)
–  +

(
n

n – 

)–γ]

=
∂

∂γ

[
(γ – )

(
ln

n
n – 

)
–  +

(
n

n – 

)–γ]∣∣∣
γ=γ∗

=
(
ln

n
n – 

)[
 –

(
n

n – 

)–γ∗]
.

Thus, by the power mean inequality

n–∑
i=

yγ

i ≥ (n – )

(


n – 

n–∑
i=

yi

)γ

= n – 

and induction hypothesis, we see that

lim
xn→,x∈Sn

Fn(x)

=
n–∑
i=

xγ

i lnxi –


γ – 

( n∑
i=

xγ

i – n

)

=
n–∑
i=

(
n

n – 
yi
)γ

ln

(
n

n – 
yi
)
–


γ – 

[ n–∑
i=

(
n

n – 
yi
)γ

– n

]

=
(

n
n – 

)γ
{(

ln
n

n – 

) n–∑
i=

yγ

i +
n–∑
i=

yγ

i ln yi –


γ – 

[ n–∑
i=

yγ

i – n
(

n
n – 

)γ
]}

=
(

n
n – 

)γ
{(

ln
n

n – 

) n–∑
i=

yri + Fn–(y) –


γ – 

[
n –  – n

(
n – 
n

)γ]}

≥
(

n
n – 

)γ{(
ln

n
n – 

)
(n – ) –


γ – 

[
n –  – n

(
n

n – 

)γ]}

= (n – )
(

n
n – 

)γ 
γ – 

[
(γ – )

(
ln

n
n – 

)
–  +

(
n – 
n

)γ–]

= (n – )
(

n
n – 

)γ 
γ – 

[
(γ – )

(
ln

n
n – 

)
–  +

(
n – 
n

)–γ]

= (n – )
(

n
n – 

)γ(
ln

n
n – 

)[
 –

(
n

n – 

)–γ∗]
> .

This ends the proof of Lemma . �
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Lemma  Let x ∈ (,∞)n and p ∈ Sn. If r > s≥ , then

Vr,s(x,p) ≥
(
s
r

) 
r–s
A(x,p), ()

and the coefficient ( sr )

r–s in () is the best constant.

Proof We may assume that there exist i, j ∈ Nn such that xi �= xj. By continuity considera-
tions, we may also assume that r > s > .
(A) Suppose p = n–In. Then () can be rewritten as

Vr,s
(
x,n–In

)≥
(
s
r

) 
r–s
A
(
x,n–In

)
,

or

[
Varr(x,n–In)
Vars(x,n–In))

] 
r–s

≥
(
s
r

) 
r–s
A
(
x,n–In

)
,

or

[
s(s – )
r(r – )

A(xr ,n–In) –Ar(x,n–In)
A(xs,n–In) –As(x,n–In)

] 
r–s

≥
(
s
r

) 
r–s
A
(
x,n–In

)
.

That is,

Fr
(
x,n–In

)≥ Fs
(
x,n–In

)
, ()

where we have introduced the auxiliary function

Fγ (x,p) = ln
A(xγ ,p) –Aγ (x,p)
(γ – )Aγ (x,p)

, γ > .

Since, for any t ∈ (,∞), we have Fγ (tx,n–In) = Fγ (x,n–In), we may assume that x ∈ Sn.
By Lemma , we have

∂Fγ (x,n–In)
∂γ

=
∂

∂γ

[
ln

(

n

n∑
i=

xγ

i – 

)
– ln(γ – )

]

=
n–

∑n
i= x

γ

i lnxi
n–

∑n
i= x

γ

i – 
–


γ – 

=
∑n

i= x
γ

i lnxi – (γ – )–(
∑n

i= x
γ

i – n)∑n
i= x

γ

i – n

=
Fn(x)∑n
i= x

γ

i – n
≥ .

Hence, for a fixed x ∈ (,∞)n, Fγ (x,n–In) is increasing with respect to γ in (,∞). Thus,
by r > s > , we obtain () and ().
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(B) Suppose p �= n–In, but p ∈ Qn
+. Then there exists N ∈ {, , , . . .} such that Npi ∈

{, , , . . .} for i = , . . . ,n. Setting

x∗ = (x, . . . ,x︸ ︷︷ ︸
Np

,x, . . . ,x︸ ︷︷ ︸
Np

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
Npn

), Np +Np + · · · +Npn =m,

and

p∗ =m–Im,

then x∗ ∈ (,∞)m, p∗ ∈ Sm. Inequality () can then be rewritten as

Vr,s(x∗,p∗) ≥
(
s
r

) 
r–s
A(x∗,p∗). ()

According to the result in (A), inequality () holds.
(C) Suppose p �= n–In and p ∈ Sn\Qn

+. Then it is easy to see that there exists a sequence
{p(k)}∞k= ⊂Qn

+ such that limk→∞ p(k) = p. According to the result in (B), we get

Vr,s
(
x,p(k)

)≥
(
s
r

) 
r–s
A
(
x,p(k)

)
, ∀k ∈ {, , , . . .}.

Therefore

Vr,s(x,p) = lim
k→∞

Vr,s
(
x,p(k)

)≥
(
s
r

) 
r–s

lim
k→∞

A
(
x,p(k)

)
=
(
s
r

) 
r–s
A(x,p).

Next, we show that the coefficient ( sr )

r–s is the best constant in (). Assume that the

inequality

Vr,s(x,p) ≥ Cr,sA(x,p) ()

holds. Setting

x = (, , , . . . , ︸ ︷︷ ︸
n–

),

and p = n–In in (), we obtain

[
s(s – )
r(r – )

n–
n – ( n–n )r
n–
n – ( n–n )s

] 
r–s

≥ Cr,s
n – 
n

⇔
[
s(s – )
r(r – )

 – ( n–n )r–

 – ( n–n )s–

] 
r–s

≥ Cr,s
n – 
n

.

()

In (), by letting n → ∞, we obtain

(
s
r

) 
r–s

≥ Cr,s.

Hence, the coefficient ( sr )

r–s is the best constant in (). The proof is complete. �
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Remark  If x ∈ (,∞)n, p ∈ Sn and r > s > , then there cannot be any θ ,Cr,s : θ ∈ (,∞)
and Cr,s ∈ (,∞) such that

Vr,s(x,p) ≤ Cr,sM[θ ](x,p). ()

Indeed, if there exist θ ∈ (,∞) and Cr,s ∈ (,∞) such that () holds, then by setting

x = (, , , . . . , ︸ ︷︷ ︸
n–

),

and p = n–In in (), we see that

[
s(s – )
r(r – )

 – n–r

 – n–s

] 
r–s

≤ Cr,sn–

θ

which implies

[
s(s – )
r(r – )

] 
r–s

= lim
n→∞

[
s(s – )
r(r – )

 – n–r

 – n–s

] 
r–s

≤ lim
n→∞Cr,sn–


θ = , ()

which is a contradiction.

Remark  The method of the proof of Lemma  is referred to as the descending method
in [, , , –], but the details in this paper are different.

We now return to the proof of Theorem .

Proof By () and Lemma , we obtain

Vr,s(f ,p) = lim‖T‖→
Vr,s

(
f (ξ ),p(ξ )

)≥
(
s
r

) 
r–s

lim‖T‖→
A
(
f (ξ ),p(ξ )

)
=
(
s
r

) 
r–s
E(f ,p).

Thus, inequality () holds. Furthermore, by Lemma , the coefficient ( sr )

r–s is the best

constant. This completes the proof of Theorem . �

5 Applications in space science
It is well known that there are nine planets in the solar system, i.e., Mercury, Venus, Earth,
Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. In this paper, we also believe that Pluto
is a planet in the solar system. In space science, we always consider the gravity to the Earth
from other planets in the solar system (see Figure ).
We can build the mathematical model of the problem. Let the masses of these planets

bem,m, . . . ,mn, wherem denotes the mass of the Earth and ≤ n≤ . At moment T,
in R, let the coordinate of the center of the Earth be o = (, , ) and the center of the ith
planet be pi = (pi,pi,pi), and the distance between pi and o be ‖pi‖ =

√
pi + pi + pi,

where i = , , . . . ,n. By the famous law of gravitation, the gravity to the Earth o from the
planets p,p, . . . ,pn is

F :=Gm

n∑
i=

mipi
‖pi‖ ,
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Figure 3 The graph of the planet system PS{P,m,B(g, r)}4
R3

.

where G is the gravitational constant in the solar system. Assume the coordinate of the
center of the sun is g = (g, g, g), then there exists a ball B(g, r) such that the planets
p,p, . . . ,pn move in this ball. In other words, at any moment, we have

pi ∈ B(g, r), i = , , . . . ,n,

where r is the radius of the ball B(g, r).
We denote by θi,j := ∠(pi,pj) the angle between the vectors –→opi and –→opj, where  ≤ i �=

j ≤ n. This angle is also considered as the observation angle between two planets pi, pj
from the Earth o, which can be measured from the Earth by telescope.
Without loss of generality, we suppose that n≥ , G = ,m =  and

∑n
i=mi =  in this

paper.
We can generalize the above problem to an Euclidean space. LetE be an Euclidean space.

For two vectors α ∈ E and β ∈ E, the inner product of α, β and the norm of α are denoted
by 〈α,β〉 and ‖α‖ = √〈α,α〉, respectively. The angle between α and β is denoted by

∠(α,β) := arccos
〈α,β〉

‖α‖ · ‖β‖ ∈ [,π ],

where α and β are nonzero vectors.
Let g ∈ E, we say the set

B(g, r) :=
{
x ∈ E|‖x – g‖ ≤ r

}
is a closed sphere and the set

S(g, r) :=
{
x ∈ E|‖x – g‖ = r

}
is a spherical, where r ∈R++ = (,+∞).
Now let us define the planet system and the λ-gravity function.
Let E be an Euclidean space, the dimension of E dimE ≥ , P = (p,p, . . . ,pn) and m =

(m,m, . . . ,mn) be the sequences of E andR++, respectively, and B(g, r) be a closed sphere
in E. The set

PS
{
P,m, B(g, r)

}n
E
:=
{
P,m, B(g, r)

}
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is called the planet system if the following three conditions hold:
(H) ‖pi‖ > , i = , , . . . ,n;
(H) pi ∈ B(g, r), i = , , . . . ,n;
(H)

∑n
i=mi = .

Let PS{P,m, B(g, r)}n
E
be a planet system. The function

Fλ : En → E,Fλ(P) =
n∑
i=

mipi
‖pi‖λ+

is called a λ-gravity function of the planet system PS{P,m, B(g, r)}n
E
, and F is the gravity

kernel of Fλ, where λ ∈ [, +∞).
Write

pi = ‖pi‖ei; θi,j :=∠(pi,pj) ∈ [,π ]; θi :=∠(pi, g) ∈ [,π ].

The matrix A = [〈ei, ej〉]n×n = [cos θi,j]n×n is called an observation matrix of the planet sys-
tem PS{P,m, B(g, r)}n

E
, θi,j (j �= i,  ≤ i, j ≤ n) and θi ( ≤ i ≤ n) are called the observation

angle and the center observation angle of the planet system, respectively. For the planet
system,we always consider that the observationmatrixA is a constantmatrix in this paper.
It is worth noting that the norm ‖F‖ of the gravity kernel F = F(P) is independent of

‖p‖,‖p‖, . . . ,‖pn‖; furthermore,

 ≤ ‖F‖ =
√
mAmT ≤ , ()

wheremT is the transpose of the row vectorm, and

mAmT =
∑

≤i,j≤n

mimj cos θi,j

is a quadratic.
In fact, from F =

∑n
i=miei and 〈ei, ej〉 = cos θij, we have that

 ≤ ‖F‖ =
√〈F,F〉 =

√ ∑
≤i,j≤n

mimj〈ei, ej〉 =
√
mAmT ;

‖F‖ =
∥∥∥∥∥

n∑
i=

miei

∥∥∥∥∥≤
n∑
i=

‖miei‖ = .

Let PS{P,m, B(g, )}n
E
be a planet system. By the above definitions, the gravity to the Earth

o from n planets p,p, . . . ,pn in the solar system is F(P), and ‖F(P)‖ is the norm of F(P).
If we take a point qi in the ray opi such that ‖–→oqi‖ = , and place a planet at qi with mass
mi for i = , , . . . ,n, then the gravity of these n planets q,q, . . . ,qn to the Earth o is F(P).
Let PS{P,m, B(g, )}n

E
be a planet system. If we believe that g is a molecule and

p,p, . . . ,pn are atoms of g , then the gravity to another atom o from n atoms p,p, . . . ,pn
of g is F(P).
In the solar system, the gravity of n planets p,p, . . . ,pn to the planet o is F(P), while

for other galaxy in the universe, the gravity may be Fλ(P), where λ ∈ (, )∪ (, +∞).
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Let PS{P,m, B(g, r)}n
E
be a planet system. Then the function

fλ : En → R++, fλ(P) =
n∑
i=

mi

‖pi‖λ

is called an absolute λ-gravity function of the planet system PS{P,m, B(g, r)}n
E
, where λ ∈

[, +∞).
Let P be a planetary sequence in the solar system. Then 

n f(P) is the average value of
the gravities of the planets p,p, . . . ,pn to the Earth o.
Let P be a planetary sequence in the solar system. If we think that mi is the radiation

energy of the planet pi, then, according to optical laws, the radiant energy received by the
Earth o is c mi

‖pi‖ , i = , , . . . ,n, and the total radiation energy received by the Earth o is
cf(P), where c >  is a constant.
By Minkowski’s inequality (see [])

‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ E,

we know that if Fλ(P) and fλ(P) are a λ-gravity function and an absolute λ-gravity function
of the planet system PS{P,m, B(g, r)}n

E
, respectively, then we have

∥∥Fλ(P)
∥∥≤ fλ(P), ∀λ ∈ [, +∞). ()

Now, we will define absolute λ-gravity variance and λ-gravity variance. To this end, we
need the following preliminaries.
Two vectors x and y in E are said to be in the same (opposite) direction if (i) x =  or

y = , or (ii) x �=  and y �=  and x is a positive (respectively negative) constantmultiple of y.
Two vectors x and y in the same (opposite) direction are indicated by x ↑ y (respectively
x ↓ y).
We say that the set S := S(, ) is a unit sphere in E.
For each α ∈ S, we say that the set

�α :=
{
γ ∈ E|〈γ ,α〉 = 

}
is the tangent plane to the unit sphere S at the vector α. It is obvious that

γ ∈ �α ⇔ 〈γ – α,α〉 =  ⇔ α ⊥ γ – α.

Assume that α,β ∈ S, and that α ± β �= . We then say that the set

αβ :=
{
�α,β (t)|t ∈ (–∞,∞)

}
,

where

�α,β (t) =
( – t)α + tβ

‖( – t)α + tβ‖ ,
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are straight lines on the unit sphere S, and that the sets

[αβ] :=
{
�α,β (t)|λ ∈ [, ]

}
, (αβ] :=

{
�α,β (t)|t ∈ (, ]

}
,

[αβ) :=
{
�α,β (t)|t ∈ [, )

}
, (αβ) :=

{
�α,β (t)|t ∈ (, )

}
,

are the straight line segments on the sphere S, and that ‖αβ‖ := ∠(α,β) = arccos〈α,β〉 is
the length of these line segments.
It is easy to see that α + β �=  implies ( – t)α + tβ �= . Thus, we may easily get the

existence and uniqueness of these line segments. Similarly, α ± β �=  implies that ‖αβ‖ ∈
(,π ).
Assuming that γ ∈ �α ∩�β , and that α, β , γ are linearly dependent vectors, we say that

γ – α is the tangent vector to the line segment [αβ) at α. By definition, we see that there
exist u, v ∈R such that

γ = uα + vβ .

Therefore

 = 〈γ ,α〉 = u〈α,α〉 + v〈α,β〉 = u + v〈α,β〉,
 = 〈γ ,β〉 = u〈α,β〉 + v〈β ,β〉 = u〈α,β〉 + v.

We infer from 〈α,β〉 ∈ (–, ) that

u = v =


 + 〈α,β〉 , γ =
α + β

 + 〈α,β〉 ,
γ – α

‖γ – α‖ =
β – 〈α,β〉α

‖β – 〈α,β〉α‖ .

We define also the tangent vector of [αβ) at α by β – 〈α,β〉α. The tangent vector β –
〈α,β〉α enjoys the following properties: If γ ∈ (αβ), then

(
γ – 〈α,γ 〉α) ↑ (β – 〈α,β〉α). ()

In fact, there exists t ∈ (, ) such that

γ =�α,β (t) =
( – t)α + tβ

‖( – t)α + tβ‖ .

Since 〈α,α〉 = , we see that

(
γ – 〈α,γ 〉α) = ( – t)α + tβ

‖( – t)α + tβ‖ –
〈
α,

( – t)α + tβ
‖( – t)α + tβ‖

〉
α

=
( – t)α + tβ – 〈α, ( – t)α + tβ〉α

‖( – λ)α + tβ‖
↑ [( – t)α + tβ –

〈
α, ( – t)α + tβ

〉
α
]

= t
(
β – 〈α,β〉α)

↑ (β – 〈α,β〉α).
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The angle between two line segments [αβ), [αγ ) on the unit sphere S is defined as

∠
(
[αβ), [αγ )

)
:=∠

(
β – 〈α,β〉α,γ – 〈α,γ 〉α).

If [αβ), [βγ ), [γα) are three straight line segments on the unit sphere S, and α /∈ βγ ,β /∈
γα,γ /∈ αβ , then we say that the set �αβγ := [αβ) ∪ [βγ ) ∪ [γα) is a spherical triangle.
Write A = ∠([αβ), [αγ )), B = ∠([βγ ), [βα)), C = ∠([γα), [γβ)), a = ‖βγ ‖, b = ‖γα‖, c =
‖αβ‖. Then we obtain that

cosA = cos∠
(
β – 〈α,β〉α,γ – 〈α,γ 〉α)

=
〈β – 〈α,β〉α,γ – 〈α,γ 〉α〉

‖β – 〈α,β〉α‖ · ‖γ – 〈α,γ 〉α‖
=

〈β ,γ 〉 – 〈α,β〉〈α,γ 〉√
 – 〈α,β〉 ·√ – 〈α,γ 〉

=
cosa – cosb cos c

sinb sin c
.

Thus, we may get the law of cosine for spherical triangle

cosa = cosb cos c + sinb sin c cosA. ()

By () we may get the law of cosine for spherical triangle

cosA = – cosB cosC + sinB sinC cosa. ()

By () we may get the law of sine for spherical triangle

sina
sinA

=
sinb
sinB

=
sin c
sinC

. ()

By cosA > –, cosa <  and ()-(), we get

a,b, c ∈ (,π ), b + c > a,

or

∠(β ,γ ) <∠(γ ,α) +∠(α,β), ()

and

A,B,C ∈ (,π ), A + B +C > π . ()

Lemma  Let E be an Euclidean space, let the dimension of E satisfy dimE ≥ , and let
B(g, ) be a closed sphere in E. If ‖g‖ > , then

max
α,β∈B(g,)

{
∠(α,β)

}
=  arcsin


‖g‖ . ()
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Proof From α ∈ B(g, ) we get

〈α – g,α – g〉 ≤ ,

‖α‖ – 〈g,α〉 + ‖g‖ ≤ ,

cos∠(α, g) = 〈g,α〉
‖α‖‖g‖ ≥ ‖α‖ + ‖g‖ – 

‖α‖‖g‖ ≥
√‖g‖ – 

‖g‖ .

Thus,

∠(α, g) ≤ arcsin


‖g‖ . ()

Similarly, from β ∈ B(g, ) we have

∠(β , g) ≤ arcsin


‖g‖ . ()

If we set

α∗ =
α

‖α‖ , β∗ =
β

‖β‖ , g∗ =
g

‖g‖ ,

then α∗,α∗, g∗ ∈ S. According to inequalities (), () and (), we get

∠(α,β) =∠
(
α∗,β∗)≤ ∠

(
α∗, g∗) +∠

(
g∗,β∗) =∠(α, g) +∠(g,β) ≤  arcsin


‖g‖ ,

hence

∠(α,β) ≤  arcsin


‖g‖ . ()

Now we discuss the conditions such that the equality in inequality () holds. From the
above analysis, we know that these conditions are:
(a) α ∈ B(g, ) and ‖α‖ =√‖g‖ – ;
(b) β ∈ B(g, ) and ‖β‖ =√‖g‖ – ;
(c) g∗ ∈ [α∗β∗] and ∠(α∗, g∗) =∠(g∗,β∗) = arcsin 

‖g‖ .
From (a) and (b) we know that the condition (c) can be rewritten as

(c∗) g
‖g‖ =

α+β
‖α+β‖ or g ↑ α + β .

Based on the above analysis, we know that the equality in inequality () can hold.
Therefore, equality () holds. The lemma is proved. �

It is worth noting that if PS{P,m, B(g, )}n
E
is a planet system and ‖g‖ ≥ √

, according to
Lemma  and pi,pj ∈ B(g, ), then we have that

 ≤ θi,j =∠(pi,pj) ≤ max
α,β∈B(g,)

{
∠(α,β)

}
=  arcsin


‖g‖ ≤ π


()
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for any i, j = , , . . . ,n, and

∥∥Fλ(P)
∥∥ = ∑

≤i,j≤

mimj cos θi,j

(


‖pi‖‖pj‖
) λ


, ()

∥∥F(P)∥∥λ =
[ ∑
≤i,j≤

mimj cos θi,j

(


‖pi‖‖pj‖
)] λ


, ()

where

mimj cos θi,j ≥ , i, j = , , . . . ,n. ()

Now, we will define absolute λ-gravity variance and λ-gravity variance.
Let PS{P,m, B(g, r)}n

E
be a planet system, and let the functions fλ(P), Fλ(P) be an absolute

λ-gravity function and a λ-gravity function of the planet system, respectively. We say the
functions

Varλ(P) =Var λ


(
p–,m

)
=


λ(λ – )

[
fλ(P) – f

λ

 (P)

]
,  < λ �= ,

and

Var∗λ(P) =


λ(λ – )

[(‖Fλ(P)‖
‖F(P)‖

)

–
(‖F(P)‖

‖F(P)‖
)λ]

,  < λ �= ,

are absolute λ-gravity variance and λ-gravity variance of the planet system, respectively,
where

p =
(‖p‖,‖p‖, . . . ,‖pn‖), p– =

(‖p‖–,‖p‖–, . . . ,‖pn‖–).
Let PS{P,m, B(g, )}n

E
be a planet system, and  < λ, μ �= , λ �= μ. By Lemma , we have


max≤i≤n{‖pi‖} ≤

[
Varλ(P)
Varμ(P)

] 
λ–μ ≤ 

min≤i≤n{‖pi‖} . ()

If ‖g‖ ≥ √
, according to ()-() and Lemma , we have


max≤i≤n{‖pi‖} ≤

[
Var∗λ(P)
Var∗μ(P)

] 
λ–μ ≤ 

min≤i≤n{‖pi‖} . ()

Let P be a planetary sequence in the solar system, and the gravity of the planet pi to the
Earth o is F(pi), i = , , . . . ,n. Then inequalities () and () can be rewritten as

min
≤i≤n

{‖F(pi)‖
mi

}
≤
[
Varλ(P)
Varμ(P)

] 
λ–μ ≤ max

≤i≤n

{‖F(pi)‖
mi

}
()

and

min
≤i≤n

{‖F(pi)‖
mi

}
≤
[
Var∗λ(P)
Var∗μ(P)

] 
λ–μ ≤ max

≤i≤n

{‖F(pi)‖
mi

}
, ()

respectively.
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Let PS{P,m, B(g, )}n
E
be a planet system. By Lemma , if λ > μ > , then

Varλ(P)
Varμ(P)

≥ μ

λ

[
f(P)

] λ–μ
 . ()

If λ > μ >  and ‖g‖ ≥ √
, according to ()-() and Lemma , we have

Var∗λ(P)
Var∗μ(P)

≥ μ

λ

[‖F(P)‖
‖F(P)‖

]λ–μ

, ()

where the coefficient μ/λ is the best constant in () and ().

Remark  For some new literature related to space science, please see [] and [].
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