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Abstract

If f is an analytic function in the unit disc D, a class of integral operators is defined as
follows:

I1(h)(2) = / fwh wW)dw, heHD)zeD.
0

The norm of /r on some analytic function spaces is computed in this paper.
MSC: Primary 47B38; secondary 32A35

Keywords: norm; integral operator; analytic function space

1 Introduction
Let D = {z : |z| < 1} be the unit disk of a complex plane C. Denote by H(D) the class of
functions analytic in D. Let do denote the normalized Lebesgue area measure in D and
g(a, z) the Green function with logarithmic singularity at 4, i.e., g(a, z) = —log |¢,(z)|, where
04(2) = (a — z)/(1 — az) is the Mobius transformation of D.

For 0 < p < 00, the Q, is the space of all functions f € H(ID), for which

|[f||2Qp = [}’(0)|2 + suﬂ;;/ﬂ)[f’(z)ﬁ(l - |<pa(z)|2)p do (z) < 00. (1.1)

We know that Q; = BMOA, the space of all analytic functions of bounded mean oscillation
(1, 2]. For all p > 1, the space Q, is the same and equal to the Bloch space 93, consisting of

analytic functions f in D such that
Iflls = [f(0)| + suﬂg[f/(z)|(l - |z|2) < 00. (1.2)
ze

See [3, 4] for the theory of Bloch functions.
For o > 0, the a-Bloch space, denoted by B¢, is the space of all functions f in D, for
which

If llse = [f(0)| + su]g[f/(z)|(1 - |z|2)°’ < o0. 1.3)

Obviously, B & B S B for 0 <a; <1< ey < 00.
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For any f € H(DD), the next two integral operators on H(D) are induced as follows:

Ir(h)(z) = /OZ Hw)f(w)dw and Jr(h)(z) = /Ozh(w)f’(w) dw (zeD).

Let My denote the multiplication operator, that is, My(h) = fh.
Let f € H(D). Then

(s +J)h = fh - f(0)h(0) = My (h) — £ (0)h(0).

If f is a constant, then all results about I, Jr or My are trivial. In general, f is assumed to
be non-constant. Both integral operators have been studied by many authors. See [5-21]
and the references therein.

Norm of composition operator, weighted composition operator and some integral op-
erators have been studied extensively by many authors, see [22—34] for example. Recently,
Liu and Xiong discussed the norm of integral operators Iy and J; on the Bloch space,
Dirichlet space, BMOA space and so on in [35].

In this paper, we study the norm of integral operator /. The norm of Ir on several analytic

function spaces is computed.

2 Main results
In this section, we state and prove our main results. In order to formulate our main results,

we need an auxiliary result which is incorporated in the following lemma.

Lemma 2.1 Let 0 < p <1. For any zo € D, the function

Z0—Z2

82 (2) -2 (2.1)

- 1- 5()2
is analytic in D and ||g, |l q, = 1/(p + ).

Proof By (1.1) and [1, Proposition 1, p.109], we have

”gzo ”ép = SUP/ |g;0 (Z)‘Z(l - “Pa(Z)|2)p do(z)
achD JD

= sup/ (1 - |<pb(z)|2)p do (2),
beD JD

where b = ¢, (a). Taking w = ¢,(2), we have

1—|w|?)
|13 = su 1-16)* (7_daw.
I8 = sup (1= 16P)" | = datw
Since
1 :ir(“z)l}”w’f:iF("+2)B”w”,
(1-bw)? — n'l'(2) — n!
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we have

2 +oo 2

D |1-bw |4 = (n))?
:z”?nﬁf : 2”/ o
n=0

+00

Fn+2Tp+Tn+1)  ,,
Z (m!)2 Cn+p+2) 161

n=0
~ f I'p+1)I'(n+2)? b

— nT(n+p+2)

A simple computation shows

Cp+ )l (n+2)° (m+D)!(n+1)
nCm+p+2) (p+Dp+2)---(p+n+1)

Also, it is easy to see

1 - n+l - (n+1D(n+1) <r1+1
p+l " prn+l = (p+Dp+2)---(p+n+l) “ p+1

Thus,
(1- 1617 <~ 2 1-1p»? 1 1
gz 13, < sup ———— (1 +1)|b|*" = sup - ,
£ R beD P+1 ; beD 17+1 (1_|b|2)2 p+1
and
(L= 161 <~ |, 20 1L-1p%? 1 1
llgzo ||ép >sup —— Z |b]?" = sup 5= .
be0 P+1 = e pP+1 1-1b2 p+1
Then the proof is complete. O

First, we consider the norm of Ir on Q,, 0 < p < 1.

Theorem 2.2 Let 0 < p < 1. If f € H(D), then I is bounded on Q) if and only if f € H™.

Moreover,

el = I Nl e

Proof Forany h € Q, with ||k g, =1, it is trivial that ||¢|| < [|f]|z. To prove the converse,
define ¢ = sup,p |f(2)|. Given any € > 0, there exists z; € D such that |[f(z;)| > ¢ — €. Let
h(z) = g, (2)/l|gz |l g,» where
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It is easy to see that

I7llq, =1, W (@)|(1-121) = 1/llga o,

Henceforth,
1> = ki, = ZEB/DIW(ZV(Z)}Z(I— |0a(2)|})! do(2)

~ sup /D I (0 ))f (0a(0) ¢, 0) 2 (1 = [wP2)? dor(w).

aeD

Taking w = re” and by the subharmonicity of |/ (¢, (w))f (¢.(w))¢,(w)|?, we obtain
111> = sup / W @f @[ (1-|pa@)|") do(2)
ae D

=swp [ [ e ) (oo 1 ) e

aeD

1
> sup|h’(u)f(a)|2(1 _ |d|2)22/ (1 _ r2)1’rdr

acD 0

1 1
=l Zgglh/(a)f(a)f(l —laP?)* = oi1 W (@)f @) (1 -1z?)
1 |[f(z))?

> — . (2.2)
p+1lg, 13,

By Lemma 2.1 we have

Il > |f(z1)| > c—e.
Since € is arbitrary, we have ||Ir|| > sup,.p |f(2)| and the proof is complete. O
Next, we consider the norm of I from Q, (0 <p <1) to 5.

Theorem 2.3 Let 0 < p < 1. If f € H(D), then I is bounded from Q, space to ‘B space if
and only if f € H*. Moreover, we have

1 = @ + D" 11f .
Proof If f € H*, then (1.2) gives
s = suplf (@) ()| (1~ I2I?) < IIf s sup|H ()| (1 - I2I?).
zeD zeD
From a part of the proof of estimate (2.2) for f =1, we see that

sup|h’(z)|(1 - |z|2) <@+ 1)1/2||h||Qp’

zeD
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and so

IZhls < |[fllre (p + D2 Al g, -

This leads to

Il < (@ + D2 11f N .

On the other hand, define ¢ = sup,, |f(2)|. Given any € > 0, there exists z; € D such that
[f(z1)] > c — €. Let h(z) = g, (2)/l|gz |l g,» Where

() 21— Z
Z)=——-—"—2Z21.
&a 1-zz

This together with Lemma 2.1 gives the following:
M7l = Ephilas = suplf (@) ()] (1~ 12f°) = |f(e)l (z2)] (1~ 12 )
ze

= |f(z)|/llgallq, > (@ + 1" (c - €).

Since € is arbitrary, we have
1271l = ( + D" suplf(2)| = (p + )" I1f 1.
zeD

The proof is complete. O
Finally, we consider the norm of the integral operator Ir on 6%, 0 < < 1.

Theorem 2.4 Let 0 <« <1and f € H(D). Then the integral operator Iy is bounded on B*
if and only if f € H*. Moreover,

el = I Nl o

Proof For any h € ®B* with ||k||se =1, by (1.3) we have
Myhlase = sup(1 - 2)* [f @[ )| < Illsse - I1f lrroe.
ze

This implies ||| < ||f|lzoe.
Now we need to show the reverse inequality. Define ¢ = sup,.p, |[f(2)|. Given any € > 0,
there exists z; € D such that |f(z1)| > ¢ — €. Put

1-la)”
h(z) = —de, .
® [r(z> A -z)> ¢ 23)

where I'(z) is any path in D from 0 to z, and a single-valued analytic branch is specified.
By Theorem 13.11 in [36, p.274], we know / is an analytic function in D and #/(z) = (1 -


http://www.journalofinequalitiesandapplications.com/content/2013/1/342

Li and Li Journal of Inequalities and Applications 2013, 2013:342 Page 6 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/342

|z11%)%/(1 — z12)**. Also, it is easy to check |||« = 1. In fact,

1]l s = sup|#'(2)| (1 - 12*)* = sup Hﬂ(l — |2?)”
zeD 2D 11— Z12]%

1-— 2\« 1-— 2\«
Ssup( |z1]%)*( 2IZI ) <1 (2.4)
p (L= l|zllz])*

On the other hand, we have

|4l se = sup|#'(2)|(1 - |z]*)” = sup w(1 — I2?)"
2D 2D |1-Z12|%
(1 - |Zl|2)a 2\
—(1- =1. 2.5
> (1—|21|2)2°‘( |z1] ) (2.5)

Hence, the assertion follows by (2.4) and (2.5). Thus

1Nl = rhll e = squV(z)h/(zn(l — 21" > |[f )l (@)| (1 - |21]*)*

_ 2\a
> V(Z1)|%(l - |21|2)a = [f(z1)| >c—e.

Since the € is arbitrary, the proof is complete. d
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