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Abstract
If f is an analytic function in the unit disc D, a class of integral operators is defined as
follows:

If (h)(z) =
∫ z

0
f (w)h′(w)dw, h ∈ H(D), z ∈D.

The norm of If on some analytic function spaces is computed in this paper.
MSC: Primary 47B38; secondary 32A35
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1 Introduction
Let D = {z : |z| < } be the unit disk of a complex plane C. Denote by H(D) the class of
functions analytic in D. Let dσ denote the normalized Lebesgue area measure in D and
g(a, z) theGreen functionwith logarithmic singularity at a, i.e., g(a, z) = – log |ϕa(z)|, where
ϕa(z) = (a – z)/( – āz) is the Möbius transformation of D.
For  < p < ∞, the Qp is the space of all functions f ∈H(D), for which

‖f ‖Qp =
∣∣f ()∣∣ + sup

a∈D

∫
D

∣∣f ′(z)
∣∣( – ∣∣ϕa(z)

∣∣)p dσ (z) < ∞. (.)

We know thatQ = BMOA, the space of all analytic functions of boundedmean oscillation
[, ]. For all p > , the space Qp is the same and equal to the Bloch spaceB, consisting of
analytic functions f in D such that

‖f ‖B =
∣∣f ()∣∣ + sup

z∈D

∣∣f ′(z)
∣∣( – |z|) < ∞. (.)

See [, ] for the theory of Bloch functions.
For α > , the α-Bloch space, denoted by Bα , is the space of all functions f in D, for

which

‖f ‖Bα =
∣∣f ()∣∣ + sup

z∈D

∣∣f ′(z)
∣∣( – |z|)α < ∞. (.)

Obviously,Bα �B�Bα for  < α <  < α < ∞.
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For any f ∈H(D), the next two integral operators on H(D) are induced as follows:

If (h)(z) =
∫ z


h′(w)f (w)dw and Jf (h)(z) =

∫ z


h(w)f ′(w)dw (z ∈D).

LetMf denote the multiplication operator, that is,Mf (h) = fh.
Let f ∈H(D). Then

(If + Jf )h = fh – f ()h() =Mf (h) – f ()h().

If f is a constant, then all results about If , Jf or Mf are trivial. In general, f is assumed to
be non-constant. Both integral operators have been studied by many authors. See [–]
and the references therein.
Norm of composition operator, weighted composition operator and some integral op-

erators have been studied extensively bymany authors, see [–] for example. Recently,
Liu and Xiong discussed the norm of integral operators If and Jf on the Bloch space,
Dirichlet space, BMOA space and so on in [].
In this paper, we study the normof integral operator If . The normof If on several analytic

function spaces is computed.

2 Main results
In this section, we state and prove ourmain results. In order to formulate ourmain results,
we need an auxiliary result which is incorporated in the following lemma.

Lemma . Let  < p < . For any z ∈D, the function

gz (z) =
z – z
 – z̄z

– z (.)

is analytic in D and ‖gz‖Qp = /(p + )/.

Proof By (.) and [, Proposition , p.], we have

‖gz‖Qp = sup
a∈D

∫
D

∣∣g ′
z (z)

∣∣( – ∣∣ϕa(z)
∣∣)p dσ (z)

= sup
b∈D

∫
D

(
 –

∣∣ϕb(z)
∣∣)p dσ (z),

where b = ϕz (a). Taking w = ϕb(z), we have

‖gz‖Qp = sup
b∈D

(
 – |b|)

∫
D

( – |w|)p
| – b̄w| dσ (w).

Since


( – b̄w)

=
∞∑
n=

�(n + )
n!�()

b̄nwn =
∞∑
n=

�(n + )
n!

b̄nwn,
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we have

∫
D

( – |w|)p
| – b̄w| dσ (w) =

+∞∑
n=

�(n + )

(n!)
|b|n

∫
D

(
 – |w|)p|w|n dσ (w)

=
+∞∑
n=

�(n + )

(n!)
|b|n

∫ 


( – r)prn dr

=
+∞∑
n=

�(n + )

(n!)
�(p + )�(n + )

�(n + p + )
|b|n

=
+∞∑
n=

�(p + )�(n + )

n!�(n + p + )
|b|n.

A simple computation shows

�(p + )�(n + )

n!�(n + p + )
=

(n + )!(n + )
(p + )(p + ) · · · (p + n + )

.

Also, it is easy to see


p + 

≤ n + 
p + n + 

≤ (n + )!(n + )
(p + )(p + ) · · · (p + n + )

≤ n + 
p + 

.

Thus,

‖gz‖Qp ≤ sup
b∈D

( – |b|)
p + 

+∞∑
n=

(n + )|b|n = sup
b∈D

( – |b|)
p + 


( – |b|) =


p + 

,

and

‖gz‖Qp ≥ sup
b∈D

( – |b|)
p + 

+∞∑
n=

|b|n = sup
b∈D

( – |b|)
p + 


 – |b| =


p + 

.

Then the proof is complete. �

First, we consider the norm of If on Qp,  < p < .

Theorem . Let  < p < . If f ∈ H(D), then If is bounded on Qp if and only if f ∈ H∞.
Moreover,

‖If ‖ = ‖f ‖H∞ .

Proof For any h ∈ Qp with ‖h‖Qp = , it is trivial that ‖If ‖ ≤ ‖f ‖H∞ . To prove the converse,
define c = supz∈D |f (z)|. Given any ε > , there exists z ∈ D such that |f (z)| > c – ε. Let
h(z) = gz (z)/‖gz‖Qp , where

gz (z) =
z – z
 – z̄z

– z.
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It is easy to see that

‖h‖Qp = ,
∣∣h′(z)

∣∣( – |z|
)
= /‖gz‖Qp .

Henceforth,

‖If ‖ ≥ ‖If h‖Qp = sup
a∈D

∫
D

∣∣h′(z)f (z)
∣∣( – ∣∣ϕa(z)

∣∣)p dσ (z)

= sup
a∈D

∫
D

∣∣h′(ϕa(w)
)
f
(
ϕa(w)

)
ϕ′
a(w)

∣∣( – |w|)p dσ (w).

Taking w = reiθ and by the subharmonicity of |h′(ϕa(w))f (ϕa(w))ϕ′
a(w)|, we obtain

‖If ‖ ≥ sup
a∈D

∫
D

∣∣h′(z)f (z)
∣∣( – ∣∣ϕa(z)

∣∣)p dσ (z)

= sup
a∈D

∫ 




π

∫ π



∣∣h′(ϕa
(
reiθ

))
f
(
ϕa

(
reiθ

))
ϕ′
a
(
reiθ

)∣∣( – r
)pr dr dθ

≥ sup
a∈D

∣∣h′(a)f (a)
∣∣( – |a|)

∫ 



(
 – r

)pr dr

=


p + 
sup
a∈D

∣∣h′(a)f (a)
∣∣( – |a|) ≥ 

p + 
∣∣h′(z)f (z)

∣∣( – |z|
)

≥ 
p + 

|f (z)|
‖gz‖Qp

. (.)

By Lemma . we have

‖If ‖ ≥ ∣∣f (z)∣∣ > c – ε.

Since ε is arbitrary, we have ‖If ‖ ≥ supz∈D |f (z)| and the proof is complete. �

Next, we consider the norm of If from Qp ( < p < ) toB.

Theorem . Let  < p < . If f ∈ H(D), then If is bounded from Qp space to B space if
and only if f ∈ H∞.Moreover, we have

‖If ‖ = (p + )/‖f ‖H∞ .

Proof If f ∈H∞, then (.) gives

‖If h‖B = sup
z∈D

∣∣f (z)h′(z)
∣∣( – |z|) ≤ ‖f ‖H∞ sup

z∈D

∣∣h′(z)
∣∣( – |z|).

From a part of the proof of estimate (.) for f ≡ , we see that

sup
z∈D

∣∣h′(z)
∣∣( – |z|) ≤ (p + )/‖h‖Qp ,
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and so

‖If h‖B ≤ ‖f ‖H∞ (p + )/‖h‖Qp .

This leads to

‖If ‖ ≤ (p + )/‖f ‖H∞ .

On the other hand, define c = supz∈D |f (z)|. Given any ε > , there exists z ∈D such that
|f (z)| > c – ε. Let h(z) = gz (z)/‖gz‖Qp , where

gz (z) =
z – z
 – z̄z

– z.

This together with Lemma . gives the following:

‖If ‖ ≥ ‖If h‖B = sup
z∈D

∣∣f (z)h′(z)
∣∣( – |z|) ≥ ∣∣f (z)h′(z)

∣∣( – |z|
)

=
∣∣f (z)∣∣/‖gz‖Qp > (p + )/(c – ε).

Since ε is arbitrary, we have

‖If ‖ ≥ (p + )/ sup
z∈D

∣∣f (z)∣∣ = (p + )/‖f ‖H∞ .

The proof is complete. �

Finally, we consider the norm of the integral operator If onBα ,  < α < .

Theorem . Let  < α <  and f ∈H(D). Then the integral operator If is bounded onBα

if and only if f ∈H∞.Moreover,

‖If ‖ = ‖f ‖H∞ .

Proof For any h ∈Bα with ‖h‖Bα = , by (.) we have

‖If h‖Bα = sup
z∈D

(
 – |z|)α∣∣f (z)∣∣∣∣h′(z)

∣∣ ≤ ‖h‖Bα · ‖f ‖H∞ .

This implies ‖If ‖ ≤ ‖f ‖H∞ .
Now we need to show the reverse inequality. Define c = supz∈D |f (z)|. Given any ε > ,

there exists z ∈D such that |f (z)| > c – ε. Put

h(z) =
∫

�(z)

( – |z|)α
( – z̄ζ )α

dζ , (.)

where �(z) is any path in D from  to z, and a single-valued analytic branch is specified.
By Theorem . in [, p.], we know h is an analytic function in D and h′(z) = ( –
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|z|)α/( – z̄z)α . Also, it is easy to check ‖h‖Bα = . In fact,

‖h‖Bα = sup
z∈D

∣∣h′(z)
∣∣( – |z|)α = sup

z∈D
( – |z|)α
| – z̄z|α

(
 – |z|)α

≤ sup
z∈D

( – |z|)α( – |z|)α
( – |z||z|)α ≤ . (.)

On the other hand, we have

‖h‖Bα = sup
z∈D

∣∣h′(z)
∣∣( – |z|)α = sup

z∈D
( – |z|)α
| – z̄z|α

(
 – |z|)α

≥ ( – |z|)α
( – |z|)α

(
 – |z|

)α = . (.)

Hence, the assertion follows by (.) and (.). Thus

‖If ‖ ≥ ‖If h‖Bα = sup
z∈D

∣∣f (z)h′(z)
∣∣( – |z|)α ≥ ∣∣f (z)h′(z)

∣∣( – |z|
)α

≥ ∣∣f (z)∣∣ ( – |z|)α
( – |z|)α

(
 – |z|

)α =
∣∣f (z)∣∣ > c – ε.

Since the ε is arbitrary, the proof is complete. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed to the writing of the present article. They also read and approved the final manuscript.

Author details
1College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China. 2Department of
Mathematics, JiaYing University, Meizhou, GuangDong 514015, China.

Acknowledgements
The first author is supported by the National Natural Science Foundation of China (No. 11126284). The second author is
supported by the project of Department of Education of Guangdong Province (No. 2012KJCX0096).

Received: 21 April 2013 Accepted: 10 July 2013 Published: 25 July 2013

References
1. Aulaskari, R, Xiao, J, Zhao, R: On subspaces and subsets of BMOA and UBC. Analysis 15, 101-121 (1995)
2. Xiao, J: HolomorphicQ Classes. Lecture Notes in Math., vol. 1767. Springer, Berlin (2001)
3. Zhu, K: Operator Theory in Function Spaces. Dekker, New York (1990)
4. Zhu, K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143-1177 (1993)
5. Aleman, A, Siskakis, A: An integral operator on Hp . Complex Var. Theory Appl. 28, 140-158 (1995)
6. Aleman, A, Siskakis, A: Integral operators on Bergman spaces. Indiana Univ. Math. J. 46, 337-356 (1997)
7. Austin, A: Multiplication and integral operators on Banach spaces of analytic functions. Ph.D. thesis, University of

Hawai (2010)
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27. Stević, S: Norm of weighted composition operators from Bloch space to H∞

μ on the unit ball. Ars Comb. 88, 125-127
(2008)
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32. Stević, S: Norm of an integral-type operator from Dirichlet to Bloch space on the unit disk. Util. Math. 83, 301-303

(2010)
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