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1 Introduction
The following definition is well known in the literature: a function f: I - R, # #I C R, is
said to be convex on [ if the inequality

ftx+ @ =t)y) <tf(x) + A= 1)f (9)

holds for all x,y € I and t € [0,1]. Geometrically, this means that if P, Q and R are three
distinct points on the graph of f with Q between P and R, then Q is on or below the
chord PR.

In their paper [1], Hudzik and Maligranda considered, among others, the class of func-
tions which are s-convex in the second sense. This class is defined in the following way: a
function £ : [0,00) — R is said to be s-convex in the second sense if

ftx+ (1 -t)y) < Efx) + (1 -)°f ()

holds for all x,y € [0,00), t € [0,1] and for some fixed s € (0,1]. The class of s-convex
functions in the second sense is usually denoted by KZ.

It can be easily seen that for s = 1 s-convexity reduces to the ordinary convexity of func-
tions defined on [0, 00).

In the same paper [1], Hudzik and Maligranda proved that if s € (0,1), f € K? implies
f([0,00)) € [0,00), i.e., they proved that all functions from K2, s € (0,1), are nonnegative.

Example 1 [1] Lets € (0,1) and a, b, c € R. We define the function f : [0,00) — R as

a, t=0,
f@) =

bt +¢, t>0.
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It can be easily checked that
(i) if b>0and 0 <c <aq, thenf € K2,
(i) if »>0and ¢ <0, thenf ¢ K.

Many important inequalities are established for the class of convex functions, but one of
the most famous is the so-called Hermite-Hadamard’s inequality (or Hadamard’s inequal-
ity). This double inequality is stated as follows: Let f be a convex function on [a,b] C R,
where a # b. Then

f(mb)_b ff( s <f(a)+f(b)

2

For several recent results concerning Hadamard’s inequality, we refer the interested reader
to [2-5].
In [6] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds

for s-convex functions in the second sense.

Theorem 1 Suppose that f : [0,00) — [0,00) is an s-convex function in the second sense,
where s € (0,1), and let a,b € [0,00), a < b. If f € L([a, b)), then the following inequalities
hold:

s (ath I _f@)+f®)
21f<7)5m/ﬂf(") . (.1)

The constant k = 1/(s + 1) is best possible in the second inequality in [7].

The above inequalities are sharp. For recent results and generalizations concerning
s-convex functions, see [8—13].

Along this paper, we consider a real interval I C R, and we denote that /° is the interior
of I.

The main aim of this paper is to establish new inequalities of Hermite-Hadamard type
for the class of functions whose second derivatives at certain powers are s-convex func-

tions in the second sense.

2 Main results

To prove our main results, we consider the following lemma.

Lemmal Letf:I C R — R be a differentiable mapping on I° where a,b € I with a < b. If
f" € Lla, b), then the following equality holds:

_/f(xdx f<a+b>
_(b—cl)2 aonf.a+h
=1 [/0 tf (t 5 +(1—t)¢z)dt
1
9o a+b
+/0 (t-1f <tb+(1—t)T>dt:|. (2.1)
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Proof By integration by parts, we have the following identity:

11_/ 2f”< (l—t)a)dt
2 2 (a+h L Ty
—tb_ f(t 5 +(1_t)a>0_b—a/0 tf<t
2 _(a+b 4 2 a+b

:b—af< 2 )_b—a[tb—af(t 2 +(1—t)a)

1
_b%a/of(ta;b+(l—t)a>dt]
2 _(a+b 8 a+b
:b—af< 2 )_(b—a)2f< 2 )
1
+ﬁfof(t“;b +(1—t)az) dt. 2.2)

a+b

Using the change of the variable x = %3 + (1 — t)a for ¢ € [0,1] and multiplying the both
sides (2.2) by

+(1- t)oz) dt

1

0

we obtain

16’

(b 61)2 2//
16 / f< +(1—t)a)
a+b 1 [a+b 1 a5t
f( )—§f< 5 )+—b—a/g f(x)dx. (2.3)

Similarly, we observe that
(b-a)? b
“) / (t - 1)2f”<tb (1-t)“+ )

:_b;af/(a;b)_%f<a+b) / o) d. 24)

Thus, adding (2.3) and (2.4), we get the required identity (2.1). O

Theorem 2 Letf :I C [0,00) — R be a differentiable mapping on I° such that f" € Lla, b],
wherea, b € I with a < b.If|f| is s-convex on [a, b], for some fixed s € (0,1], then the following
inequality holds:

b
(e42) ot 1o

< (b—ay {Lf”(a)|+(s+1)(s+2)p( )‘ [f”(b|} (2.5)
~ 8(s+1)(s+2)(s+3) '

[1 ( 2)21_S](b - )2 7 1
= S-Esi;)(s+2)(s+:) (@] + @} (2.6)
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Proof From Lemma 1, we have

a+b 1
‘f( 5 ) 2 /f(x)dx
(b -a)? ooyl a+b
1 b
o]
+/O(t ) th+(1-1t) t
(b_ )2 ! 1/ b s| g
< 16“ /OtZM/ (%)‘Hl—t)[f(a)th
(b a)Z/(t 1)2[ts[f”(h\ (1- tsp”( Zb)udt
(b-aP[ 1 |, (a+h
16 [s+3‘/( 2 >'+(s+l)s+2 s+3 i|
(b-a)? 2 .
16 I:(s+1)(s+2)(s+3)v()| s+3 < )H

_ (b_ﬂ) 1/ 1! 6l+b "
_8(s+1)(s+2)(s+3){lf(a)i+(s+1)(s+2)P < )’ V(b)

where we have used the fact that

dt

}, 2.7)

12 s 1 2 2
/0 £(1-1) dtz/o (t-1)7radt= (s+1)(s+2)(s+3)

1 1 1
/ts*zdtzf 1-8"dt=——.
0 0 s+3

This proves inequality (2.5). To prove (2.6), and since |f”'| is s-convex on [a, b], for any
t € [0,1], then by (1.1) we have

s1.fa+Db fla)+f(b)
2 f< 5 )5 T (2.8)

Combining (2.7) and (2.8), we have

b
(e2)- s o
(b-a)? . , ,
< S6TIGT N S+3){[f (a)| +(s+1)(s+2)P < )’ +|f (b)\}

b-a f(zz) " f(b) )
< 8(s+1)(s+2)(s+3) +f (b)|}
[+ (s +2)217)(b - a)? )
= 8(s+1)(s+2)(s+3) {[f ﬂ’+lf(b‘},

{ If"(@)] + (s + 1)(s +2)2"*

which proves inequality (2.6), and thus the proof is completed. d
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Corollary 1 In Theorem 2, if we choose s = 1, we have

65)-s5 e
et oo (+2) o
(

D)4 o), (2.9)
8

The next theorem gives a new upper bound of the left Hadamard inequality for s-convex
mappings.

Theorem 3 Letf :1 C [0,00) — R be a differentiable mapping on I° such that f" € Lla, b],
where a,b € I with a < b. If |f”|1 is s-convex on [a, b], for some fixed s € (0,1] and q > 1 with

}7 + %1 =1, then the following inequality holds:

") ()
< _—
- 16 2p+1 s+1
g | fa+b N L a+b\|!
|G (57)0) - (r(557)
Proof Suppose that p > 1. From Lemma 1 and using the Holder inequality, we have
() -5ta e
2 ) b-al, e
b-a)[ (*,|.,(.a+h
< 6 I:/otL[(tT-F(l_t)a)
1
+/ (t—l)z‘/”(tb+(l—t)%+b)'dt]
() ([ 5 ) @)
<— dt (1-t)a || dt
L a)2</ t- )zf’dt> (/ P”(tln ~ 1) b)

Because |f”'|? is s-convex, we have

/p,,(wbm_t)a) d“—{b”(a)} Ha;b)

- [f”(b)\‘f) ZI]. (2.10)

dt

Q=

1
q
dt) .

]

and
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By a simple computation,

! 1
/ £ dt =
0 2p+1

and

1 1
1
f(t—l)zpdt=/(1—t)2pdt= )
0 0 2p+1

Therefore, we have
a+b 1 b
(55) -5 f o
<(b—zz)2( 1 )é(i);
- 16 2p+1 s+1
[l () = (r (557 o)’}

This completes the proof.

O

Corollary2 Letf :1 C [0,00) — R be a differentiable mapping on I° such thatf” € L|a, b],

where a,b € I with a < b. If |f"|1 is s-convex on |a, b], for some fixed s € (0,1] and q > 1 with
}7 + % =1, then the following inequality holds:

b b
(557) - 5ma | oo
< -
- 16 2p+1 s+1

X {2% + (2" +s+1)%}[lfﬁ(d)| +[f®)]].

Proof We consider inequality (2.10), and since |f”| is s-convex on [a, b], then by (1.1) we
have

2y7<a+b>§fbﬂ+fw)
2 s+1

Therefore

a+b 1 b
(57) e [ e

<(b—a)2< 1 )%(if

- 16 2p+1 s+1

x [({2" + s+ 1}|f"(@)|" + 27| )|")
L @) @] (27 s+ 1) B)[) 7).

Q-
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We let a; = (2175 + 5 + 1)|[f"(a)|4, by = 215|f" (D)4, az = 2°|f"(a)|? and by = (215 + s +
1)|f"(b)|1. Here, 0 < 1/q < 1 for g > 1. Using the fact

n

Z(ﬂi +b) < iﬂ? + ib:
i=1 i=1

i=1

forO<r<1,a,ay,...,a, > 0and by, by,...,b, > 0, we obtain the inequalities

_b-ap( 1 51 \i

- 16 <2p+1> <s+—1>
X [({21’5 +S+ 1}V”(a)|q + ZI’S[f”(b)‘q)
L@@ {27 s+ 1) B)]7) 1]

_b-aP( 1 \r( 1\
- 16 2p+1 s+1

<27+ @ s )@+ 0] )

Q-

Theorem 4 Letf :1 C [0,00) — R be a differentiable mapping on I° such that f” € L|a, b],

where a,b € I with a < b. If |f"|1, g > 1 is s-convex on [a, b], for some fixed s € (0,1], then
the following inequality holds:

b b
(e52)- it s
(b-a)y (1\7 2 g 1|, fa+b
=6 (§) {((s+1)(s+2)(s+3)lf(a)| +mp( 2 >
1 |, (a+b\]|* 2 B 0
*(MH 2 ) +(s+1)(s+2)(s+3)v(b)|> }

Proof Suppose that p > 1. From Lemma 1 and using the power mean inequality, we have

H(%5) -5 [ s
<& 1661)2 [ /Oltz L/ (faz;b +(1- t)a)

+/01(t—1)2P”(tb+ (1_t)“;b>'dt]
([ ([ el (22 o) )’
+ (bI:)2 (/Ol(t_DZdt)’l’ (/ol(t—l)zp”(tm (l_t)a;b>

1

y

dt

7 N\q
dt).
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Because |f”|? is s-convex, we have

Yol (a+b 1 2 voqg 1|, (a+b
/ot "/ (tT+(1_t)a> dti(s+1)(s+2)(s+3)lf(ﬂ)‘ +EP (T)

and

1
f(t—l)zL/”(tb+(l—t)a+b>
0 2
1 " a+b 1 2 1" q
Ss+3'/( 2 > +(s+1)(s+2)(s+3)v(b)"
Therefore, we have
b b
(e5) 5t [
(b-a)? 1\ 2 a1 | (avb\|\1
=25 G) (e @ +EP (7))
1 |, (a+b\|* 2 PN i
*(ng( 2 ) +(S+1)(S+2)(S+3)lf(b)i> } -

Corollary 3 In Theorem 4, if we choose s = 1, we have

b
(45) -5 [ 10
SO ()

- 48 4 3 2
() ey -

3
Now, we give the following Hadamard-type inequality for s-concave mappings.

q

q
dt

Theorem 5 Letf :I C [0,00) — R be a differentiable mapping on I° such that f" € Lla, b],
where a,b € I witha < b. If|f"|1 is s-concave on [a, b], for some fixed s € (0,1] and q > 1 with
1, %I =1, then the following inequality holds:

v
a+b 1 [t
1(5)-5ma [rwes
<(b—cz)2 27 P,, 3a+b ’ ‘f” a+3b ’
=" 16 (2p+1)1/1’{ ( 4 )+ ( 4 >}

Proof From Lemma 1 and using the Holder inequality for ¢ > 1 and zl’ + % =1, we obtain

a+b 1 b
/(57) - 5ma [ o
b-a)[ (., (. a+b

1
dt+/ (t—1)zp”<tb+(1—t)“;b>’dt}
0
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b=a? [ (Y 0 N[ [ (.a+h “ N\i
(b-a) [ (! s . a+b
T (/0 (t—1)21”dt> </0 P (tb+(1—t)T)

Since |[f”|? is s-concave, using inequality (1.1), we have

"\
dt) . (2.12)

! b 1 3a+b\|?
/ P (t“ P a- t)a) dt <251 p( ar > (2.13)
0 2 4
and
1 q q
/ P”(tb+(1—t)a+b) dt§2s‘lp”<a+3b) . (2.14)
0 2 4
From (2.12)-(2.14), we get
a+b 1 b
- d
1(55°) -5 [ 1
_b-a 27 (3a+h (a+3b
16 (2p+ 1) 2 )T 4 ’
which completes the proof. d

1

1
m)l’ <1,p>1, we have

Corollary 4 In Theorem 5, if we choose s =1 and % <(

b
(53) i
5 (b—a)2H//,<3a+b)‘+v/(d+3b>‘}. (2.15)
16 4 4

3 Applications to special means
We now consider the means for arbitrary real numbers «, 8 (o # ). We take:

(1) Arithmetic mean:

oa+f

Ala, B) = 5 o, B eRY;
(2) Logarithmic mean:
] .
L(arﬁ):l—r |a|7!|ﬂ|’arﬁ #O,Q’,,BER )
nja|-In|p|

Generalized log-mean:

IBVH-I _ O[n+1

L“”mz[M+nw—m

]n, neZ\{-1,0},a,B € R".

Now, using the results of Section 2, we give some applications to special means of real
numbers.

Page9of 11
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Proposition1 Let0<a<bands e (0,1). Then we have

~1)|(b-a) b\*?
yAS(a,b)—L;(a,b)ysW{asﬂe(“; ) +bs—2}.

Proof The assertion follows from (2.9) applied to the s-convex function in the second
sense f : [0,1] — [0,1], f(x) = x°. -

Proposition 2 Let 0 <a < b and s € (0,1). Then we have

|AS(¢Z b)—L(a b)| < W(%)q{[mﬂsﬂ . (a+b)q(s—2)i|%
, o a 48 4 3 )

a4+ b\ pat-2) :
() -5
2 3

Proof The assertion follows from (2.11) applied to the s-convex function in the second
sense f : [0,1] — [0,1], f(x) = x°. (]

Proposition 3 Let 0 <a < b and p > 1. Then we have

s s 2 1 1
|A%(a,b) - Li(a,b)| < (b-a) {(3a+b)2 ¥ (a+3b)2}'

Proof The inequality follows from (2.15) applied to the concave function in the second
sense f : [a;b] — R, f(x) = Inx. The details are omitted. O
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