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1 Introduction
The following definition is well known in the literature: a function f : I →R, ∅ �= I ⊂R, is
said to be convex on I if the inequality

f
(
tx + ( – t)y

) ≤ tf (x) + ( – t)f (y)

holds for all x, y ∈ I and t ∈ [, ]. Geometrically, this means that if P, Q and R are three
distinct points on the graph of f with Q between P and R, then Q is on or below the
chord PR.
In their paper [], Hudzik and Maligranda considered, among others, the class of func-

tions which are s-convex in the second sense. This class is defined in the following way: a
function f : [,∞)→R is said to be s-convex in the second sense if

f
(
tx + ( – t)y

) ≤ tsf (x) + ( – t)sf (y)

holds for all x, y ∈ [,∞), t ∈ [, ] and for some fixed s ∈ (, ]. The class of s-convex
functions in the second sense is usually denoted by K

s .
It can be easily seen that for s =  s-convexity reduces to the ordinary convexity of func-

tions defined on [,∞).
In the same paper [], Hudzik and Maligranda proved that if s ∈ (, ), f ∈ K

s implies
f ([,∞))⊆ [,∞), i.e., they proved that all functions from K

s , s ∈ (, ), are nonnegative.

Example  [] Let s ∈ (, ) and a,b, c ∈R. We define the function f : [,∞)→R as

f (t) =

⎧⎨
⎩
a, t = ,

bts + c, t > .
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It can be easily checked that
(i) if b ≥  and  ≤ c≤ a, then f ∈ K

s ,
(ii) if b >  and c < , then f /∈ K

s .

Many important inequalities are established for the class of convex functions, but one of
the most famous is the so-called Hermite-Hadamard’s inequality (or Hadamard’s inequal-
ity). This double inequality is stated as follows: Let f be a convex function on [a,b] ⊂ R,
where a �= b. Then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


.

For several recent results concerningHadamard’s inequality, we refer the interested reader
to [–].
In [] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds

for s-convex functions in the second sense.

Theorem  Suppose that f : [,∞) → [,∞) is an s-convex function in the second sense,
where s ∈ (, ), and let a,b ∈ [,∞), a < b. If f ∈ L([a,b]), then the following inequalities
hold:

s–f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx ≤ f (a) + f (b)

s + 
. (.)

The constant k = /(s + ) is best possible in the second inequality in [].

The above inequalities are sharp. For recent results and generalizations concerning
s-convex functions, see [–].
Along this paper, we consider a real interval I ⊂R, and we denote that I◦ is the interior

of I .
The main aim of this paper is to establish new inequalities of Hermite-Hadamard type

for the class of functions whose second derivatives at certain powers are s-convex func-
tions in the second sense.

2 Main results
To prove our main results, we consider the following lemma.

Lemma  Let f : I ⊂ R → R be a differentiable mapping on I◦ where a,b ∈ I with a < b. If
f ′′ ∈ L[a,b], then the following equality holds:


b – a

∫ b

a
f (x)dx – f

(
a + b


)

=
(b – a)



[∫ 


tf ′′

(
t
a + b


+ ( – t)a
)
dt

+
∫ 


(t – )f ′′

(
tb + ( – t)

a + b


)
dt

]
. (.)
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Proof By integration by parts, we have the following identity:

I =
∫ 


tf ′′

(
t
a + b


+ ( – t)a
)
dt

= t


b – a
f ′

(
t
a + b


+ ( – t)a
)∣∣∣∣




–


b – a

∫ 


tf ′

(
t
a + b


+ ( – t)a
)
dt

=


b – a
f ′

(
a + b


)
–


b – a

[
t


b – a

f
(
t
a + b


+ ( – t)a
)∣∣∣∣





–


b – a

∫ 


f
(
t
a + b


+ ( – t)a
)
dt

]

=


b – a
f ′

(
a + b


)
–


(b – a)

f
(
a + b


)

+


(b – a)

∫ 


f
(
t
a + b


+ ( – t)a
)
dt. (.)

Using the change of the variable x = t a+b + ( – t)a for t ∈ [, ] and multiplying the both
sides (.) by (b–a)

 , we obtain

(b – a)



∫ 


tf ′′

(
t
a + b


+ ( – t)a
)
dt

=
b – a


f ′
(
a + b


)
–


f
(
a + b


)
+


b – a

∫ a+b


a
f (x)dx. (.)

Similarly, we observe that

(b – a)



∫ 


(t – )f ′′

(
tb + ( – t)

a + b


)
dt

= –
b – a


f ′
(
a + b


)
–


f
(
a + b


)
+


b – a

∫ b

a+b


f (x)dx. (.)

Thus, adding (.) and (.), we get the required identity (.). �

Theorem Let f : I ⊂ [,∞)→R be a differentiable mapping on I◦ such that f ′′ ∈ L[a,b],
where a,b ∈ I with a < b. If |f | is s-convex on [a,b], for some fixed s ∈ (, ], then the following
inequality holds:

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)

(s + )(s + )(s + )

{∣∣f ′′(a)
∣∣ + (s + )(s + )

∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣f ′′(b)

∣∣} (.)

≤ [ + (s + )–s](b – a)

(s + )(s + )(s + )
{∣∣f ′′(a)

∣∣ + ∣∣f ′′(b)
∣∣}. (.)
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Proof From Lemma , we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



[∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣dt

+
∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣dt
]

≤ (b – a)



∫ 


t

[
ts
∣∣∣∣f ′′

(
a + b


)∣∣∣∣ + ( – t)s
∣∣f ′′(a)

∣∣]dt

+
(b – a)



∫ 


(t – )

[
ts
∣∣f ′′(b)

∣∣ + ( – t)s
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
]
dt

=
(b – a)



[


s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣ + 
(s + )(s + )(s + )

∣∣f ′′(a)
∣∣]

+
(b – a)



[


(s + )(s + )(s + )
∣∣f ′′(b)

∣∣ + 
s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
]

=
(b – a)

(s + )(s + )(s + )

{∣∣f ′′(a)
∣∣ + (s + )(s + )

∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣f ′′(b)

∣∣}, (.)

where we have used the fact that

∫ 


t( – t)s dt =

∫ 


(t – )ts dt =


(s + )(s + )(s + )

,

∫ 


ts+ dt =

∫ 


( – t)s+ dt =


s + 

.

This proves inequality (.). To prove (.), and since |f ′′| is s-convex on [a,b], for any
t ∈ [, ], then by (.) we have

s–f
(
a + b


)
≤ f (a) + f (b)

s + 
. (.)

Combining (.) and (.), we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)

(s + )(s + )(s + )

{∣∣f ′′(a)
∣∣ + (s + )(s + )

∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣f ′′(b)

∣∣}

≤ (b – a)

(s + )(s + )(s + )

{∣∣f ′′(a)
∣∣ + (s + )(s + )–s

f (a) + f (b)
s + 

+
∣∣f ′′(b)

∣∣}

=
[ + (s + )–s](b – a)

(s + )(s + )(s + )
{∣∣f ′′(a)

∣∣ + ∣∣f ′′(b)
∣∣},

which proves inequality (.), and thus the proof is completed. �
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Corollary  In Theorem , if we choose s = , we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



{∣∣f ′′(a)
∣∣ + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣f ′′(b)

∣∣}

≤ (b – a)


{∣∣f ′′(a)

∣∣ + ∣∣f ′′(b)
∣∣}. (.)

The next theorem gives a new upper bound of the left Hadamard inequality for s-convex
mappings.

Theorem Let f : I ⊂ [,∞)→R be a differentiable mapping on I◦ such that f ′′ ∈ L[a,b],
where a,b ∈ I with a < b. If |f ′′|q is s-convex on [a,b], for some fixed s ∈ (, ] and q >  with

p +


q = , then the following inequality holds:

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

×
[(∣∣f ′′(a)

∣∣q +
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
q) 

q
+

(∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+
∣∣f ′′(b)

∣∣q)

q
]
. (.)

Proof Suppose that p > . From Lemma  and using the Hölder inequality, we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



[∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣dt

+
∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣dt
]

≤ (b – a)



(∫ 


tp dt

) 
p
(∫ 



∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt
) 

q

+
(b – a)



(∫ 


(t – )p dt

) 
p
(∫ 



∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt
) 

q
.

Because |f ′′|q is s-convex, we have
∫ 



∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt ≤ 
s + 

{∣∣f ′′(a)
∣∣q +

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q}

and

∫ 



∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt ≤ 
s + 

{∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+
∣∣f ′′(b)

∣∣q}.
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By a simple computation,

∫ 


tp dt =


p + 

and

∫ 


(t – )p dt =

∫ 


( – t)p dt =


p + 

.

Therefore, we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

×
[(∣∣f ′′(a)

∣∣q +
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
q) 

q
+

(∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+
∣∣f ′′(b)

∣∣q)

q
]
.

This completes the proof. �

Corollary  Let f : I ⊂ [,∞) →R be a differentiablemapping on I◦ such that f ′′ ∈ L[a,b],
where a,b ∈ I with a < b. If |f ′′|q is s-convex on [a,b], for some fixed s ∈ (, ] and q >  with

p +


q = , then the following inequality holds:

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

× {


–s
q +

(
–s + s + 

) 
q
}[∣∣f ′′(a)

∣∣ + ∣∣f ′′(b)
∣∣].

Proof We consider inequality (.), and since |f ′′|q is s-convex on [a,b], then by (.) we
have

s–f
(
a + b


)
≤ f (a) + f (b)

s + 
.

Therefore

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

× [({
–s + s + 

}∣∣f ′′(a)
∣∣q + –s

∣∣f ′′(b)
∣∣q) 

q

+
(
–s

∣∣f ′′(a)
∣∣q + {

–s + s + 
}∣∣f ′′(b)

∣∣q) 
q
]
.
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We let a = (–s + s + )|f ′′(a)|q, b = –s|f ′′(b)|q, a = –s|f ′′(a)|q and b = (–s + s +
)|f ′′(b)|q. Here,  < /q <  for q > . Using the fact

n∑
i=

(ai + bi)r ≤
n∑
i=

ari +
n∑
i=

bri

for  < r < , a,a, . . . ,an ≥  and b,b, . . . ,bn ≥ , we obtain the inequalities

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

× [({
–s + s + 

}∣∣f ′′(a)
∣∣q + –s

∣∣f ′′(b)
∣∣q) 

q

+
(
–s

∣∣f ′′(a)
∣∣q + {

–s + s + 
}∣∣f ′′(b)

∣∣q) 
q
]

≤ (b – a)



(


p + 

) 
p
(


s + 

) 
q

× {


–s
q +

(
–s + s + 

) 
q
}[∣∣f ′′(a)

∣∣ + ∣∣f ′′(b)
∣∣]. �

Theorem Let f : I ⊂ [,∞)→R be a differentiable mapping on I◦ such that f ′′ ∈ L[a,b],
where a,b ∈ I with a < b. If |f ′′|q, q ≥  is s-convex on [a,b], for some fixed s ∈ (, ], then
the following inequality holds:

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(



) 
p
{(


(s + )(s + )(s + )

∣∣f ′′(a)
∣∣q + 

s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q) 

q

+
(


s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+


(s + )(s + )(s + )
∣∣f ′′(b)

∣∣q)

q
}
.

Proof Suppose that p ≥ . From Lemma  and using the power mean inequality, we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



[∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣dt

+
∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣dt
]

≤ (b – a)



(∫ 


t dt

) 
p
(∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt
) 

q

+
(b – a)



(∫ 


(t – ) dt

) 
p
(∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt
) 

q
.
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Because |f ′′|q is s-convex, we have
∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt ≤ 
(s + )(s + )(s + )

∣∣f ′′(a)
∣∣q + 

s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

and

∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt

≤ 
s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+


(s + )(s + )(s + )
∣∣f ′′(b)

∣∣q.

Therefore, we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(



) 
p
{(


(s + )(s + )(s + )

∣∣f ′′(a)
∣∣q + 

s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q) 

q

+
(


s + 

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q

+


(s + )(s + )(s + )
∣∣f ′′(b)

∣∣q)

q
}
. �

Corollary  In Theorem , if we choose s = , we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)



(



) 
q
{( |f ′′(a)|q


+

∣∣∣∣f ′′
(
a + b


)∣∣∣∣
q) 

q

+
(∣∣∣∣f ′′

(
a + b


)∣∣∣∣
q

+
|f ′′(b)|q



) 
q
}
. (.)

Now, we give the following Hadamard-type inequality for s-concave mappings.

Theorem  Let f : I ⊂ [,∞)→R be a differentiable mapping on I◦ such that f ′′ ∈ L[a,b],
where a,b ∈ I with a < b. If |f ′′|q is s-concave on [a,b], for some fixed s ∈ (, ] and q > with

p +


q = , then the following inequality holds:

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)




s–
q

(p + )/p

{∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
}
.

Proof From Lemma  and using the Hölder inequality for q >  and 
p +


q = , we obtain

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



[∫ 


t

∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣dt +

∫ 


(t – )

∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣dt
]
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≤ (b – a)



(∫ 


tp dt

) 
p
(∫ 



∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt
) 

q

+
(b – a)



(∫ 


(t – )p dt

) 
p
(∫ 



∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt
) 

q
. (.)

Since |f ′′|q is s-concave, using inequality (.), we have
∫ 



∣∣∣∣f ′′
(
t
a + b


+ ( – t)a
)∣∣∣∣

q

dt ≤ s–
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
q

(.)

and
∫ 



∣∣∣∣f ′′
(
tb + ( – t)

a + b


)∣∣∣∣
q

dt ≤ s–
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
q

. (.)

From (.)-(.), we get

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣

≤ (b – a)




s–
q

(p + )/p

{∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
}
,

which completes the proof. �

Corollary  In Theorem , if we choose s =  and 
 < ( 

p+ )

p < , p > , we have

∣∣∣∣f
(
a + b


)
–


b – a

∫ b

a
f (x)dx

∣∣∣∣
≤ (b – a)



{∣∣∣∣f ′′
(
a + b


)∣∣∣∣ +
∣∣∣∣f ′′

(
a + b


)∣∣∣∣
}
. (.)

3 Applications to special means
We now consider the means for arbitrary real numbers α, β (α �= β). We take:
() Arithmetic mean:

A(α,β) =
α + β


, α,β ∈ R

+;

() Logarithmic mean:

L(α,β) =
α – β

ln |α| – ln |β| , |α| �= |β|,α,β �= ,α,β ∈ R
+;

Generalized log-mean:

Ln(α,β) =
[

βn+ – αn+

(n + )(β – α)

] 
n
, n ∈ Z\{–, },α,β ∈R

+.

Now, using the results of Section , we give some applications to special means of real
numbers.
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Proposition  Let  < a < b and s ∈ (, ). Then we have

∣∣As(a,b) – Lss(a,b)
∣∣ ≤ |s(s – )|(b – a)



{
as– + 

(
a + b


)s–

+ bs–
}
.

Proof The assertion follows from (.) applied to the s-convex function in the second
sense f : [, ] → [, ], f (x) = xs. �

Proposition  Let  < a < b and s ∈ (, ). Then we have

∣∣As(a,b) – Lss(a,b)
∣∣ ≤ |s(s – )|(b – a)



(



)q{[
aq(s–)


+

(
a + b


)q(s–)] 
q

+
[(

a + b


)q(s–)

+
bq(s–)



] 
q
}
.

Proof The assertion follows from (.) applied to the s-convex function in the second
sense f : [, ] → [, ], f (x) = xs. �

Proposition  Let  < a < b and p > . Then we have

∣∣As(a,b) – Lss(a,b)
∣∣ ≤ (b – a)

{


(a + b)
+


(a + b)

}
.

Proof The inequality follows from (.) applied to the concave function in the second
sense f : [a;b]→ R, f (x) = lnx. The details are omitted. �
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