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Abstract
In this note, we give some refinements of Fischer-type determinantal inequalities for
accretive-dissipative matrices which are due to Lin (Linear Algebra Appl.
438:2808-2812, 2013) and Ikramov (J. Math. Sci. (N.Y.) 121:2458-2464, 2004).
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1 Introduction
Let Mn(C) be the space of complex n × n matrices. For any A ∈ Mn(C), the conjugate
transpose of A is denoted by A∗. A ∈ Mn(C) is said to be accretive-dissipative if it has the
Hermitian decomposition

A = B + iC, B = B∗,C = C∗, (.)

where bothmatrices B and C are positive definite. For simplicity, letA, B,C be partitioned
as

(
A A

A A

)
=

(
B B

B∗
 B

)
+ i

(
C C

C∗
 C

)
(.)

such that the diagonal blocks A and A are of order k and l (k > , l >  and k + l = n),
respectively, and letm =min{k, l}.
If B = In in (.), then an accretive-dissipative matrix A ∈ Mn(C) is called a Buckley ma-

trix.
If A ∈Mn(C) is partitioned as

(
A A

A A

)
,

where A is a nonsingular submatrix, then the matrix A/A := A – AA–
A is called

the Schur complement of the submatrix A in A. For a nonsingular matrix A, its condition
number is denoted by κ(A) :=

√
λmax(A∗A)
λmin(A∗A) which is the ratio of largest and smallest singular

values of A. For Hermitian matrices B,C ∈ Mn(C), we write B ≥ C if B – C is positive-
semidefinite.
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IfA ∈Mn(C) is positive definite and partitioned as in (.), then the famous Fischer-type
determinantal inequality is proved [, p.]:

detA≤ detA detA. (.)

If A ∈ Mn(C) is an accretive-dissipative matrix and partitioned as in (.), Ikramov []
first proved the determinantal inequality for A:

|detA| ≤ m|detA||detA|. (.)

Very recently, Lin [, Theorem ] got a stronger result than (.) as follows.
If A ∈Mn(C) is an accretive-dissipative matrix, then

|detA| ≤ 

m|detA||detA|. (.)

For Buckley matrices, the stronger bound was obtained by Ikramov []:

|detA| ≤
(
 +

√




)m

|detA||detA|. (.)

The purpose of this paper is to give refinements of (.) and (.). Our main results can
be stated as follows.

Theorem  Let A ∈Mn(C) be accretive-dissipative and partitioned as in (.). Then

|detA| ≤ 

m

(
 +

(
 – κ

 + κ

))m

|detA||detA|, (.)

where κ is the maximum of the condition numbers of B and C.

Because of m
 ( + ( κ–

κ+ )
)m ≤  

m, inequality (.) is a refinement of inequality (.).

Theorem  Let A ∈Mn(C) be a Buckley matrix and partitioned as in (.). Then

|detA| ≤
(
d + d

√
 + d + 


)m
 |detA||detA|, (.)

where κ is the condition number of C and d = ( κ–
κ+ )

 ∈ [, ].

It is clear that inequality (.) improves (.). In fact, since the function

f (x) =
(
x + x

√
 + x + 


)m


is increasing for x ∈ [, ], thus we have

f (d) =
(
d + d

√
 + d + 


)m
 ≤ f () =

(√
 + 


)m

,

which implies that (.) is a refinement of (.).
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2 Proofs of main results
To achieve the proofs of Theorem  and Theorem , we need the following lemmas.

Lemma  [, Property ] Let A ∈ Mn(C) be accretive-dissipative and partitioned as
in (.). Then A/A := A –AA–

A, the Schur complement of A in A is also accretive-
dissipative.

Lemma  [, Lemma ] Let A ∈Mn(C) be accretive-dissipative and partitioned as in (.).
Then A– = E – iF with E = (B +CB–C)– and F = (C + BC–B)–.

Lemma  [, Lemma ] Let A,A ∈ Mn(C) be accretive-dissipative matrices and let

A = B + iC, A = B + iC

be the Hermitian decompositions of these matrices. If

B ≤ B, C ≤ C,

then

|detA| ≤ |detA|. (.)

Lemma  [, Lemma ] Let B,C ∈Mn(C) be positive definite. Then

∣∣det(B + iC)
∣∣ ≤ det(B +C) ≤ 

n

∣∣det(B + iC)

∣∣. (.)

Lemma  [, ()] Let A ∈Mn(C) be positive definite. Then

AA–
A ≤

(
λ – λn

λ + λn

)

A, (.)

where λ and λn are the largest and the smallest eigenvalues of A.

Lemma  [, Lemma .] Let B,C ∈Mn(C) be Hermitian and assume that B > . Then

B +CB–C ≥ C. (.)

Remark  A stronger inequality than (.) was given in Lin [, Lemma .]: Let A >  and
any Hermitian B. Then A�(BA–B) ≥ B.

In what follows, we give the proofs of Theorem  and Theorem .

Proof of Theorem  By Lemma , we obtain

A/A = A –AA–
A

= B + iC –
(
B∗
 + iC∗


)
(B + iC)–(B + iC)

= B + iC –
(
B∗
 + iC∗


)
(Ek – iFk)(B + iC).
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Furthermore, we have

Ek =
(
B +CB–

C
)–, Fk =

(
C + BC–

 B
)–,

where Ek and Fk are positive definite.
By Lemma  and the operator reverse monotonicity of the inverse, we get

Ek ≤ 

C–
 , Fk ≤ 


B–
 . (.)

SetA/A = R+ iSwith R = R∗, S = S∗. By Lemma , it is easy to know thatR, S are positive
definite. A simple calculation shows

R = B – B∗
EkB +C∗

EkC – B∗
FkC –C∗

FkB,

S = C + B∗
FkB –C∗

FkC –C∗
EkB – B∗

EkC.

By the inequalities

(
B∗
 ±C∗


)
Fk(B ±C) ≥ ,

(
B∗
 ±C∗


)
Ek(B ±C)≥ ,

it can be proved that

±(
B∗
FkC +C∗

FkB
) ≤ B∗

FkB +C∗
FkC,

±(
C∗
EkB + B∗

EkC
) ≤ B∗

EkB +C∗
EkC.

Thus

R + S ≤ B + B∗
FkB +C∗

 + C∗
EkC. (.)

Since B, C are positive definite, we have by Lemma 

BB–
B

∗
 ≤

(
λ – λn

λ + λn

)

B, CC–
C

∗
 ≤

(
λ′
 – λ′

n
λ′
 + λ′

n

)

C. (.)

By (.), it is easy to know that

B∗
B

–
 B ≤

(
λ – λn

λ + λn

)

B, C∗
C

–
 C ≤

(
λ′
 – λ′

n
λ′
 + λ′

n

)

C. (.)

In (.) and (.), λ and λn (λ′
 and λ′

n) are the largest and the smallest eigenvalues of B
(C), respectively.
Note that f (x) = ( x–x+ )

m (m ≥ ) is increasing for x ∈ [,∞). Without loss of generality,
assumem = l. Then we have

|detA/A| = |detR + iS|
≤ det(R + S) (by Lemma )
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≤ det
(
B + B∗

FkB +C + C∗
EkC

)
(by (.))

≤ det
(
B + B∗

B
–
 B +C +C∗

C
–
 C

)
(by (.))

≤ det

(
B +C +

(
λ – λn

λ + λn

)

B +
(

λ′
 – λ′

n
λ′
 + λ′

n

)

C

)
(by (.))

= det

(
B +C +

( λ
λn

– 
λ
λn

+ 

)

B +
( λ′


λ′
n
– 

λ′


λ′
n
+ 

)

C

)

≤
(
 +

(
κ – 
κ + 

))m

det(B +C)

≤ 
m


(
 +

(
κ – 
κ + 

))m∣∣det(B + iC)
∣∣ (by Lemma )

= 
m


(
 +

(
κ – 
κ + 

))m

|detA|,

where κ =max( λ
λn
, λ′


λ′
n
) ≥ , i.e., the maximum of the condition numbers of B and C.

By noting

|detA| = |detA|
∣∣det(A/A)

∣∣,
the proof is completed. �

Remark  In fact, a reverse direction to the inequality of Theorem  has been given in
Lin [, Theorem .].

Proof of Theorem  The proof is similar to Theorem . By Lemma , we obtain

A/A = A –AA–
A

= Il + iC –C∗
(Ik + iC)–C

= Il + iC +C∗
(Ek – iFk)C

with

Ek =
(
Ik +C


)–, Fk =

(
C +C–


)–.

By Lemma  and the operator reverse monotonicity of the inverse, we get

Ek ≤ 

C–
 , Fk ≤ 


Ik . (.)

Set A/A = R + iS with R = R∗, S = S∗. By Lemma , it is easy to know that R and S are
positive definite. A simple calculation shows

R = Il +C∗
EkC,

S = C –C∗
FkC,
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where Fk is positive definite. Therefore

S ≤ C.

By (.), we have

R ≤ Il +


C∗
C

–
 C.

As C is positive definite, we get by (.)

C∗
C

–
 C ≤

(
λ′
 – λ′

n
λ′
 + λ′

n

)

C, (.)

where λ′
, λ′

n are the largest and the smallest eigenvalues of C. So we have

R ≤ Il +



(
λ′
 – λ′

n
λ′
 + λ′

n

)

C.

Without loss of generality, assumem = l. Thus we get

|detA/A| = |detR + iS|

≤ det

(
Il +




(
λ′
 – λ′

n
λ′
 + λ′

n

)

C + iC

)
(by Lemma )

= det

(
Il +




( λ′


λ′
n
– 

λ′


λ′
n
+ 

)

C + iC

)

= det

(
Il +




(
κ – 
κ + 

)

C + iC

)
,

where κ = λ′


λ′
n
.

Let γ ≥ γ ≥ · · · ≥ γl be the eigenvalues of C and we denote d = ( κ–
κ+ )

. Then it is easy
to know that

|detA/A| ≤
∣∣∣∣det

(
Il +




(
κ – 
κ + 

)

C + iC

)∣∣∣∣ (.)

=
l∏
j=

∣∣∣∣
(
 +



dγj

)
+ iγj

∣∣∣∣ (.)

=
l∏
j=

[(
 +



dγj

)

+ γ 
j

] 

. (.)

On the other hand,

|detA| =
∣∣det(I + iC)

∣∣ = l∏
j=

(
 + γ 

j
) 
 . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/316
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By (.) and (.), we have

|detA| = |detA|
∣∣det(A/A)

∣∣
=

|det(A/A)|
|detA| |detA||detA|

≤
∏l

j=[( +

dγj) + γ 

j ]

∏l

j=( + γ 
j )




|detA||detA|.

By noting

max
x≥

( + d
x)

 + x

 + x
=
d + d

√
 + d + 


,  ≤ d ≤ ,

the proof is completed. �
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