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1 Introduction
ACAT() space plays a fundamental role in various areas ofmathematics (see Bridson and
Haefliger [], Burago et al. [], Gromov []). Moreover, there are applications in biology
and computer science as well [, ]. Ametric space X is a CAT() space if it is geodesically
connected and if every geodesic triangle in X is at least as ‘thin’ as its comparison triangle
in the Euclidean plane. It is well known that any complete, simply connected Riemannian
manifold having non-positive sectional curvature is a CAT() space. The complex Hilbert
ball with a hyperbolic metric is a CAT() space (see []). Other examples include pre-
Hilbert spaces, R-trees (see []) and Euclidean buildings (see []).
Fixed point theory in a CAT() space has been first studied by Kirk (see [, ]). He

showed that every nonexpansive mapping defined on a bounded closed convex subset
of a complete CAT() space always has a fixed point. Since then the fixed point theory in
a CAT() space has been rapidly developed and a lot of papers have appeared (see, e.g.,
[–]).
The Noor iteration (see []) is defined by x ∈ K and

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTxn,

yn = ( – βn)xn + βnTzn,

xn+ = ( – αn)xn + αnTyn

(.)

for all n ≥ , where {αn}, {βn} and {γn} are sequences in [, ]. If we take βn = γn =  for all
n, (.) reduces to the Mann iteration (see []), and we take γn =  for all n, (.) reduces
to the Ishikawa iteration (see []).
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The new two-step iteration (see []) is defined by x ∈ K and

⎧⎨
⎩
yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)yn + αnTyn
(.)

for all n ≥ , where {αn} and {βn} are sequences in [, ].
Recently, Phuengrattana and Suantai (see []) defined the SP-iteration as follows:

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTxn,

yn = ( – βn)zn + βnTzn,

xn+ = ( – αn)yn + αnTyn

(.)

for all n ≥ , where x ∈ K , {αn}, {βn} and {γn} are sequences in [, ]. They showed that
theMann, Ishikawa, Noor and SP-iterations are equivalent and the SP-iteration converges
better than the others for the class of continuous and nondecreasing functions. Clearly,
the new two-step and Mann iterations are special cases of the SP-iteration.
Now, we apply SP-iteration (.) in a CAT() space for nonexpansive mappings as fol-

lows:
⎧⎪⎨
⎪⎩
zn = ( – γn)xn ⊕ γnTxn,
yn = ( – βn)zn ⊕ βnTzn,
xn+ = ( – αn)yn ⊕ αnTyn

(.)

for all n ≥ , where K is a nonempty convex subset of a CAT() space, x ∈ K , {αn}, {βn}
and {γn} are sequences in [, ].
In this paper, we study the SP-iteration for a nonexpansive mapping in a CAT() space.

This paper contains three sections. In Section , we first collect some known preliminaries
and lemmas that will be used in the proofs of our main theorems. In Section , we give
the main results which are related to the strong and �-convergence theorems of the SP-
iteration in a CAT() space. It is worth mentioning that our results in a CAT() space can
be applied to any CAT(k) space with k ≤  since any CAT(k) space is a CAT(k′) space for
every k′ ≥ k (see [], p.).

2 Preliminaries and lemmas
Let us recall some definitions and known results in the existing literature on this concept.
Let K be a nonempty subset of a CAT() space X and let T : K → K be a mapping.

A point x ∈ K is called a fixed point of T if Tx = x. We will denote the set of fixed points
of T by F(T). The mapping T is said to be nonexpansive if

d(Tx,Ty) ≤ d(x, y) for all x, y ∈ K .

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or more briefly,
a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() =
x, c(l) = y and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image of c is called a geodesic (ormetric) segment joining x and y. When it
is unique, this geodesic is denoted by [x, y]. The space (X,d) is said to be a geodesic space
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if every two points of X are joined by a geodesic, and X is said to be a uniquely geodesic
space if there is exactly one geodesic joining x to y for each x, y ∈ X.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points

in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for the geodesic triangle �(x,x,x) in (X,d) is a triangle
�(x,x,x) = �(x,x,x) in the Euclidean planeR such that dR (xi,xj) = d(xi,xj) for i, j ∈
{, , }.
A geodesic metric space is said to be a CAT() space [] if all geodesic triangles of ap-

propriate size satisfy the following comparison axiom.
CAT(): Let � be a geodesic triangle in X and let � be a comparison triangle for �.

Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d(x, y) ≤ dR (x, y).

Finally, we observe that if x, y, y are points of a CAT() space and if y is the midpoint
of the segment [y, y], then the CAT() inequality implies

d(x, y) ≤ 

d(x, y) +



d(x, y) –



d(y, y). (.)

The equality holds for the Euclideanmetric. In fact (see [], p.), a geodesicmetric space
is a CAT() space if and only if it satisfies inequality (.) (which is known as the CN
inequality of Bruhat and Tits []).
The following lemmas can be found in [].

Lemma  ([], Lemma .) Let X be a CAT() space. Then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + t d(y, z)

for all t ∈ [, ] and x, y, z ∈ X.

Lemma  ([], Lemma .) Let X be a CAT() space. Then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + t d(y, z) – t( – t)d(x, y)

for all t ∈ [, ] and x, y, z ∈ X.

Now, we recall some definitions.
Let X be a complete CAT() space and let {xn} be a bounded sequence in X. For x ∈ X,

set

r
(
x, {xn}

)
= limsup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
.
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The asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
It is known that in a complete CAT() space, A({xn}) consists of exactly one point ([],

Proposition ). Also, every CAT() space has the Opial property, i.e., if {xn} is a sequence
in K and �- limn→∞ xn = x, then for each y(�= x) ∈ K ,

lim sup
n→∞

d(xn,x) < lim sup
n→∞

d(xn, y).

Definition  ([], Definition .) A sequence {xn} in a CAT() space X is said to be
�-convergent to x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}. In this case, we write �- limn→∞ xn = x and x is called the �-limit of {xn}.

The notion of �-convergence in a general metric space was introduced by Lim []. Re-
cently, Kirk and Panyanak [] used the concept of�-convergence introduced by Lim []
to prove on theCAT() space analogous of some Banach space results which involve weak
convergence. Further, Dhompongsa and Panyanak [] obtained�-convergence theorems
for the Picard, Mann and Ishikawa iterations in a CAT() space.

Lemma  ([], Lemma .)
(i) Every bounded sequence in a complete CAT() space always has a �-convergent

subsequence.
(ii) Let K be a nonempty closed convex subset of a complete CAT() space and let {xn}

be a bounded sequence in K . Then the asymptotic center of {xn} is in K .
(iii) Let K be a nonempty closed convex subset of a complete CAT() space X and let

f : K → X be a nonexpansive mapping. Then the conditions, {xn} �-converges to x
and d(xn, f (xn)) → , imply x ∈ K and f (x) = x.

3 Main results
We start with proving the lemma for later use in this section.

Lemma  Let K be a nonempty closed convex subset of a complete CAT() space X and
let T : K → K be a nonexpansive mapping with F(T) �= ∅. Let {αn} and {βn} be sequences in
[, ], {γn} be a sequence in [ε,  – ε] for some ε ∈ (, ) and {xn} be defined by the iteration
process (.). Then

(i) limn→∞ d(xn,x�) exists for all x� ∈ F(T).
(ii) limn→∞ d(xn,Txn) = .

Proof (i) Let x� ∈ F(T). By (.) and Lemma , we have

d
(
zn,x�

)
= d

(
( – γn)xn ⊕ γnTxn,x�

)
≤ ( – γn)d

(
xn,x�

)
+ γn d

(
Txn,x�

)
≤ ( – γn)d

(
xn,x�

)
+ γn d

(
xn,x�

)
= d

(
xn,x�

)
. (.)
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Also, we get

d
(
yn,x�

)
= d

(
( – βn)zn ⊕ βnTzn,x�

)
≤ ( – βn)d

(
zn,x�

)
+ βn d

(
Tzn,x�

)
≤ ( – βn)d

(
zn,x�

)
+ βn d

(
zn,x�

)
= d

(
zn,x�

)
. (.)

Then we obtain

d
(
yn,x�

) ≤ d
(
xn,x�

)
. (.)

Using (.) and Lemma , we have

d
(
xn+,x�

)
= d

(
( – αn)yn ⊕ αnTyn,x�

)
≤ ( – αn)d

(
yn,x�

)
+ αn d

(
Tyn,x�

)
≤ ( – αn)d

(
yn,x�

)
+ αn d

(
yn,x�

)
= d

(
yn,x�

)
. (.)

Combining (.) and (.), we get

d
(
xn+,x�

) ≤ d
(
xn,x�

)
.

This implies that the sequence {d(xn,x�)} is nonincreasing and bounded below, and so
limn→∞ d(xn,x�) exists for all x� ∈ F(T). This completes the proof of part (i).
(ii) Let

lim
n→∞d

(
xn,x�

)
= c. (.)

Firstly, we will prove that limn→∞ d(yn,x�) = c. By (.) and (.),

lim inf
n→∞ d

(
yn,x�

) ≥ c.

Also, from (.) and (.),

lim sup
n→∞

d
(
yn,x�

) ≤ c.

Then we obtain

lim
n→∞d

(
yn,x�

)
= c. (.)

Secondly, we will prove that limn→∞ d(zn,x�) = c. From (.) and (.), we have

d
(
yn,x�

) ≤ d
(
zn,x�

) ≤ d
(
xn,x�

)
.
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This gives

lim
n→∞d

(
zn,x�

)
= c. (.)

Next, by Lemma ,

d
(
zn,x�

) = d
(
( – γn)xn ⊕ γnTxn,x�

)
≤ ( – γn)d

(
xn,x�

) + γn d
(
Txn,x�

) – γn( – γn)d(xn,Txn)

≤ ( – γn)d
(
xn,x�

) + γn d
(
xn,x�

) – γn( – γn)d(xn,Txn)

= d
(
xn,x�

) – γn( – γn)d(xn,Txn).

Thus,

γn( – γn)d(xn,Txn) ≤ d
(
xn,x�

) – d
(
zn,x�

),
so that

d(xn,Txn) ≤ 
γn( – γn)

[
d
(
xn,x�

) – d
(
zn,x�

)]

≤ 
ε

[
d
(
xn,x�

) – d
(
zn,x�

)].
Now using (.) and (.), lim sup

n→∞
d(xn,Txn) ≤  and hence,

lim
n→∞d(xn,Txn) = .

This completes the proof of part (ii). �

Now, we give the �-convergence theorem of the SP-iteration on a CAT() space.

Theorem  Let X, K , T , {αn}, {βn}, {γn}, {xn} satisfy the hypotheses of Lemma . Then the
sequence {xn} �-converges to a fixed point of T .

Proof By Lemma , we have limn→∞ d(xn,Txn) = . Also, limn→∞ d(xn,x�) exists for all
x� ∈ F(T). Thus {xn} is bounded. Let W�(xn) = ∪A({un}), where the union is taken over
all subsequences {un} of {xn}. We claim that W�(xn) ⊆ F(T). Let u ∈ W�(xn). Then there
exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma (i) and (ii), there
exists a subsequence {vn} of {un} such that �- limn→∞ vn = v ∈ K . By Lemma (iii), v ∈
F(T). By Lemma (i), limn→∞ d(xn, v) exists. Now, we claim that u = v. On the contrary,
assume that u �= v. Then, by the uniqueness of asymptotic centers, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,u)

≤ lim sup
n→∞

d(un,u)

< lim sup
n→∞

d(un, v)
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= lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v). (.)

This is a contradiction. Thus u = v ∈ F(T) andW�(xn) ⊆ F(T). To show that the sequence
{xn} �-converges to a fixed point of T , we will show that W�(xn) consists of exactly one
point. Let {un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. We have
already seen that u = v and v ∈ F(T). Finally, we claim that x = v. If not, then the exis-
tence of limn→∞ d(xn, v) and the uniqueness of asymptotic centers imply that there exists
a contradiction as (.) and hence x = v ∈ F(T). Therefore, W�(xn) = {x}. As a result, the
sequence {xn} �-converges to a fixed point of T . �

We give the strong convergence theorem on a CAT() space as follows.

Theorem  Let X, K , T , {αn}, {βn}, {γn}, {xn} satisfy the hypotheses of Lemma . Then the
sequence {xn} converges strongly to a fixed point of T if and only if

lim inf
n→∞ d

(
xn,F(T)

)
= ,

where d(x,F(T)) = inf{d(x,p) : p ∈ F(T)}.

Proof Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn,F(T)) = . As
proved in Lemma (i),

d
(
xn+,x�

) ≤ d
(
xn,x�

)

for all x� ∈ F(T). This implies that

d
(
xn+,F(T)

) ≤ d
(
xn,F(T)

)
.

Since the sequence {d(xn,F(T))} is nonincreasing and bounded below, limn→∞ d(xn,F(T))
exists. Thus, by the hypothesis, limn→∞ d(xn,F(T)) = .
Next, we will show that {xn} is a Cauchy sequence in K . Let ε >  be arbitrarily chosen.

Since limn→∞ d(xn,F(T)) = , there exists a constant n such that for all n≥ n, we have

d
(
xn,F(T)

)
<

ε


.

In particular, inf{d(xn ,p) : p ∈ F(T)} < ε
 . Thus there exists p

� ∈ F(T) such that

d
(
xn ,p

�
)
<

ε


.

Now, for allm,n≥ n, we have

d(xn+m,xn) ≤ d
(
xn+m,p�

)
+ d

(
xn,p�

)
≤ d

(
xn ,p

�
)

< 
(

ε



)
= ε.
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Hence {xn} is a Cauchy sequence in a closed subset K of a complete CAT() space X, it
must be convergent to a point in K . Let limn→∞ xn = x� ∈ K . Now, limn→∞ d(xn,F(T)) = 
gives that d(x�,F(T)) =  and the closedness of F(T) forces x� to be in F(T). Therefore, the
sequence {xn} converges strongly to a fixed point x� of T . �

Senter and Dotson [] introduced Condition (I) as follows.

Definition  ([], p.) A mapping T : K → K is said to satisfy Condition (I) if there
exists a nondecreasing function f : [,∞) → [,∞) with f () =  and f (r) >  for all r > 
such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
for all x ∈ K .

With respect to the above definition, we have the following theorem.

Theorem  Let X, K , {αn}, {βn}, {γn}, {xn} satisfy the hypotheses of Lemma  and let
T : K → K be a nonexpansive mapping satisfying Condition (I). Then the sequence {xn}
converges strongly to a fixed point of T .

Proof By Lemma (i), limn→∞ d(xn,x�) exists for all x� ∈ F(T). Let this limit be c, where
c≥ . If c = , there is nothing to prove. Suppose that c > . Now,

d
(
xn+,x�

) ≤ d
(
xn,x�

)

gives

inf
x�∈F(T)

d
(
xn+,x�

) ≤ inf
x�∈F(T)

d
(
xn,x�

)
,

which means that d(xn+,F(T)) ≤ d(xn,F(T)) and so limn→∞ d(xn,F(T)) exists. Also, by
Lemma (ii), we have limn→∞ d(xn,Txn) = . It follows from Condition (I) that

lim
n→∞ f

(
d
(
xn,F(T)

)) ≤ lim
n→∞d(xn,Txn) = .

That is,

lim
n→∞ f

(
d
(
xn,F(T)

))
= .

Since f : [,∞) → [,∞) is a nondecreasing function satisfying f () = , f (t) >  for all
t ∈ (,∞), therefore we obtain

lim
n→∞d

(
xn,F(T)

)
= .

The conclusion now follows from Theorem . �

It is worth noting that, in the case of a nonexpansive mapping, Condition (I) is weaker
than the compactness of K .
Since the SP-iteration reduces to the new two-step iteration when αn =  for all n ∈ N

and to theMann iteration when αn = βn =  for all n ∈N, we have the following corollaries.
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Corollary  Let X, K , T , {γn} satisfy the hypotheses of Lemma  and let {xn} be defined by
the iteration process (.).Then the sequence {xn} �-converges to a fixed point of T . Further,
if {xn} is defined by the iteration process (.), the sequence {xn} �-converges to a fixed point
of T .

Corollary  Let X, K , {γn} satisfy the hypotheses of Lemma , let T : K → K be a nonex-
pansive mapping satisfying Condition (I) and let {xn} be defined by the iteration process
(.). Then the sequence {xn} converges strongly to a fixed point of T . Also, if {xn} is defined
by the iteration process (.), the sequence {xn} converges strongly to a fixed point of T .

Conclusions
The SP-iteration reduces to the new two-step andMann iterations. Then these results pre-
sented in this paper extend and generalize some works for CAT() space in the literature.
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