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Abstract
Higher-order strict minimizers with respect to a nonlinear function for a
multiobjective optimization problem are introduced and are characterized via
sufficient optimality conditions and higher-order mixed saddle points of a
vector-valued partial Lagrangian. To this aim, we present certain generalizations of
higher-order strong invexity. A mixed dual is proposed and corresponding duality
results are obtained. An equivalent optimization problem for the given multiobjective
optimization problem is introduced. It is shown that the problem of finding
higher-order strict minimizers with respect to a nonlinear function for the given
problem reduces to that of finding strict minimizers in the ordinary sense for an
equivalent problem.
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1 Introduction
Multiobjective optimization problems occupy an important place in the theory of op-
timization. Several solution concepts for multiobjective optimization problem have ap-
peared in the literature viz. efficiency, weak efficiency and proper efficiency [, ]. The
concept of higher-order local minimizer plays an important role in the convergence anal-
ysis of iterative numerical methods [] and in stability results []. For a scalar optimization
problem, Auslender [] derived necessary and sufficient optimality conditions for isolated
local minima of order  and , andWard [] presented the notion of strict local minimum
of orderm. Jimenez [] extended the idea of Ward [] to define the notion of a strict local
efficient solution of order m for a vector minimization problem. Bhatia [] extended the
notion of Ward to define the higher-order global strict minimizer for a multiobjective op-
timization problem. Sahay and Bhatia [] introduced the notion of a strict minimizer of
orderm with respect to a nonlinear function for a scalar optimization problem.
In this paper, we move a step ahead in this direction and introduce the concept of a

higher-order strict minimizer with respect to a nonlinear function for a multiobjective
optimization problem. For the purpose of studying this new solution concept, we present
certain generalizations of higher-order strong invexity []. Sufficient optimality conditions
characterizing this solution concept are obtained. A mixed dual is proposed and well-
known duality results are established. A partial vector-valued Lagrangian for the multi-
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objective optimization problem is introduced. Higher-order mixed saddle points for the
partial Lagrangian with respect to a nonlinear function are shown to be equivalent to the
higher-order strict minimizers with respect to the same function. Further, an equivalent
optimization problem that enables one to find the higher-order strict minimizers for a
given multiobjective optimization problem in a simpler manner is presented.

2 Higher-order global strict minimizers
In this paper, we study the following multiobjective optimization problem:

(MOP) minimize f (x) =
(
f(x), . . . , fp(x)

)
subject to gj(x)≤ , j = , , . . . ,q,

where fi, gj : X → R, i = , , . . . ,p, j = , , . . . ,q are real-valued differentiable functions and
X is a non-empty open subset of Rn endowed with the Euclidean norm ‖ · ‖.
We denote by S = {x ∈ X : gj(x) ≤ , j = , , . . . ,q} the set of all feasible solutions for

(MOP) and let I(x) = {j : gj(x) = } be the set of indices corresponding to active constraints.
Let B(x, ε) = {x ∈ Rn : ‖x – x‖ < ε} denote an open ball with centre x and radius ε.

Definition . ([]) A point x ∈ S is a strict local minimizer for (MOP) if there exists an
ε >  such that

f (x)≮ f
(
x

)
for all x ∈ B

(
x, ε

) ∩ S,

that is, there exists no x ∈ B(x, ε)∩ S such that

f (x) < f
(
x

)
.

Definition . ([]) Let m ≥  be an integer. A point x ∈ S is a local strict minimizer of
orderm for (MOP) if there exists an ε >  and a constant c ∈ intRp

+ such that

f (x)≮ f
(
x

)
+ c

∥∥x – x
∥∥m for all x ∈ B

(
x, ε

) ∩ S.

The notion of a local strict minimizer reduces to the global sense if the ball B(x, ε) is
replaced by the whole space Rn.

The following example illustrates that in some cases x may fail to be a strict minimizer
in the sense of the above definition.

Example . Let S = [, ] and f (x) = (x, sin x), then x =  is not a strict minimizer of
order  in the sense of Definition ., since for any c = (c, c) ∈ intR

+, there exists an x
satisfying  < x < c/ ,  < sin x

x < c such that f (x) < f (x) + c‖x – x‖.

The above example motivates us to introduce a new notion of a strict minimizer of
order m with respect to a nonlinear function for the multiobjective optimization prob-
lem (MOP).
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Definition . Letm ≥  be an integer. A point x ∈ S is a local strict minimizer of order
m for (MOP) with respect to a nonlinear function ψ : S × S → Rn, if there exists an ε > 
and a constant c ∈ intRp

+ such that

f (x)≮ f
(
x

)
+ c

∥∥ψ
(
x,x

)∥∥m for all x ∈ B
(
x, ε

) ∩ S.

Definition . Let m ≥  be an integer. A point x ∈ S is a strict minimizer of order m
for (MOP) with respect to a nonlinear function ψ : S × S → Rn if there exists a constant
c ∈ intRp

+ such that

f (x)≮ f
(
x

)
+ c

∥∥ψ
(
x,x

)∥∥m for all x ∈ S.

Remark . The function ψ plays an important role in the notion of a strict minimizer
defined above. For the problem considered in Example ., x =  failed to be a strict min-
imizer of order  in the usual sense; however, it is important to observe here that x =  is
a strict minimizer of order  with respect to ψ(x,x) = sin x – sin x for c = (, ).

Remark . The study of higher-order minimizers is pertinent as these minimizers play
an important role in the convergence analysis of iterative numerical methods and in sta-
bility results. These minimizers are often exactly those satisfying an mth derivative test
[, ]. It is clear that any strict minimizer of orderm is also a strict minimizer for (MOP).
Converse of this statement may not be true. If x is a strict minimizer of order m with
respect to a nonlinear function ψ , then it is also a strict minimizer of order j with respect
to the same ψ for all j >m.

We recall that [] a set S ⊆ Rn is invex with respect to η if there exists η : S × S → Rn

such that for all x, y ∈ S and all λ ∈ [, ], y+λη(x, y) ∈ S. Throughout this paper, we assume
S ⊆ X to be an invex set.

Definition . ([]) A differentiable function f : X → R is said to be strongly invex of
order m ≥  with respect to η, ψ on S if there exists a constant c >  such that for all
x, y ∈ S,

f (x) – f (y) ≥ ∇f (y)tη(x, y) + c
∥∥ψ(x, y)

∥∥m.

Ifψ(x, y) = , then the above definition reduces to the notion of invexity. Ifψ(x, y) = x–y,
η(x, y) = x – y, the definition reduces to the definition of strong convexity of orderm [].

Remark . It is important to observe that there exist functions which are strongly invex
of orderm but are not strongly convex of any order. For example, let X = R, S = {(x,x) ∈
R :  ≤ x,x ≤ }, f (x) = x + x, η(x, y) = (–y, –y) and ψ(x, y) = (x/

√
 + y, ), where

x = (x,x)t and y = (y, y)t . Then, for all x, y ∈ S and λ ∈ [, ], we have y+λη(x, y) = (y(–
λ), y( – λ)) ∈ S, thus S is an invex set with respect to η. Clearly, f is strongly invex of
orderm ≥  with respect to η and ψ as defined above for  < c≤ . However, on choosing
x = (, /) and y = (, /), it is evident that f is not strongly convex of any order for any
c > .
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Remark . Every strongly invex function of order m with respect to η and ψ is invex.
However, converse of this statement may not be true [].

We now present the following generalizations of higher-order strong invexity.

Definition . A differentiable function f : X → R is said to be strongly pseudoinvex type
I of ordermwith respect to η,ψ on S if there exists a constant c >  such that for all x, y ∈ S,

∇f (y)tη(x, y)≥  implies f (x)≥ f (y) + c
∥∥ψ(x, y)

∥∥m,

or equivalently, f (x) < f (y) + c‖ψ(x, y)‖m implies ∇f (y)tη(x, y) < .

Remark . Strong invexity of order m with respect to η and ψ implies strong pseu-
doinvexity type I of order m with respect to the same η and ψ . However, converse is not
true in general. For example, let X = R, S = (,π/], f (x) =  + cosx, η(x, y) = (cos y–cosx)

sin y and
ψ(x, y) = cosx – cos y, then for c = /m–, f is strongly pseudoinvex type I of order m ≥ 
with respect to η and ψ on S but is not strongly invex of any orderm with respect to these
η and ψ .

Definition . A differentiable function f : X → R is said to be strongly pseudoinvex type
II of ordermwith respect to η,ψ on S if there exists a constant c >  such that for all x, y ∈ S,

∇f (y)tη(x, y) + c
∥∥ψ(x, y)

∥∥m ≥  implies f (x)≥ f (y).

Definition . A differentiable function f : X → R is said to be strongly quasiinvex type I
of ordermwith respect to η, ψ on S if there exists a constant c >  such that for all x, y ∈ S,

f (x)≤ f (y) implies ∇f (y)tη(x, y) + c
∥∥ψ(x, y)

∥∥m ≤ .

Definition . Adifferentiable function f : X → R is said to be strongly quasiinvex type II
of ordermwith respect to η, ψ on S if there exists a constant c >  such that for all x, y ∈ S,

f (x)≤ f (y) + c
∥∥ψ(x, y)

∥∥m implies ∇f (y)tη(x, y)≤ .

The relations between these classes of functions and some related classes are summa-
rized in Figure  (note: it is important to observe that there is no relation between type II
functions and corresponding notions of type I functions presented in Figure ).

3 Local-global property and optimality conditions
Theorem . Suppose x ∈ S is a strict local minimizer of order m with respect to ψ for
(MOP) and the functions fi : X → R, i = , , . . . ,p are strongly pseudoinvex type I of order
m with respect to the same η and ψ on S. Then x is a strict minimizer of order m with
respect to the same ψ for (MOP).

Proof Since x ∈ S is a local strict minimizer of order m with respect to ψ for (MOP),
therefore there exists an ε >  and a constant c = (c, . . . , cp) ∈ intRp

+ such that

fi(x)≮ fi
(
x

)
+ ci

∥∥ψ
(
x,x

)∥∥m, i = , , . . . ,p, for all x ∈ B
(
x, ε

) ∩ S. (.)
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Figure 1 Relations between newly defined classes and some well-known classes.

Let us suppose that x is not a strict minimizer of order m with respect to ψ for (MOP),
then for all ci > , i = , , . . . ,p, there exists some z ∈ S such that

fi(z) < fi
(
x

)
+ ci

∥∥ψ
(
z,x

)∥∥, i = , , . . . ,p.

For x ∈ S and sufficiently small λ ∈ (, ) and η : S × S → Rn, we have x + λη(z,x) ∈
B(x, ε)∩ S.
As fi, i = , , . . . ,p are strongly pseudoinvex type I of orderm on S with respect to η and

ψ for z,x ∈ S, it follows from the set of above inequalities that

∇fi
(
x

)t
η
(
z,x

)
< , i = , , . . . ,p.

Thus, there exists σ >  such that for  < λ ≤ σ , fi(x + λη(z,x)) < fi(x), i = , , . . . ,p,
which implies that for all ci > , i = , , . . . ,p and for every nonlinear function ψ , we have

fi
(
x + λη

(
z,x

))
< fi

(
x

)
+ ci

∥∥ψ
(
x + λη

(
z,x

)
,x

)∥∥m, i = , , . . . ,p;  < λ ≤ σ .

This contradicts (.). �

Theorem. (Fritz John type necessary optimality conditions) Suppose x is a strict min-
imizer of order m with respect to a nonlinear function ψ : S × S → Rn for (MOP) and the
functions fi, i = , , . . . ,p, gj, j = , , . . . ,q are differentiable at x. Then there exists λ

i ≥ ,
i = , , . . . ,p, μ

j ≥ , j = , , . . . ,q such that

p∑
i=

λ
i ∇fi

(
x

)
+

q∑
j=

μ
j ∇gj

(
x

)
= ,

μ
j gj

(
x

)
= , j = , , . . . ,q,(

λ,μ) �= .

Definition . (MOP) is said to satisfy Slater’s constraint qualification (SCQ) at x if there
exists x̄ ∈ X such that gj(x̄) < , j ∈ I(x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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Theorem . (Karush-Kuhn-Tucker type necessary optimality conditions) Suppose x

is a strict minimizer of order m with respect to a nonlinear function ψ : S × S → Rn for
(MOP) and the functions fi, i = , , . . . ,p, gj, j = , , . . . ,q are differentiable at x. Assume
that (SCQ) holds at x, then there exist λ

i ≥ , i = , , . . . ,p, μ
j ≥ , j = , , . . . ,q such that

p∑
i=

λ
i ∇fi

(
x

)
+

q∑
j=

μ
j ∇gj

(
x

)
= , (.)

μ
j gj

(
x

)
= , j = , , . . . ,q, (.)

λt · e = , where e = (, . . . , ) ∈ Rp. (.)

Theorem . (Sufficient optimality conditions) Let the conditions (.)-(.) be satisfied
at x ∈ S. Suppose fi, i = , , . . . ,p are strongly pseudoinvex type I of order m and gj, j ∈ I(x)
are strongly quasiinvex type I of order m with respect to the same η and ψ on S. Then x is
a strict minimizer of order m with respect to ψ for (MOP).

Proof On the contrary, suppose that x ∈ S is not a strict minimizer of order m with re-
spect to ψ for (MOP). Then, for c̄i > , i = , , . . . ,p, there exists some x̄ ∈ S such that

fi(x̄) < fi
(
x

)
+ c̄i

∥∥ψ
(
x̄,x

)∥∥m, i = , , . . . ,p. (.)

As fi, i = , , . . . ,p are strongly pseudoinvex type I of order m with respect to η and ψon
S, therefore, from (.), we have

∇fi
(
x

)t
η
(
x̄,x

)
< , i = , , . . . ,p.

As λ
i ≥ , i = , , . . . ,p, and λt · e = , the above system of inequalities reduces to

p∑
i=

λ
i ∇fi

(
x

)t
η
(
x̄,x

)
< . (.)

Now, for x̄ ∈ S, gj(x̄) ≤ gj(x), j ∈ I(x). As gj, j ∈ I(x), is strongly quasiinvex type I of order
mwith respect to the same η andψ on S, it follows that there exist constantsβj > , j ∈ I(x)
such that

∇gj
(
x

)t
η
(
x̄,x

)
+ βj

∥∥ψ
(
x̄,x

)∥∥m ≤ .

Further, since μ
j ≥ , j ∈ I(x), it follows from the above relation that

∑
j∈I(x)

μ
j ∇gj

(
x

)t
η
(
x̄,x

)
+

∑
j∈I(x)

μ
j βj

∥∥ψ
(
x̄,x

)∥∥m ≤ .

As μ
j = , for j /∈ I(x), we have

q∑
j=

μ
j ∇gj

(
x

)t
η
(
x̄,x

)
+

q∑
j=

μ
j βj

∥∥ψ
(
x̄,x

)∥∥m ≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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Adding (.) and (.), we obtain

ηt(x̄,x)
[ p∑

i=

λ
i ∇fi

(
x

)
+

q∑
j=

μ
j ∇gj

(
x

)]
+

q∑
j=

μ
j βj

∥∥ψ
(
x̄,x

)∥∥m < .

On using (.), we have
∑q

j= μ

j βj‖ψ(x̄,x)‖m < , which is not possible. �

Remark . The result of the above theorem also holds under the conditions that fi, i =
, , . . . ,p are strongly invex of order m with respect to the same η and ψ and gj, j ∈ I(x)
are strongly quasiinvex type II of orderm with respect to the same η and ψ on S.

4 Duality
In this section, we develop duality relationship between (MOP) and its mixed dual (MD)
under the assumption of generalized strong invexity of ordermwith respect to a nonlinear
function.
Let the index set Q = {, , . . . ,q} be partitioned into two disjoint subsets J and K such

that Q = J ∪K . The mixed dual for (MOP) is given by

(MD) maximize f (u) +μJ gJ (u)e

subject to
p∑
i=

λi∇fi(u) +
q∑
j=

μj∇gj(u) = , (.)

μjgj(u) ≥ , j ∈ K , (.)

λi ≥ , i = , , . . . ,p, λt · e = , e = (, . . . , ) ∈ Rp,

μj ≥ , j = , , . . . ,q.
(.)

Theorem . (Weak duality) Let x and (u,λ,μ) be feasible for (MOP) and (MD) respec-
tively. Suppose fi + μJ gJ , i = , , . . . ,p are strongly pseudoinvex type I of order m and μjgj,
j ∈ K is strongly quasiinvex type II of order m with respect to the same η and ψ , then there
exists c ∈ intRp

+ such that

f (x)≮ f (u) +μJ gJ (u)e + c
∥∥ψ(x,u)

∥∥m.

Proof Suppose on the contrary, for every c ∈ intRp
+, we have

f (x) < f (u) +μJ gJ (u)e + c
∥∥ψ(x,u)

∥∥m

or

fi(x) < fi(u) +μJ gJ (u) + ci
∥∥ψ(x,u)

∥∥m, i = , , . . . ,p.

Since x is feasible for (MOP) and μj ≥ , therefore for i = , , . . . ,p, we have

fi(x) +μJ gJ (x) < fi(u) +μJ gJ (u) + ci
∥∥ψ(x,u)

∥∥m.

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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Using strong pseudoinvexity type I of orderm for fi +μJ gJ , i = , , . . . ,p, with respect to η

and ψ , we have

ηt(x,u)
[
∇fi(u) +

∑
j∈J

μj∇gj(u)
]
< , i = , , . . . ,p.

The above set of inequalities along with λi ≥ , i = , , . . . ,p and (.) yields

ηt(x,u)

[ p∑
i=

λi∇fi(u) +
∑
j∈J

μj∇gj(u)

]
< . (.)

Now, for x ∈ S, gj(x) ≤ , and since μj ≥ , we have μjgj(x) ≤ , j ∈ K . Moreover, (u,λ,μ)
is feasible for (MD), therefore

μjgj(x)≤ μjgj(u), j ∈ K

or

μjgj(x)≤ μjgj(u) + βj
∥∥ψ(x,u)

∥∥m for βj > , j ∈ K .

Sinceμjgj, j ∈ K is strongly quasiinvex type II of ordermwith respect to η andψ , therefore

ηt(x,u)μj∇gj(u) ≤ , j ∈ K ,

which further implies that

ηt(x,u)
∑
j∈K

μj∇gj(u) ≤ . (.)

Adding (.) and (.), we have

ηt(x,u)

[ p∑
i=

λi∇fi(u) +
q∑
j=

μj∇gj(u)

]
< .

This contradicts (.). �

Theorem . (Strong duality) Suppose x is a strict minimizer of order m with respect
to a nonlinear function ψ : S × S → Rn for (MOP). Assume that (SCQ) holds at x, then
there exist λ

i ≥ , i = , , . . . ,p and μ
j ≥ , j = , , . . . ,q such that (x,λ,μ) is feasible for

(MD). Further, if the conditions of Theorem . hold, then (x,λ,μ) is a strict maximizer
of order m for (MD).

Proof The proof follows from Theorem . and Theorem .. �

5 Partial vector Lagrangian andmixed saddle point
The saddle point of the Lagrangian is always a global minimizer for the inequality con-
strained minimization problem. Due to the significance of this result in economics and

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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optimization theory, several researchers [, , ] have obtained the equivalence between
the saddle point and optimal solutions of an optimization problem under various con-
ditions on the functions involved. In this section, we define higher-order mixed saddle
points with respect to a nonlinear function ψ : S× S → Rn for a partial vector-valued La-
grangian of amultiobjective optimization problem. The equivalence of these saddle points
and the higher-order strict minimizers with respect to the same function ψ for (MOP) is
established under generalized higher-order strong invexity conditions on the functions
involved.
Let Q = {, , . . . ,q}, J ⊆Q and J =Q\J, |J| denote the cardinality of index set J.

Definition . Vector-valued partial Lagrangian function L : S × R|J|
+ → Rp for (MOP) is

defined as

L(x,μJ ) =
{
L(x,μJ ), . . . ,Lp(x,μJ )

}
,

where Li(x,μJ ) = fi(x) +
∑

j∈J μjgj(x), i = , , . . . ,p, x ∈ S, μJ ∈ R|J|
+ .

We now introduce the notion of mixed saddle points of order m with respect to a non-
linear function for (MOP) as follows.

Definition . A vector (x,μ
J ) ∈ S × R|J|

+ is said to be a mixed saddle point of order
m with respect to a nonlinear function ψ for the partial vector-valued Lagrangian L for
(MOP) if there exists c ∈ intRp

+ such that

L
(
x,μ

J

)
≮ L

(
x,μJ

)
for all μJ ∈ R|J|

+ , (.)

L
(
x,μ

J

)
≮ L

(
x,μ

J

)
+ c

∥∥ψ
(
x,x

)∥∥m for all x ∈ S. (.)

Theorem . Suppose that x is a strict minimizer of order m with respect to a nonlinear
function ψ for (MOP) and (SCQ) holds at x. Further, if fi +

∑
j∈J μ

j gj, i = , , . . . ,p are
strongly pseudoinvex type I of order m and μ

j gj, j ∈ J is strongly quasiinvex type I of order
mwith respect to η andψ on S, then (x,μ

J ) is amixed saddle point of order mwith respect
to ψ for the partial Lagrangian.

Proof Suppose x is a strict minimizer of order m with respect to ψ for (MOP) and the
constraint qualification holds at x. Therefore, by Theorem ., there exist λ

i ≥ , i =
, , . . . ,p and μ

j ≥ , j = , , . . . ,q such that conditions (.)-(.) hold at x.
On the contrary, suppose that (x,μ

J ) is not a mixed saddle point of any order for the
partial vector Lagrangian function L for (MOP). Then, for all c ∈ intRp

+, there exists some
x̄ ∈ S such that

L
(
x̄,μ

J

)
< L

(
x,μ

J

)
+ c

∥∥ψ
(
x̄,x

)∥∥m,

that is,

Li
(
x̄,μ

J

)
< Li

(
x,μ

J

)
+ ci

∥∥ψ
(
x̄,x

)∥∥m, i = , , . . . ,p

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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or

fi(x̄) +
∑
j∈J

μ
j gj(x̄) < fi

(
x

)
+

∑
j∈J

μ
j gj

(
x

)
+ ci

∥∥ψ
(
x̄,x

)∥∥m, i = , , . . . ,p.

Since fi +
∑

j∈J μ
j gj, i = , , . . . ,p are strongly pseudoinvex type I of order m with respect

to η and ψ , it follows from the above inequalities that

ηt(x̄,x)[∇fi
(
x

)
+

∑
j∈J

μ
j ∇gj

(
x

)]
< , i = , , . . . ,p. (.)

Now, for x̄ ∈ S and μ
j ≥ , j ∈ J , it follows that μ

j gj(x̄)≤ . On using (.), we have

μ
j gj(x̄) ≤ μ

j gj
(
x

)
, j ∈ J.

Since μ
j gj, j ∈ J is strongly quasiinvex type I of order m on S with respect to η and ψ ,

there exist constants βj > , j ∈ J such that

ηt(x̄,x)μ
j ∇gj

(
x

)
+ βj

∥∥ψ
(
x̄,x

)∥∥m ≤ , j ∈ J.

As βj > ,it follows that

ηt(x̄,x)∑
j∈J

μ
j ∇gj

(
x

) ≤ . (.)

Adding (.) and (.) and using λ
i ≥ , i = , , . . . ,p, λt · e = , we obtain

ηt(x̄,x)
[ p∑

i=

λ
i ∇fi

(
x

)
+

q∑
j=

μ
j ∇gj

(
x

)]
< ,

which contradicts (.). Therefore,

L
(
x̄,μ

J

)
≮ L

(
x,μ

J

)
+ c

∥∥ψ
(
x̄,x

)∥∥m.

Again, since (.) holds and x ∈ S, we have

fi
(
x

)
+

∑
j∈J

μjgj
(
x

) ≤ fi
(
x

)
+

∑
j∈J

μ
j gj

(
x

)
.

This implies L(x,μ
J )≮ L(x,μJ ).

Thus, (x,μ
J ) is a mixed saddle point of order m with respect to a nonlinear function

ψ for the partial vector Lagrangian. �

Theorem . If (x,μ
J ) is a mixed saddle point of order m with respect to a nonlinear

function ψ for the partial vector Lagrangian, then x is a strict minimizer of order m with
respect to the same ψ for (MOP).
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Proof From the hypothesis L(x,μ
J )≮ L(x,μJ ), we have

∑
j∈J

(
μ
j –μj

)
gj
(
x

)
≮ .

Taking μj = , j ∈ J in the above inequality, we obtain

∑
j∈J

μ
j gj

(
x

) ≥ .

For x ∈ S and the fact that μ
J ∈ R|J|

+ , we have

∑
j∈J

μ
j gj

(
x

) ≤ .

From above two inequalities, we have

∑
j∈J

μ
j gj

(
x

)
= . (.)

Contrary to the result of the theorem, assume that x is not a strict minimizer of orderm
with respect to ψ for (MOP). Then, for every c ∈ intRp

+, there exists an x̄ ∈ S such that

f (x̄) < f
(
x

)
+ c

∥∥ψ
(
x̄,x

)∥∥m. (.)

For any μ
J ∈ R|J|

+ and x̄ ∈ S, we have μ
JgJ (x̄) ≤ .

Now,

L
(
x̄,μ

J

)
– c

∥∥ψ
(
x̄,x

)∥∥m = f (x̄) +μ
JgJ (x̄) – c

∥∥ψ
(
x̄,x

)∥∥m

< f
(
x

)
+

∑
j∈J

μ
j gj

(
x

)
(using (.) and (.))

= L
(
x,μ

J

)
.

Therefore, L(x̄,μ
J ) – c‖ψ(x̄,x)‖m < L(x,μ

J ), which contradicts (.). �

6 An equivalent vector optimization problem
In this section, we introduce an equivalent vector optimization problem (EVP) corre-
sponding to (MOP) and prove that the problem of finding strict minimizers of order m
with respect to a nonlinear function ψ : S × S → Rn for (MOP) reduces simply to the
problem of finding strict minimizers for (EVP).
Let x be any given feasible solution in (MOP). We consider the following equivalent

vector optimization problem (EVP) given by

minimize
(
f
(
x

)
+∇f

(
x

)
η
(
x,x

)
, . . . , fp

(
x

)
+∇fp

(
x

)
η
(
x,x

))
subject to gj

(
x

)
+∇gj

(
x

)
η
(
x,x

) ≤ , j = , , . . . ,q,

http://www.journalofinequalitiesandapplications.com/content/2013/1/31
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where fi, i = , , . . . ,p and gj, j = , , . . . ,q are defined as in (MOP). η : S× S → Rn satisfies
Assumption C [].
LetD(x) = {x ∈ X : gj(x)+∇gj(x)η(x,x) ≤ , j = , , . . . ,q} denote the set of all feasible

solutions of (EVP).

Theorem . Let x be a strict minimizer of order m with respect to a nonlinear function
ψ : S×S → Rn for (MOP).Assume that Slater’s constraint qualification (SCQ) holds at x,
then x is a strict minimizer in the equivalent vector optimization problem (EVP).

Proof Assume x is a strict minimizer of order m with respect to a nonlinear function
ψ : S × S → Rn for (MOP) and (SCQ) is satisfied at x; therefore, necessary optimality
conditions (.)-(.) hold. Suppose x is not a strictminimizer in (EVP). Then there exists
x̄ feasible for (EVP) such that for i = , , . . . ,p,

fi
(
x

)
+∇fi

(
x

)
η
(
x̄,x

)
< fi

(
x

)
+∇fi

(
x

)
η
(
x,x

)
. (.)

Since η satisfies Assumption C, therefore η(x,x) =  for x ∈ S, the above set of inequal-
ities reduces to

∇fi
(
x

)
η
(
x̄,x

)
< , i = , , . . . ,p.

Using λ
i ≥ , i = , , . . . ,p, we have

p∑
i=

λ
i ∇fi

(
x

)
η
(
x̄,x

)
< . (.)

Since μj ≥ , j = , , . . . ,q, therefore for x̄ ∈D(x), it follows that

μ
j gj

(
x

)
+μ

j ∇gj
(
x

)
η
(
x̄,x

) ≤ , j = , , . . . ,q.

Using (.), we have

q∑
j=

μ
j ∇gj

(
x

)
η
(
x̄,x

) ≤ . (.)

Adding (.) and (.), we get a contradiction to (.). �

Theorem . Let x be a strict minimizer in the equivalent vector optimization problem
(EVP). Further assume that fi, i = , , . . . ,p are strongly pseudoinvex type I of order m and
gj, j = , , . . . ,q are strongly invex of order m with respect to the same η and ψ , then x is a
strict minimizer of order m in the original vector optimization problem (MOP).

Proof Clearly, x is feasible for (MOP). First, we will show that any feasible point in (MOP)
is also a feasible point in (EVP), that is, we will show that S ⊆ D(x). Let x ∈ S and gj,
j = , , . . . ,q be strongly invex of order m with respect to η and ψ on X. Therefore, for
some kj > , j = , , . . . ,q, we have

gj(x) – gj
(
x

) ≥ ∇gj
(
x

)
η
(
x,x

)
+ kj

∥∥ψ
(
x,x

)∥∥m, j = , , . . . ,q.
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As x ∈ S and kj > , j = , , . . . ,q, the above inequalities lead to

 ≥ gj
(
x

)
+∇gj

(
x

)
η
(
x,x

)
, j = , , . . . ,q,

that is, x ∈D(x). Hence, S ⊆D(x).
Now, suppose that x is not a strict minimizer of order m in (MOP). Then, for βi > ,

i = , , . . . ,p, there exists some x̄ ∈ S such that

fi(x̄) < fi(x) + βi
∥∥ψ(x̄,x)

∥∥m, i = , , . . . ,p. (.)

Since fi, i = , , . . . ,p are strongly pseudoinvex type I of order m with respect to η and ψ

on S, we have

∇fi
(
x

)t
η
(
x̄,x

)
< , i = , , . . . ,p.

Since η(x,x) = , we can rewrite the above set of inequalities as

fi
(
x

)
+∇fi

(
x

)
η
(
x̄,x

)
< fi

(
x

)
+∇fi

(
x

)
η
(
x,x

)
, i = , , . . . ,p, (.)

which contradicts that x is a strict minimizer for (EVP). �
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