RESEARCH

Open Access

Optimality conditions of *E*-convex programming for an *E*-differentiable function

Abd El-Monem A Megahed^{1,2*}, Hebaa G Gomma³, Ebrahim A Youness⁴ and Abou-Zaid H El-Banna⁴

*Correspondence: a_megahed15@yahoo.com ¹Department of Mathematics, Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt ²Current address: Mathematics Department, College of Science, Mainstein Mainstei

Majmaah University, Majmaah, KSA Full list of author information is available at the end of the article

Abstract

In this paper we introduce a new definition of an *E*-differentiable convex function, which transforms a non-differentiable function to a differentiable function under an operator $E: \mathbb{R}^n \to \mathbb{R}^n$. By this definition, we can apply Kuhn-Tucker and Fritz-John conditions for obtaining the optimal solution of mathematical programming with a non-differentiable function.

Keywords: *E*-convex set; *E*-convex function; semi *E*-convex function; *E*-differentiable function

1 Introduction

The concepts of *E*-convex sets and an *E*-convex function have been introduced by Youness in [1, 2], and they have some important applications in various branches of mathematical sciences. Youness in [1] introduced a class of sets and functions which is called *E*-convex sets and *E*-convex functions by relaxing the definition of convex sets and convex functions. This kind of generalized convexity is based on the effect of an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ on the sets and the domain of the definition of functions. Also, in [2] Youness discussed the optimality criteria of *E*-convex programming. Xiusu Chen [3] introduced a new concept of semi *E*-convex functions and discussed its properties. Yu-Ru Syan and Stanelty [4] introduced some properties of an *E*-convex function, while Emam and Youness in [5] introduced a new class of *E*-convex sets and *E*-convex functions, which are called strongly *E*-convex sets and strongly *E*-convex functions, by taking the images of two points *x* and *y* under an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ besides the two points themselves. In [6] Megahed *et al.* introduced a combined interactive approach for solving *E*-convex multiobjective nonlinear programming. Also, in [7, 8] Iqbal and *et al.* introduced geodesic *E*-convex sets, geodesic *E*-convex and some properties of geodesic semi-*E*-convex functions.

In this paper we present the concept of an *E*-differentiable convex function which transforms a non-differentiable convex function to a differentiable function under an operator $E: \mathbb{R}^n \to \mathbb{R}^n$, for which we can apply the Fritz-John and Kuhn-Tucker conditions [9, 10] to find a solution of mathematical programming with a non-differentiable function.

In the following, we present the definitions of *E*-convex sets, *E*-convex functions, and semi *E*-convex functions.

Definition 1 [1] A set *M* is said to be an *E*-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ if and only if $\lambda E(x) + (1 - \lambda)E(y) \in M$ for each $x, y \in M$ and $\lambda \in [0, 1]$.

© 2013 Megahed et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Definition 2 [1] A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be an *E*-convex function with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ on an *E*-convex set $M \subseteq \mathbb{R}^n$ if and only if

$$f(\lambda E(x) + (1-\lambda)E(y)) \le \lambda(f \circ E)(x) + (1-\lambda)(f \circ E)(y)$$

for each $x, y \in M$ and $\lambda \in [0, 1]$.

Definition 3 [3] A real-valued function $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be semi *E*-convex function with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$ on *M* if *M* is an *E*-convex set and

$$f(\lambda E(x) + (1 - \lambda)E(y)) \le \lambda f(x) + (1 - \lambda)f(y)$$

for each $x, y \in M$ and $\lambda \in [0, 1]$.

Proposition 4 [1] 1- Let a set $M \subseteq \mathbb{R}^n$ be an E-convex set with respect to an operator E, $E : \mathbb{R}^n \to \mathbb{R}^n$, then $E(M) \subseteq M$.

2- If E(M) is a convex set and $E(M) \subseteq M$, then M is an E-convex set.

3- If M_1 and M_2 are *E*-convex sets with respect to *E*, then $M_1 \cap M_2$ is an *E*-convex set with respect to *E*.

Lemma 5 [1] Let $M \subseteq \mathbb{R}^n$ be an E_1 - and E_2 -convex set, then M is an $(E_1 \circ E_2)$ - and $(E_2 \circ E_1)$ -convex set.

Lemma 6 [1] Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map and let $M_1, M_2 \subset \mathbb{R}^n$ be *E*-convex sets, then $M_1 + M_2$ is an *E*-convex set.

Definition 7 [1] Let $S \subset \mathbb{R}^n \times \mathbb{R}$ and $E : \mathbb{R}^n \to \mathbb{R}^n$, we say that the set *S* is *E*-convex if for each $(x, \alpha), (y, \beta) \in S$ and each $\lambda \in [0, 1]$, we have

 $(\lambda E x + (1 - \lambda) E y, \lambda \alpha + (1 - \lambda) \beta) \in S.$

2 Generalized E-convex function

Definition 8 [1] Let $M \subseteq \mathbb{R}^n$ be an *E*-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$. A function $f : M \to \mathbb{R}$ is said to be a pseudo *E*-convex function if for each $x_1, x_2 \in M$ with $\nabla (f \circ E)(x_1)(x_2 - x_1) \ge 0$ implies $f(Ex_2) \ge f(Ex_1)$ or for all $x_1, x_2 \in M$ and $f(Ex_2) < f(Ex_1)$ implies $\nabla (f \circ E)(x_1)(x_2 - x_1) < 0$.

Definition 9 [1] Let $M \subseteq \mathbb{R}^n$ be an *E*-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$. A function $f : M \to \mathbb{R}$ is said to be a quasi-*E*-convex function if and only if

 $f(\lambda Ex + (1 - \lambda)Ey) \le \max\{(f \circ E)x, (f \circ E)y\}$

for each $x, y \in M$ and $\lambda \in [0, 1]$.

3 E-differentiable function

Definition 10 Let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be a non-differentiable function at \overline{x} and let $E : \mathbb{R}^n \to \mathbb{R}^n$ be an operator. A function f is said to be E-differentiable at \overline{x} if and only if $(f \circ E)$ is a differentiable function at \overline{x} and

$$(f \circ E)(x) = (f \circ E)(\overline{x}) + \nabla (f \circ E)(\overline{x})(x - \overline{x}) + ||x - \overline{x}|| \alpha(\overline{x}, x - \overline{x}),$$
$$\alpha(\overline{x}, x - \overline{x}) \to 0 \quad \text{as } x \to \overline{x}.$$

Example 11 Let f(x) = |x| be a non-differentiable function at the point x = 0 and let $E : R \to R$ be an operator such that $E(x) = x^2$, then the function $(f \circ E)(x) = f(Ex) = x^2$ is a differentiable function at the point x = 0, and hence f is an E-differentiable function.

3.1 Problem formulation

Now, we formulate problems P and P_E , which have a non-differentiable function and an E-differentiable function, respectively.

Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be an operator, M be an E-convex set and f be an E-differentiable function. The problem P is defined as

$$P \begin{cases} \operatorname{Min} f(x), \\ \text{subject to } M = \{x : g_i(x) \le 0, i = 1, 2, \dots, m\}, \end{cases}$$

where *f* is a non-differentiable function, and the problem P_E is defined as

$$P_E \begin{cases} \operatorname{Min}(f \circ E)(x), \\ \text{subject to } M' = \{x : (g_i \circ E)(x) \le 0, i = 1, 2, \dots, m\}, \end{cases}$$

where f is an *E*-differentiable function.

Now, we will discuss the relationship between the solutions of problems P and P_E .

Lemma 12 [11] Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator and let $M' = \{x : (g_i \circ E)(x) \le 0, i = 1, 2, ..., m\}$. Then E(M') = M, where M and M' are feasible regions of problems P and P_E , respectively.

Theorem 13 Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator and let f be an Edifferentiable function. If f is non-differentiable at \overline{x} , and \overline{x} is an optimal solution of the problem P, then there exists $\overline{y} \in M'$ such that $\overline{x} = E(\overline{y})$ and \overline{y} is an optimal solution of the problem P_E .

Proof Let \overline{x} be an optimal solution of the problem *P*. From Lemma 12 there exists $\overline{y} \in M'$ such that $\overline{x} = E(\overline{y})$. Let \overline{y} be a not optimal solution of the problem P_E , then there is $\widehat{y} \in M'$ such that $(f \circ E)(\widehat{y}) \leq (f \circ E)(\overline{y})$. Also, there exists $\widehat{x} \in M$ such that $\widehat{x} = E(\widehat{y})$. Then $f(\widehat{x}) < f(\overline{x})$ contradicts the optimality of \overline{x} for the problem *P*. Hence the proof is complete.

Theorem 14 Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator, and let f be an Edifferentiable function and strictly quasi-E-convex. If \overline{x} is an optimal solution of the problem P, then there exists $\overline{y} \in M'$ such that $\overline{x} = E(\overline{y})$ and \overline{y} is an optimal solution of the problem P_E .

Proof Let \overline{x} be an optimal solution of the problem *P*. Then from Lemma 12 there is $\overline{y} \in M'$ such that $\overline{x} = E(\overline{y})$. Let \overline{y} be a not optimal solution of the problem P_E , then there is $\widehat{y} \in M'$ and also $\widehat{x} \in M$, $\widehat{x} = E(\widehat{y})$ such that $(f \circ E)(\widehat{y}) \leq (f \circ E)(\overline{y})$. Since *f* is strictly quasi-*E*-convex function, then

$$\begin{split} f\left(\lambda E(\overline{y}) + (1-\lambda)E(\widehat{y})\right) &< \max\left\{(f \circ E)(\overline{y}), (f \circ E)(\widehat{y})\right\} \\ &< \max\left\{f(\overline{x}), f(\widehat{x})\right\} \\ &< f(\overline{x}). \end{split}$$

Since *M* is an *E*-convex set and $E(M) \subset M$, then $\lambda E(\overline{y}) + (1 - \lambda)E(\widehat{y}) \in M$ contradicts the assumption that \overline{x} is a solution of the problem *P*, then there exists $\overline{y} \in M'$, a solution of the problem P_E , such that $\overline{x} = E(\overline{y})$.

Theorem 15 Let M be an E-convex set, $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator and $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be an E-differentiable function at \overline{x} . If there is a vector $d \subset \mathbb{R}^n$ such that $\nabla(f \circ E)(\overline{x})d < 0$, then there exists $\delta > 0$ such that

$$(f \circ E)(\overline{x} + \lambda d) < (f \circ E)(\overline{x}) \text{ for each } \lambda \in (0, \delta).$$

Proof Since *f* is an *E*-differentiable function at \overline{x} , then

$$(f \circ E)(\overline{x} + \lambda d) = (f \circ E)(\overline{x}) + \lambda \nabla (f \circ E)(\overline{x}) + \lambda \|d\|\alpha(\overline{x}, \lambda d),$$
$$\alpha(\overline{x}, \lambda d) \to 0 \quad \text{as } \lambda \to 0.$$

Since $\nabla (f \circ E)(\overline{x})d < 0$ and $\alpha(\overline{x}, \lambda d) \to 0$ as $\lambda \to 0$, then there exists $\delta > 0$ such that

$$\nabla (f \circ E)(\overline{x}) + ||d|| \alpha(\overline{x}, \lambda d) < 0$$
 for each $\lambda \in (0, \delta)$

and thus $(f \circ E)(\overline{x} + \lambda d) < (f \circ E)(\overline{x})$.

Corollary 16 Let M be an E-convex set, let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator, and let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be an E-differentiable and strictly E-convex function at \overline{x} . If \overline{x} is a local minimum of the function ($f \circ E$), then $\nabla(f \circ E)(\overline{x}) = 0$.

Proof Suppose that $\nabla(f \circ E)(\overline{x}) \neq 0$ and let $d = -\nabla(f \circ E)(\overline{x})$, then $\nabla(f \circ E)(\overline{x})d = -\|\nabla(f \circ E)(\overline{x})\|^2 < 0$. By Theorem 15 there exists $\delta > 0$ such that

 $(f \circ E)(\overline{x} + \lambda d) < (f \circ E)(\overline{x})$ for each $\lambda \in (0, \delta)$

contradicting the assumption that \overline{x} is a local minimum of $(f \circ E)(x)$, and thus $\nabla (f \circ E)(\overline{x}) = 0$.

Theorem 17 Let M be an E-convex set, $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator, and $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be twice E-differentiable and strictly E-convex function at \overline{x} . If \overline{x} is a local minimum of $(f \circ E)$, then $\nabla (f \circ E)(\overline{x}) = 0$ and the Hessian matrix $H(\overline{x}) = \nabla^2 (f \circ E)(\overline{x})$ is positive semidefinite. *Proof* Suppose that *d* is an arbitrary direction. Since *f* is a twice *E*-differentiable function at \overline{x} , then

$$(f \circ E)(\overline{x} + \lambda d) = (f \circ E)(\overline{x}) + \lambda \nabla (f \circ E)(\overline{x})d + \frac{1}{2}\lambda^2 d^t \nabla^2 (f \circ E)(\overline{x})d + \lambda^2 ||d||^2 \alpha(\overline{x}, \lambda d),$$

where $\alpha(\overline{x}, \lambda d) \rightarrow 0$ as $\lambda \rightarrow 0$.

From Corollary 16 we have $\nabla(f \circ E)(\overline{x}) = 0$, and

$$\frac{(f \circ E)(\overline{x} + \lambda d) - (f \circ E)(\overline{x})}{\lambda^2} = \frac{1}{2}d^t \nabla^2 (f \circ E)(\overline{x})d.$$

Since \overline{x} is a local minimum of $(f \circ E)$, then $(f \circ E)(\overline{x}) < (f \circ E)(\overline{x} + \lambda d)$, and

$$d^t \nabla^2 (f \circ E)(\overline{x}) d \ge 0$$
, *i.e.*, $H(\overline{x}) = \nabla^2 (f \circ E)(\overline{x})$ is positive semidefinite.

Example 18 Let $f(x, y) = x + 2y^2 - 2x^{\frac{1}{3}}$ be a non-differentiable function at (0, y), and let $E(x, y) = (x^3, y)$, then $(f \circ E)(x, y) = x^3 + 2y^2 - 2x$, and

$$\frac{\partial (f \circ E)}{\partial x} = 3x^2 - 2 = 0 \quad \text{implies} \quad x = \pm \sqrt{\frac{2}{3}},$$
$$\frac{\partial (f \circ E)}{\partial y} = 4y = 0 \quad \text{implies} \quad y = 0,$$
$$\frac{\partial^2 (f \circ E)}{\partial x^2} = 6x, \qquad \frac{\partial^2 (f \circ E)}{\partial y \partial x} = 0, \qquad \frac{\partial^2 (f \circ E)}{\partial y^2} = 4, \qquad \frac{\partial^2 (f \circ E)}{\partial x \partial y} = 0.$$

Then $(x_1, y_1) = (\sqrt{\frac{2}{3}}, 0)$ and $(x_2, y_2) = (-\sqrt{\frac{2}{3}}, 0)$ are extremum points of $(f \circ E)(x, y)$, and the Hessian matrix $H(\sqrt{\frac{2}{3}}, 0) = \begin{bmatrix} 6\sqrt{\frac{2}{3}} & 0 \\ 0 & 4 \end{bmatrix}$ is positive definite. And thus the point $(\sqrt{\frac{2}{3}}, 0)$ is a local minimum of the function $(f \circ E)(x, y)$, but the Hessian matrix $H(-\sqrt{\frac{2}{3}}, 0) = \begin{bmatrix} -6\sqrt{\frac{2}{3}} & 0 \\ 0 & 4 \end{bmatrix}$ is indefinite.

Theorem 19 Let M be an E-convex set, let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator, and let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be a twice E-differentiable and strictly E-convex function at \overline{x} . If $\nabla (f \circ E)(\overline{x}) = 0$ and the Hessian matrix $H(\overline{x}) = \nabla^2 (f \circ E)(\overline{x})$ is positive definite, then \overline{x} is a local minimum of $(f \circ E)$.

Proof Suppose that \overline{x} is not a local minimum of $(f \circ E)(x)$, and there exists a sequence $\{x_k\}$ is converging to \overline{x} such that $(f \circ E)(x_k) < (f \circ E)(\overline{x})$ for each k. Since $\nabla(f \circ E)(\overline{x}) = 0$, and f is twice E-differentiable at \overline{x} , then

$$\begin{split} (f \circ E)(x_k) &= (f \circ E)(\overline{x}) + \lambda \nabla (f \circ E)(\overline{x})(x_k - \overline{x}) \\ &+ \frac{1}{2}(x_k - \overline{x})^t \nabla^2 (f \circ E)(\overline{x})(x_k - \overline{x}) + \left\| (x_k - \overline{x}) \right\|^2 \alpha \left(\overline{x}, (x_k - \overline{x}) \right), \end{split}$$

where $\alpha(\overline{x}, (x_k - \overline{x})) \to 0$ as $k \to \infty$, and

$$\frac{1}{2}(x_k-\overline{x})^t\nabla^2(f\circ E)(\overline{x})(x_k-\overline{x}) + \left\|(x_k-\overline{x})\right\|^2\alpha\left(\overline{x},(x_k-\overline{x})\right) < 0 \quad \text{for each } k.$$

By dividing on $||(x_k - \overline{x})||^2$, and letting $d_k = \frac{(x_k - \overline{x})}{||(x_k - \overline{x})||}$, we get

$$\frac{1}{2}d_k^t\nabla^2(f\circ E)(\overline{x})d_k+\alpha\left(\overline{x},(x_k-\overline{x})\right)<0\quad\text{for each }k.$$

But $||d_k|| = 1$ for each k, and hence there exists an index set K such that $\{d_k\}_K \to d$, where ||d|| = 1. Considering this subsequence and the fact that $\alpha(\overline{x}, (x_k - \overline{x})) \to 0$ as $k \to \infty$, then $d^t \nabla^2 (f \circ E)(\overline{x})d < 0$. This contradicts the assumption that $H(\overline{x})$ is positive definite. Therefore \overline{x} is indeed a local minimum.

Example 20 Let $f(x, y) = x^{\frac{2}{3}} + y^2 - 1$ be a non-differentiable at the point (0, *y*), and let $E(x, y) = (x^3, y)$, then $(f \circ E)(x, y) = x^2 + y^2 - 1$

$$\frac{\partial (f \circ E)}{\partial x} = 2x, \qquad \frac{\partial^2 (f \circ E)}{\partial y \partial x} = 0, \qquad \frac{\partial^2 (f \circ E)}{\partial x^2} = 2,$$
$$\frac{\partial (f \circ E)}{\partial y} = 2y, \qquad \frac{\partial^2 (f \circ E)}{\partial x \partial y} = 0, \qquad \frac{\partial^2 (f \circ E)}{\partial y^2} = 2.$$

The necessary condition for \overline{x} is a local minimum of $(f \circ E)$ is $\nabla(f \circ E)(\overline{x}) = 0$, then $\overline{x} = (0,0)$, and the Hessian matrix $H(\overline{x})$

$$H = \begin{bmatrix} \frac{\partial^2(f \circ E)}{\partial x^2} & \frac{\partial^2(f \circ E)}{\partial y \partial x} \\ \frac{\partial^2(f \circ E)}{\partial x \partial y} & \frac{\partial^2(f \circ E)}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

is positive definite.

Example 21 Let $f(x, y) = x^{\frac{1}{3}} + y - 1$ be non-differentiable at the point (0, y), and let $E(x, y) = (x^3, y)$, then $(f \circ E)(x, y) = x + y - 1$.

Now, let $M = \{\lambda_1(0,0) + \lambda_2(0,3) + \lambda_3(1,2) + \lambda_4(1,0)\} \cup \{\lambda_1(0,0) + \lambda_2(0,-3) + \lambda_3(1,-2) + \lambda_4(1,0)\}, \sum_{i=1}^4 \lambda_i = 1, \lambda_i \ge 0$ be an *E*-convex set with respect to operator *E* (the feasible region is shown in Figure 1) and

$$\begin{aligned} f(0,0) &= -1, & (f \circ E)(0,0) = -1, & f(0,-3) = -4, & (f \circ E)(0,3) = -4, \\ f(1,2) &= 2, & (f \circ E)(1,2) = 2, & f(1,0) = 0, & (f \circ E)(1,0) = 0, \\ f(0,3) &= 2, & (f \circ E)(0,3) = 2, & f(1,-2) = -2, & (f \circ E)(1,2) = -2. \end{aligned}$$

Then $\overline{x} = (0, -3)$ is a solution of the problem P_E and $E(\overline{x}) = E(0, -3) = (0, -3)$ is a solution of the problem P.

Definition 22 Let *M* be a nonempty *E*-convex set in \mathbb{R}^n and let $E(\overline{x}) \in clM$. The cone of feasible direction of E(M) at $E(\overline{x})$ denoted by *D* is given by

$$D = \left\{ d : d \neq 0, E(\overline{x}) + \lambda d \in M \text{ for each } \lambda \in [0, \delta], \delta > 0 \right\}.$$

Lemma 23 Let M be an E-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$, and let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be E-differentiable at \overline{x} . If \overline{x} is a local minimum of the problem P_E , then

 $F_0 \cap D = \phi$, where $F_0 = \{d : \nabla (f \circ E)(\overline{x})d < 0\}$, and D is the cone of feasible direction of M at \overline{x} .

Proof Suppose that there exists a vector $d \in F_0 \cap D$. Then by Theorem 15, there exists δ_1 such that

$$(f \circ E)(\overline{x} + \lambda d) < (f \circ E)(\overline{x}) \quad \text{for each } \lambda \in (0, \delta_1).$$
(3.1)

By the definition of the cone of feasible direction, there exists δ_2 such that

$$E(\overline{x}) + \lambda d \in M \quad \text{for each } \lambda \in (0, \delta_2). \tag{3.2}$$

From 3.1 and 3.2 we have $(f \circ E)(\overline{x} + \lambda d) < (f \circ E)(\overline{x})$ for each $\lambda \in (0, \delta)$, where $\delta = \min\{\delta_1, \delta_2\}$, which contradicts the assumption that \overline{x} is a local optimal solution, then $F_0 \cap D = \phi$. \Box

Lemma 24 Let M be an open E-convex set with respect to an operator $E : \mathbb{R}^n \to \mathbb{R}^n$, let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be E-differentiable at \overline{x} and let $g_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m. Let \overline{x} be a feasible solution of the problem P_E and let $I = \{i : (g_i \circ E)(\overline{x}) = 0\}$. Furthermore, suppose that g_i for $i \in I$ is E-differentiable at \overline{x} and that g_i for $i \notin I$ is continuous at \overline{x} . If \overline{x} is a local optimal solution, then $F_0 \cap G_0 = \phi$, where

$$F_0 = \left\{ d : \nabla(f \circ E)(\overline{x}) d < 0 \right\},$$

$$G_0 = \left\{ d : \nabla(g_i \circ E)(\overline{x}) d < 0, \text{ for each } i \in I \right\}$$

and E is one-to-one and onto.

Proof Let $d \in G_0$. Since $E(\overline{x}) \in M$ and M is an open E-convex set, there exists a $\delta_1 > 0$ such that

$$E(\overline{x}) + \lambda d \in M \quad \text{for } \lambda \in (0, \delta_1).$$
(3.3)

Also, since $(g_i \circ E)(\overline{x}) < 0$ and since g_i is continuous at \overline{x} for $i \notin I$, there exists a $\delta_2 > 0$ such that

$$(g_i \circ E)(\overline{x} + \lambda d) < 0 \quad \text{for } \lambda \in (0, \delta_2) \text{ and for } i \notin I.$$
 (3.4)

Finally, since $d \in G_0$, $\nabla(g_i \circ E)(\overline{x})d < 0$ for each $i \in I$ and by Theorem 15, there exists $\delta_3 > 0$ such that

$$(g_i \circ E)(\overline{x} + \lambda d) < (g_i \circ E)(\overline{x}) \quad \text{for } \lambda \in (0, \delta_3) \text{ and } i \in I.$$
 (3.5)

From 3.3, 3.4 and 3.5, it is clear that points of the form $E(\overline{x}) + \lambda d$ are feasible to the problem P_E for each $\lambda \in (0, \delta)$, where $\delta = \min(\delta_1, \delta_2, \delta_3)$. Thus $d \in D$, where D is the cone of feasible direction of the feasible region at \overline{x} . We have shown that for $d \in G_0$ implies that $d \in D$, and hence $G_0 \subset D$. By Lemma 23, since \overline{x} is a local solution of the problem $P_E, F_0 \cap D = \phi$. It follows that $F_0 \cap G_0 = \phi$.

Theorem 25 (Fritz-John optimality conditions) Let M be an open E-convex set with respect to the one-to-one and onto operator $E : \mathbb{R}^n \to \mathbb{R}^n$, let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be Edifferentiable at \overline{x} and let $g_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m. Let \overline{x} be feasible solution of the problem P_E and let $I = \{i : (g_i \circ E)(\overline{x}) = 0\}$. Furthermore, suppose that g_i for $i \in I$ is differentiable at \overline{x} and that g_i for $i \notin I$ is continuous at \overline{x} . If \overline{x} is a local optimal solution, then there exist scalars u_0 and u_i for $i \in I$ such that

$$u_{\circ}\nabla(f \circ E)(\overline{x}) + \sum_{i \in I} u_i \nabla(g_i \circ E)(\overline{x}) = 0, \quad u_{\circ}, u_i \ge 0 \text{ for } i \in I,$$
$$(u_{\circ}, u_i) \neq (0, 0) \quad \text{for } i \in I$$

and $E(\overline{x})$ is a local solution of the problem P.

Proof Let \overline{x} be a local solution of the problem P_E , then there is no vector d such that $\nabla(f \circ E)(\overline{x})d < 0$ and $\nabla(g_i \circ E)(\overline{x})d < 0$. Let A be a matrix with rows $\nabla(f \circ E)(\overline{x})$ and $\nabla(g_i \circ E)(\overline{x})$. From Gordon's theorem [10], we have the system Ad < 0 is inconsistent, then there exists a vector $b \ge 0$ such that Ab = 0, where $b = (u_0 \cdot u_i)$ for each $i \in I$. And thus

$$u_{\circ}\nabla(f\circ E)(\overline{x}) + \sum_{i\in I} u_i\nabla(g_i\circ E)(\overline{x}) = 0$$

holds and $E(\overline{x})$ is a local solution of the problem *P*.

Theorem 26 Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one and onto operator and let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be an *E*-differentiable function. If \overline{x} is an optimal solution of the problem *P*, then there exists $\overline{y} \in M'$ such that $\overline{x} = E(\overline{y})$ is an optimal solution of the problem P_E and the Fritz-John optimality condition of the problem P_E is satisfied.

Proof Let \overline{x} be an optimal solution of the problem *P*. Since *E* is one-to-one and onto, according to Theorem 13, there exists $\overline{y} \in M'$, $\overline{x} = E(\overline{y})$ is an optimal solution of the problem P_E . Hence there exist scalars $u_0.u_i$ satisfying the Fritz-John optimality conditions of the problem P_E

$$\begin{split} u_{\circ}\nabla(f \circ E)(\overline{x}) &+ \sum_{i \in I} u_i \nabla(g_i \circ E)(\overline{x}) = 0, \\ (u_0, u_i) &= 0, \\ u_0, u_i &\geq 0. \end{split}$$

Theorem 27 (Kuhn-Tucker necessary condition) Let M be an open E-convex set with respect to the one-to-one and onto operator $E : \mathbb{R}^n \to \mathbb{R}^n$, let $f : M \subseteq \mathbb{R}^n \to \mathbb{R}$ be Edifferentiable and strictly E-convex at \overline{x} and let $g_i : \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m. Let \overline{y} be a feasible solution of the problem P_E and let $I = \{i : (g_i \circ E)(\overline{y}) = 0\}$. Furthermore, suppose that $(g_i \circ E)$ is continuous at \overline{y} for $i \notin I$ and $\nabla(g_i \circ E)(\overline{y})$ for $i \in I$ are linearly independent. If \overline{x} is a solution of the problem $P, \overline{x} = E(\overline{y})$ and \overline{y} is a local solution of the problem P_E , then there exist scalars u_i for $i \in I$ such that

$$abla(f \circ E)(\overline{y}) + \sum_{i \in I} u_i \nabla(g_i \circ E)(\overline{y}) = 0, \quad u_i \ge 0 \text{ for each } i \in I.$$

Proof From the Fritz-John optimality condition theorem, there exist scalars u_0 and u_i for each $i \in I$ such that

$$u_0 \nabla (f \circ E)(\overline{y}) + \sum_{i \in I} \widehat{u}_i \nabla (g_i \circ E)(\overline{y}) = 0, \quad u_0, \widehat{u}_i \ge 0 \text{ for each } i \in I.$$

If $u_0 = 0$, the assumption of linear independence of $\nabla(g_i \circ E)(\overline{y})$ does not hold, then $u_0 > 0$. By taking $u_i = \frac{\widehat{u}_i}{u_0}$, then $\nabla(f \circ E)(\overline{y}) + \sum_{i \in I} u_i \nabla(g_i \circ E)(\overline{y}) = 0$, $u_i \ge 0$ holds for each $i \in I$. From Theorem 26, \overline{y} is a local solution of the problem P_E .

Theorem 28 Let M be an open E-convex set with respect to the one-to-one and onto operator $E: \mathbb{R}^n \to \mathbb{R}^n$, $g_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., m, and let $f: M \subseteq \mathbb{R}^n \to \mathbb{R}$ be E-differentiable at \overline{x} and strictly E-convex at \overline{x} . Let $\overline{x} = E(\overline{y})$ be a feasible solution of the problem P_E and $I = \{i: (g_i \circ E)(\overline{y}) = 0\}$. Suppose that f is pseudo-E-convex at \overline{y} and that g_i is quasi-E-convex and differentiable at \overline{y} for each $i \in I$. Furthermore, suppose that the Kuhn-Tucker conditions hold at \overline{y} . Then \overline{y} is a global optimal solution of the problem P_E and hence $\overline{x} = E(\overline{y})$ is a solution of the problem P.

Proof Let \widehat{y} be a feasible solution of the problem P_E , then $(g_i \circ E)(\widehat{y}) \leq (g_i \circ E)(\overline{y})$ for each $i \in I$. Since $(g_i \circ E)(\widehat{y}) \leq 0$, $(g_i \circ E)(\overline{y}) = 0$ and g_i is quasi-*E*-convex at \overline{y} , then

$$(g_i \circ E)(\overline{y} + \lambda(\widehat{y} - \overline{y})) = (g_i \circ E)(\lambda \widehat{y} + (1 - \lambda)\overline{y})$$
$$\leq \max\{(g_i \circ E)(\widehat{y}), (g_i \circ E)(\overline{y})\}$$
$$= (g_i \circ E)(\overline{y}).$$

This means that $(g_i \circ E)$ does not increase by moving from \overline{y} along the direction $\widehat{y} - \overline{y}$. Then we must have from Theorem 15 that $\nabla(g_i \circ E)(y - \overline{y}) \leq 0$. Multiplying by u_i and summing over I, we get

$$\left[\sum_{i\in I}u_i\nabla(g_i\circ E)(\overline{y})\right](y-\overline{y})\leq 0.$$

But since

$$\nabla(f \circ E)(\overline{y}) + \sum_{i \in I} u_i \nabla(g_i \circ E)(\overline{y}) = 0,$$

it follows that $\nabla (f \circ E)(\overline{y})(y - \overline{y}) \ge 0$. Since *f* is pseudo *E*-convex at \overline{y} , we get

$$(f \circ E)(y) \ge (f \circ E)(\overline{y}).$$

Then \overline{y} is a global solution of the problem P_E and from Theorem 13 $\overline{x} = E(\overline{y})$ is a global solution of the problem *P*.

Example 29 Consider the following problem (problem *P*):

$$Min f(x, y) = x^{\frac{2}{3}} + y^{2},$$

subject to $x^{2} + y^{2} \le 5,$
 $x + 2y \le 4,$
 $x, y \ge 0.$

The feasible region of this problem is shown in Figure 2.

Let $E(x, y) = (\frac{1}{8}x^3, \frac{1}{3}y)$, then the problem P_E is as follows:

$$\min(f \circ E)(x, y) = \frac{1}{4}x^2 + \frac{1}{9}y^2,$$

subject to $\frac{x^6}{64} + \frac{y^2}{9} \le 5,$
 $\frac{1}{8}x^3 + \frac{2}{3}y \le 4,$
 $x, y \ge 0.$

We note that $E(M) \subset M$, where

$$(\sqrt{5},0) \in M \quad \text{implies} \quad E(\sqrt{5},0) = \left(5\frac{\sqrt{5}}{8},0\right) \in M,$$

$$(0,2) \in M \quad \text{implies} \quad E(0,2) = \left(0,\frac{2}{3}\right) \in M,$$

$$(0,0) \in M \quad \text{implies} \quad E(0,0) = (0,0) \in M,$$

$$(2,1) \in M \quad \text{implies} \quad E(2,1) = \left(1,\frac{1}{3}\right) \in M.$$

The Kuhn-Tucker conditions are as follows:

$$\begin{split} \nabla(f \circ E)(x, y) &+ u_1 \nabla(g_1 \circ E)(x, y) + u_2 \nabla(g_2 \circ E)(x, y) = 0, \\ \left[\frac{\frac{1}{2}x}{\frac{2}{9}y}\right] &+ u_1 \left[\frac{\frac{6}{64}x^5}{\frac{2}{9}y}\right] + u_2 \left[\frac{\frac{3}{8}x^2}{\frac{2}{3}}\right] = 0, \\ u_1 \left[\frac{x^6}{64} + \frac{y^2}{9} - 5\right] &= 0, \\ u_2 \left[\frac{1}{8}x^3 + \frac{2}{3}y - 4\right] &= 0. \end{split}$$

The solution is {[$x = 0.0, u_1 = 0.0, u_2 = 0.0, y = 0.0$]}, $\overline{z} = (0, 0)$, and $\overline{x} = E(\overline{z}) = (0, 0)$ is a solution of the problem *P*.

4 Conclusion

In this paper we introduced a new definition of an *E*-differentiable convex function, which transforms a non-differentiable function to a differentiable function under an operator *E* : $\mathbb{R}^n \to \mathbb{R}^n$, and we studied Kuhn-Tucker and Fritz-John conditions for obtaining an optimal solution of mathematical programming with a non-differentiable function. At the end, some examples have been presented to clarify the results.

Author details

¹Department of Mathematics, Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt. ²Current address: Mathematics Department, College of Science, Majmaah University, Majmaah, KSA. ³Computer Science Institute Suez City, Suez, Egypt. ⁴Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.

Acknowledgements

The authors express their deep thanks and their respect to the referees and the Journal for these valuable comments in the evaluation of this paper.

Received: 3 May 2012 Accepted: 30 April 2013 Published: 16 May 2013

References

- 1. Youness, EA: E-convex sets, E-convex functions and E-convex programming. J. Optim. Theory Appl. 102(3), 439-450 (1999)
- 2. Youness, EA: Optimality criteria in E-convex programming. Chaos Solitons Fractals 12, 1737-1745 (2001)
- 3. Chen, X: Some properties of semi-E-convex functions. J. Math. Anal. Appl. 275, 251-262 (2002)
- 4. Syau, Y-R, Lee, ES: Some properties of E-convex functions. Appl. Math. Lett. 18, 1074-1080 (2005)
- 5. Emam, T, Youness, EA: Semi strongly E-convex function. J. Math. Stat. 1(1), 51-57 (2005)
- Megahed, AA, Gomma, HG, Youness, EA, El-Banna, AH: A combined interactive approach for solving *E*-convex multiobjective nonlinear programming. Appl. Math. Comput. 217, 6777-6784 (2011)
- 7. Iqbal, A, Ahmad, I, Ali, S: Some properties of geodesic semi-*E*-convex functions. Nonlinear Anal., Theory Methods Appl. **74**, 6805-6813 (2011)
- 8. Iqbal, A, Ali, S, Ahmad, I: On geodesic *E*-convex sets, geodesic *E*-convex functions and *E*-epigraphs. J. Optim. Theory Appl. (2012), (Article Available online)
- 9. Mangasarian, OL: Nonlinear Programming. Mcgraw-Hill, New York (1969)
- 10. Bazaraa, MS, Shetty, CM: Nonlinear Programming Theory and Algorithms. Wiley, New York (1979)
- 11. Youness, EA: Characterization of efficient solution of multiobjective *E*-convex programming problems. Appl. Math. Comput. **151**(3), 755-761 (2004)

doi:10.1186/1029-242X-2013-246

Cite this article as: Megahed et al.: **Optimality conditions of** *E*-convex programming for an *E*-differentiable function. *Journal of Inequalities and Applications* 2013 **2013**:246.