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Abstract
In this paper we introduce a new definition of an E-differentiable convex function,
which transforms a non-differentiable function to a differentiable function under an
operator E : Rn → Rn. By this definition, we can apply Kuhn-Tucker and Fritz-John
conditions for obtaining the optimal solution of mathematical programming with a
non-differentiable function.
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1 Introduction
The concepts of E-convex sets and an E-convex function have been introduced by Youness
in [, ], and they have some important applications in various branches of mathematical
sciences. Youness in [] introduced a class of sets and functions which is called E-convex
sets and E-convex functions by relaxing the definition of convex sets and convex func-
tions. This kind of generalized convexity is based on the effect of an operator E : Rn → Rn

on the sets and the domain of the definition of functions. Also, in [] Youness discussed
the optimality criteria of E-convex programming. Xiusu Chen [] introduced a new con-
cept of semi E-convex functions and discussed its properties. Yu-Ru Syan and Stanelty []
introduced some properties of an E-convex function, while Emam and Youness in [] in-
troduced a new class of E-convex sets and E-convex functions, which are called strongly
E-convex sets and strongly E-convex functions, by taking the images of two points x and y
under an operator E : Rn → Rn besides the two points themselves. In []Megahed et al. in-
troduced a combined interactive approach for solving E-convex multiobjective nonlinear
programming. Also, in [, ] Iqbal and et al. introduced geodesic E-convex sets, geodesic
E-convex and some properties of geodesic semi-E-convex functions.
In this paper we present the concept of an E-differentiable convex function which trans-

forms a non-differentiable convex function to a differentiable function under an operator
E : Rn → Rn, for which we can apply the Fritz-John and Kuhn-Tucker conditions [, ] to
find a solution of mathematical programming with a non-differentiable function.
In the following, we present the definitions of E-convex sets, E-convex functions, and

semi E-convex functions.

Definition  [] A setM is said to be an E-convex set with respect to an operator E : Rn →
Rn if and only if λE(x) + ( – λ)E(y) ∈ M for each x, y ∈M and λ ∈ [, ].
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Definition  [] A function f : Rn → R is said to be an E-convex function with respect to
an operator E : Rn → Rn on an E-convex setM ⊆ Rn if and only if

f
(
λE(x) + ( – λ)E(y)

) ≤ λ(f ◦ E)(x) + ( – λ)(f ◦ E)(y)

for each x, y ∈M and λ ∈ [, ].

Definition  [] A real-valued function f :M ⊆ Rn → R is said to be semi E-convex func-
tion with respect to an operator E : Rn → Rn onM ifM is an E-convex set and

f
(
λE(x) + ( – λ)E(y)

) ≤ λf (x) + ( – λ)f (y)

for each x, y ∈M and λ ∈ [, ].

Proposition  [] - Let a set M ⊆ Rn be an E-convex set with respect to an operator E,
E : Rn → Rn, then E(M)⊆M.
- If E(M) is a convex set and E(M) ⊆M, then M is an E-convex set.
- If M andM are E-convex sets with respect to E, thenM ∩M is an E-convex set with

respect to E.

Lemma  [] LetM ⊆ Rn be an E- and E-convex set, thenM is an (E ◦E)- and (E ◦E)-
convex set.

Lemma  [] Let E : Rn → Rn be a linear map and let M,M ⊂ Rn be E-convex sets, then
M +M is an E-convex set.

Definition  [] Let S ⊂ Rn × R and E : Rn → Rn, we say that the set S is E-convex if for
each (x,α), (y,β) ∈ S and each λ ∈ [, ], we have

(
λEx + ( – λ)Ey,λα + ( – λ)β

) ∈ S.

2 Generalized E-convex function
Definition  [] LetM ⊆ Rn be an E-convex set with respect to an operator E : Rn → Rn.
A function f :M → R is said to be a pseudo E-convex function if for each x,x ∈ M with
∇(f ◦ E)(x)(x – x) ≥  implies f (Ex) ≥ f (Ex) or for all x,x ∈ M and f (Ex) < f (Ex)
implies ∇(f ◦ E)(x)(x – x) < .

Definition  [] LetM ⊆ Rn be an E-convex set with respect to an operator E : Rn → Rn.
A function f :M → R is said to be a quasi-E-convex function if and only if

f
(
λEx + ( – λ)Ey

) ≤ max
{
(f ◦ E)x, (f ◦ E)y}

for each x, y ∈M and λ ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2013/1/246


Megahed et al. Journal of Inequalities and Applications 2013, 2013:246 Page 3 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/246

3 E-differentiable function
Definition  Let f :M ⊆ Rn → R be a non-differentiable function at x and letE : Rn → Rn

be an operator. A function f is said to be E-differentiable at x if and only if (f ◦ E) is a
differentiable function at x and

(f ◦ E)(x) = (f ◦ E)(x) +∇(f ◦ E)(x)(x – x) + ‖x – x‖α(x,x – x),

α(x,x – x) →  as x→ x.

Example  Let f (x) = |x| be a non-differentiable function at the point x =  and let E :
R → R be an operator such that E(x) = x, then the function (f ◦ E)(x) = f (Ex) = x is a
differentiable function at the point x = , and hence f is an E-differentiable function.

3.1 Problem formulation
Now, we formulate problems P and PE , which have a non-differentiable function and an
E-differentiable function, respectively.
Let E : Rn → Rn be an operator,M be an E-convex set and f be an E-differentiable func-

tion. The problem P is defined as

P

⎧⎨⎩Min f (x),

subject toM = {x : gi(x)≤ , i = , , . . . ,m},

where f is a non-differentiable function, and the problem PE is defined as

PE

⎧⎨⎩Min(f ◦ E)(x),
subject toM′ = {x : (gi ◦ E)(x)≤ , i = , , . . . ,m},

where f is an E-differentiable function.
Now, we will discuss the relationship between the solutions of problems P and PE .

Lemma  [] Let E : Rn → Rn be a one-to-one and onto operator and let M′ = {x : (gi ◦
E)(x)≤ , i = , , . . . ,m}.Then E(M′) =M,whereM andM′ are feasible regions of problems
P and PE , respectively.

Theorem  Let E : Rn → Rn be a one-to-one and onto operator and let f be an E-
differentiable function. If f is non-differentiable at x, and x is an optimal solution of the
problem P, then there exists y ∈ M′ such that x = E(y) and y is an optimal solution of the
problem PE .

Proof Let x be an optimal solution of the problem P. From Lemma  there exists y ∈ M′

such that x = E(y). Let y be a not optimal solution of the problem PE , then there is ŷ ∈ M′

such that (f ◦E)(̂y)≤ (f ◦E)(y). Also, there exists x̂ ∈ M such that x̂ = E(̂y) . Then f (̂x) < f (x)
contradicts the optimality of x for the problem P. Hence the proof is complete. �

Theorem  Let E : Rn → Rn be a one-to-one and onto operator, and let f be an E-
differentiable function and strictly quasi-E-convex. If x is an optimal solution of the prob-
lem P, then there exists y ∈ M′ such that x = E(y) and y is an optimal solution of the prob-
lem PE .
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Proof Let x be an optimal solution of the problem P. Then from Lemma  there is y ∈M′

such that x = E(y). Let y be a not optimal solution of the problem PE , then there is ŷ ∈ M′

and also x̂ ∈ M, x̂ = E(̂y) such that (f ◦ E)(̂y) ≤ (f ◦ E)(y). Since f is strictly quasi-E-convex
function, then

f
(
λE(y) + ( – λ)E(̂y)

)
< max

{
(f ◦ E)(y), (f ◦ E)(̂y)}

< max
{
f (x), f (̂x)

}
< f (x).

Since M is an E-convex set and E(M) ⊂ M, then λE(y) + ( – λ)E(̂y) ∈ M contradicts the
assumption that x is a solution of the problem P, then there exists y ∈ M′, a solution of the
problem PE , such that x = E(y). �

Theorem  Let M be an E-convex set, E : Rn → Rn be a one-to-one and onto operator
and f :M ⊆ Rn → R be an E-differentiable function at x. If there is a vector d ⊂ Rn such
that ∇(f ◦ E)(x)d < , then there exists δ >  such that

(f ◦ E)(x + λd) < (f ◦ E)(x) for each λ ∈ (, δ).

Proof Since f is an E-differentiable function at x, then

(f ◦ E)(x + λd) = (f ◦ E)(x) + λ∇(f ◦ E)(x) + λ‖d‖α(x,λd),
α(x,λd) →  as λ → .

Since ∇(f ◦ E)(x)d <  and α(x,λd)→  as λ → , then there exists δ >  such that

∇(f ◦ E)(x) + ‖d‖α(x,λd) <  for each λ ∈ (, δ)

and thus (f ◦ E)(x + λd) < (f ◦ E)(x). �

Corollary  Let M be an E-convex set, let E : Rn → Rn be a one-to-one and onto operator,
and let f :M ⊆ Rn → R be an E-differentiable and strictly E-convex function at x. If x is a
local minimum of the function (f ◦ E), then ∇(f ◦ E)(x) = .

Proof Suppose that ∇(f ◦ E)(x) =  and let d = –∇(f ◦ E)(x), then ∇(f ◦ E)(x)d = –‖∇(f ◦
E)(x)‖ < . By Theorem  there exists δ >  such that

(f ◦ E)(x + λd) < (f ◦ E)(x) for each λ ∈ (, δ)

contradicting the assumption that x is a local minimum of (f ◦ E)(x), and thus
∇(f ◦ E)(x) = . �

Theorem  Let M be an E-convex set, E : Rn → Rn be a one-to-one and onto operator,
and f :M ⊆ Rn → R be twice E-differentiable and strictly E-convex function at x. If x is a
local minimum of (f ◦ E), then ∇(f ◦ E)(x) =  and the Hessian matrix H(x) = ∇(f ◦ E)(x)
is positive semidefinite.
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Megahed et al. Journal of Inequalities and Applications 2013, 2013:246 Page 5 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/246

Proof Suppose that d is an arbitrary direction. Since f is a twice E-differentiable function
at x, then

(f ◦ E)(x + λd) = (f ◦ E)(x) + λ∇(f ◦ E)(x)d +


λdt∇(f ◦ E)(x)d

+ λ‖d‖α(x,λd),

where α(x,λd)→  as λ → .
From Corollary  we have ∇(f ◦ E)(x) = , and

(f ◦ E)(x + λd) – (f ◦ E)(x)
λ =



dt∇(f ◦ E)(x)d.

Since x is a local minimum of (f ◦ E), then (f ◦ E)(x) < (f ◦ E)(x + λd), and

dt∇(f ◦ E)(x)d ≥ , i.e., H(x) = ∇(f ◦ E)(x) is positive semidefinite. �

Example  Let f (x, y) = x + y – x 
 be a non-differentiable function at (, y), and let

E(x, y) = (x, y), then (f ◦ E)(x, y) = x + y – x, and

∂(f ◦ E)
∂x

= x –  =  implies x = ±
√


,

∂(f ◦ E)
∂y

= y =  implies y = ,

∂(f ◦ E)
∂x

= x,
∂(f ◦ E)

∂y ∂x
= ,

∂(f ◦ E)
∂y

= ,
∂(f ◦ E)

∂x ∂y
= .

Then (x, y) = (
√


 , ) and (x, y) = (–

√

 , ) are extremum points of (f ◦ E)(x, y), and

the Hessian matrixH(
√


 , ) =

[

√


 

 

]
is positive definite. And thus the point (

√

 , ) is a

local minimum of the function (f ◦ E)(x, y), but the Hessian matrix H(–
√


 , ) =

[
–

√

 

 

]
is indefinite.

Theorem  Let M be an E-convex set, let E : Rn → Rn be a one-to-one and onto operator,
and let f :M ⊆ Rn → R be a twice E-differentiable and strictly E-convex function at x. If
∇(f ◦ E)(x) =  and the Hessian matrix H(x) = ∇(f ◦ E)(x) is positive definite, then x is a
local minimum of (f ◦ E).

Proof Suppose that x is not a local minimum of (f ◦E)(x), and there exists a sequence {xk}
is converging to x such that (f ◦ E)(xk) < (f ◦ E)(x) for each k. Since ∇(f ◦ E)(x) = , and f
is twice E-differentiable at x, then

(f ◦ E)(xk) = (f ◦ E)(x) + λ∇(f ◦ E)(x)(xk – x)

+


(xk – x)t∇(f ◦ E)(x)(xk – x) +

∥∥(xk – x)
∥∥

α
(
x, (xk – x)

)
,

where α(x, (xk – x))→  as k → ∞, and



(xk – x)t∇(f ◦ E)(x)(xk – x) +

∥∥(xk – x)
∥∥

α
(
x, (xk – x)

)
<  for each k.

http://www.journalofinequalitiesandapplications.com/content/2013/1/246
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By dividing on ‖(xk – x)‖, and letting dk = (xk–x)
‖(xk–x)‖ , we get



dt
k∇(f ◦ E)(x)dk + α

(
x, (xk – x)

)
<  for each k.

But ‖dk‖ =  for each k, and hence there exists an index set K such that {dk}K → d, where
‖d‖ = . Considering this subsequence and the fact that α(x, (xk – x)) →  as k → ∞,
then dt∇(f ◦ E)(x)d < . This contradicts the assumption that H(x) is positive definite.
Therefore x is indeed a local minimum. �

Example  Let f (x, y) = x 
 + y –  be a non-differentiable at the point (, y), and let

E(x, y) = (x, y), then (f ◦ E)(x, y) = x + y – 

∂(f ◦ E)
∂x

= x,
∂(f ◦ E)

∂y ∂x
= ,

∂(f ◦ E)
∂x

= ,

∂(f ◦ E)
∂y

= y,
∂(f ◦ E)

∂x ∂y
= ,

∂(f ◦ E)
∂y

= .

The necessary condition for x is a local minimum of (f ◦ E) is ∇(f ◦ E)(x) = , then
x = (, ), and the Hessian matrix H(x)

H =

⎡⎣ ∂(f ◦E)
∂x

∂(f ◦E)
∂y ∂x

∂(f ◦E)
∂x ∂y

∂(f ◦E)
∂y

⎤⎦ =

[
 
 

]

is positive definite.

Example  Let f (x, y) = x 
 +y– be non-differentiable at the point (, y), and let E(x, y) =

(x, y), then (f ◦ E)(x, y) = x + y – .

Now, let M = {λ(, ) + λ(, ) + λ(, ) + λ(, )} ∪ {λ(, ) + λ(,–) + λ(, –) +
λ(, )}, ∑

i= λi = , λi ≥  be an E-convex set with respect to operator E (the feasible
region is shown in Figure ) and

f (, ) = –, (f ◦ E)(, ) = –, f (,–) = –, (f ◦ E)(, ) = –,

f (, ) = , (f ◦ E)(, ) = , f (, ) = , (f ◦ E)(, ) = ,

f (, ) = , (f ◦ E)(, ) = , f (, –) = –, (f ◦ E)(, ) = –.

Then x = (,–) is a solution of the problem PE and E(x) = E(,–) = (,–) is a solution
of the problem P.

Definition  Let M be a nonempty E-convex set in Rn and let E(x) ∈ clM. The cone of
feasible direction of E(M) at E(x) denoted by D is given by

D =
{
d : d = ,E(x) + λd ∈M for each λ ∈ [, δ], δ > 

}
.

Lemma  Let M be an E-convex set with respect to an operator E : Rn → Rn, and let
f :M ⊆ Rn → R be E-differentiable at x. If x is a local minimum of the problem PE , then

http://www.journalofinequalitiesandapplications.com/content/2013/1/246
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Figure 1 The feasible region M.

F ∩ D = φ, where F = {d : ∇(f ◦ E)(x)d < }, and D is the cone of feasible direction of M
at x.

Proof Suppose that there exists a vector d ∈ F ∩D. Then by Theorem , there exists δ

such that

(f ◦ E)(x + λd) < (f ◦ E)(x) for each λ ∈ (, δ). (.)

By the definition of the cone of feasible direction, there exists δ such that

E(x) + λd ∈M for each λ ∈ (, δ). (.)

From . and . we have (f ◦E)(x+λd) < (f ◦E)(x) for each λ ∈ (, δ), where δ =min{δ, δ},
which contradicts the assumption that x is a local optimal solution, then F ∩D = φ. �

Lemma  Let M be an open E-convex set with respect to an operator E : Rn → Rn, let
f : M ⊆ Rn → R be E-differentiable at x and let gi : Rn → R for i = , , . . . ,m. Let x be a
feasible solution of the problem PE and let I = {i : (gi ◦ E)(x) = }. Furthermore, suppose
that gi for i ∈ I is E-differentiable at x and that gi for i /∈ I is continuous at x. If x is a local
optimal solution, then F ∩G = φ, where

F =
{
d :∇(f ◦ E)(x)d < 

}
,

G =
{
d : ∇(gi ◦ E)(x)d < , for each i ∈ I

}
and E is one-to-one and onto.

Proof Let d ∈G. Since E(x) ∈M andM is an open E-convex set, there exists a δ >  such
that

E(x) + λd ∈M for λ ∈ (, δ). (.)

Also, since (gi ◦ E)(x) <  and since gi is continuous at x for i /∈ I , there exists a δ >  such
that

(gi ◦ E)(x + λd) <  for λ ∈ (, δ) and for i /∈ I. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/246
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Finally, since d ∈G, ∇(gi ◦E)(x)d <  for each i ∈ I and by Theorem , there exists δ > 
such that

(gi ◦ E)(x + λd) < (gi ◦ E)(x) for λ ∈ (, δ) and i ∈ I. (.)

From ., . and ., it is clear that points of the form E(x)+λd are feasible to the problem
PE for each λ ∈ (, δ), where δ =min(δ, δ, δ). Thus d ∈D, where D is the cone of feasible
direction of the feasible region at x. We have shown that for d ∈ G implies that d ∈ D,
and hence G ⊂D. By Lemma , since x is a local solution of the problem PE ,F ∩D = φ.
It follows that F ∩G = φ. �

Theorem  (Fritz-John optimality conditions) Let M be an open E-convex set with
respect to the one-to-one and onto operator E : Rn → Rn, let f : M ⊆ Rn → R be E-
differentiable at x and let gi : Rn → R for i = , , . . . ,m. Let x be feasible solution of the
problem PE and let I = {i : (gi ◦ E)(x) = }. Furthermore, suppose that gi for i ∈ I is differen-
tiable at x and that gi for i /∈ I is continuous at x. If x is a local optimal solution, then there
exist scalars u and ui for i ∈ I such that

u◦∇(f ◦ E)(x) +
∑
i∈I

ui∇(gi ◦ E)(x) = , u◦,ui ≥  for i ∈ I,

(u◦,ui) = (, ) for i ∈ I

and E(x) is a local solution of the problem P.

Proof Let x be a local solution of the problem PE , then there is no vector d such that ∇(f ◦
E)(x)d <  and ∇(gi ◦ E)(x)d < . Let A be a matrix with rows ∇(f ◦ E)(x) and ∇(gi ◦ E)(x).
From Gordon’s theorem [], we have the system Ad <  is inconsistent, then there exists
a vector b≥  such that Ab = , where b = (u · ui) for each i ∈ I . And thus

u◦∇(f ◦ E)(x) +
∑
i∈I

ui∇(gi ◦ E)(x) = 

holds and E(x) is a local solution of the problem P. �

Theorem  Let E : Rn → Rn be a one-to-one and onto operator and let f :M ⊆ Rn → R
be an E-differentiable function. If x is an optimal solution of the problem P, then there
exists y ∈M′ such that x = E(y) is an optimal solution of the problem PE and the Fritz-John
optimality condition of the problem PE is satisfied.

Proof Let x be an optimal solution of the problem P. Since E is one-to-one and onto,
according toTheorem , there exists y ∈M′, x = E(y) is an optimal solution of the problem
PE . Hence there exist scalars u.ui satisfying the Fritz-John optimality conditions of the
problem PE

u◦∇(f ◦ E)(x) +
∑
i∈I

ui∇(gi ◦ E)(x) = ,

(u,ui) = ,

u,ui ≥ . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/246
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Theorem  (Kuhn-Tucker necessary condition) Let M be an open E-convex set with
respect to the one-to-one and onto operator E : Rn → Rn, let f : M ⊆ Rn → R be E-
differentiable and strictly E-convex at x and let gi : Rn → R for i = , , . . . ,m. Let y be a
feasible solution of the problem PE and let I = {i : (gi ◦E)(y) = }. Furthermore, suppose that
(gi ◦ E) is continuous at y for i /∈ I and ∇(gi ◦ E)(y) for i ∈ I are linearly independent. If x is
a solution of the problem P, x = E(y) and y is a local solution of the problem PE , then there
exist scalars ui for i ∈ I such that

∇(f ◦ E)(y) +
∑
i∈I

ui∇(gi ◦ E)(y) = , ui ≥  for each i ∈ I.

Proof From the Fritz-John optimality condition theorem, there exist scalars u and ui for
each i ∈ I such that

u∇(f ◦ E)(y) +
∑
i∈I

ûi∇(gi ◦ E)(y) = , u, ûi ≥  for each i ∈ I.

If u = , the assumption of linear independence of ∇(gi ◦E)(y) does not hold, then u > .
By taking ui = ûi

u
, then ∇(f ◦ E)(y) +

∑
i∈I ui∇(gi ◦ E)(y) = , ui ≥  holds for each i ∈ I .

From Theorem , y is a local solution of the problem PE . �

Theorem  Let M be an open E-convex set with respect to the one-to-one and onto oper-
ator E : Rn → Rn, gi : Rn → R for i = , , . . . ,m, and let f :M ⊆ Rn → R be E-differentiable
at x and strictly E-convex at x. Let x = E(y) be a feasible solution of the problem PE and
I = {i : (gi ◦E)(y) = }. Suppose that f is pseudo-E-convex at y and that gi is quasi-E-convex
and differentiable at y for each i ∈ I . Furthermore, suppose that the Kuhn-Tucker condi-
tions hold at y. Then y is a global optimal solution of the problem PE and hence x = E(y) is
a solution of the problem P.

Proof Let ŷ be a feasible solution of the problem PE , then (gi ◦ E)(̂y) ≤ (gi ◦ E)(y) for each
i ∈ I . Since (gi ◦ E)(̂y)≤ , (gi ◦ E)(y) =  and gi is quasi-E-convex at y, then

(gi ◦ E)
(
y + λ(̂y – y)

)
= (gi ◦ E)

(
λ̂y + ( – λ)y

)
≤ max

{
(gi ◦ E)(̂y), (gi ◦ E)(y)

}
= (gi ◦ E)(y).

This means that (gi ◦E) does not increase bymoving from y along the direction ŷ–y. Then
we must have from Theorem  that ∇(gi ◦ E)(y – y) ≤ . Multiplying by ui and summing
over I , we get

[∑
i∈I

ui∇(gi ◦ E)(y)
]
(y – y) ≤ .

But since

∇(f ◦ E)(y) +
∑
i∈I

ui∇(gi ◦ E)(y) = ,
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it follows that ∇(f ◦ E)(y)(y – y) ≥ . Since f is pseudo E-convex at y, we get

(f ◦ E)(y)≥ (f ◦ E)(y).

Then y is a global solution of the problem PE and from Theorem  x = E(y) is a global
solution of the problem P. �

Example  Consider the following problem (problem P):

Min f (x, y) = x

 + y,

subject to x + y ≤ ,

x + y≤ ,

x, y≥ .

The feasible region of this problem is shown in Figure .

Let E(x, y) = ( x
, y), then the problem PE is as follows:

min(f ◦ E)(x, y) = 

x +



y,

subject to
x


+
y


≤ ,



x +



y≤ ,

x, y≥ .

We note that E(M)⊂M, where

(
√
, ) ∈M implies E(

√
, ) =

(

√



, 
)

∈M,

(, ) ∈M implies E(, ) =
(
,




)
∈ M,

(, ) ∈ M implies E(, ) = (, ) ∈ M,

(, ) ∈ M implies E(, ) =
(
,



)
∈M.

The Kuhn-Tucker conditions are as follows:

∇(f ◦ E)(x, y) + u∇(g ◦ E)(x, y) + u∇(g ◦ E)(x, y) = ,[

x

y

]
+ u

[

x




y

]
+ u

[

x






]
= ,

u
[
x


+
y


– 

]
= ,

u
[


x +



y – 

]
= .
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Figure 2 The feasible region M.

The solution is {[x = .,u = .,u = ., y = .]}, z = (, ), and x = E(z) = (, ) is a
solution of the problem P.

4 Conclusion
In this paper we introduced a new definition of an E-differentiable convex function, which
transforms a non-differentiable function to a differentiable function under an operator E :
Rn → Rn, and we studied Kuhn-Tucker and Fritz-John conditions for obtaining an optimal
solution of mathematical programming with a non-differentiable function. At the end,
some examples have been presented to clarify the results.
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