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Abstract
Let {Xni , 1≤ i ≤ n,n≥ 1} be an array of random variables with EXni = 0 and E|Xni|q <∞
for some q ≥ 1. For any sequences {an,n ≥ 1} and {bn,n ≥ 1} of positive real numbers,
sets of sufficient conditions are given for complete qth moment convergence of the
form

∑∞
n=1 bna

–q
n E(max1≤k≤n |∑k

i=1 Xni| – εan)
q
+ <∞, ∀ε > 0, where x+ = max{x, 0}.

From these results, we can easily obtain some known results on complete qth
moment convergence.

Keywords: complete convergence; complete moment convergence;
Lq-convergence; dependent random variables

1 Introduction
The concept of complete convergence was introduced byHsu and Robbins []. A sequence
{Xn,n≥ } of random variables is said to converge completely to the constant θ if

∞∑
n=

P
(|Xn – θ | > ε

)
< ∞ for all ε > .

Hsu and Robbins [] proved that the sequence of arithmetic means of i.i.d. random vari-
ables converges completely to the expected value if the variance of the summands is finite.
Erdös [] proved the converse.
The result of Hsu, Robbins, and Erdös has been generalized and extended in several

directions. Baum and Katz [] proved that if {Xn,n ≥ } is a sequence of i.i.d. random
variables with EX = , E|X|pt <∞ (≤ p < , t ≥ ) is equivalent to

∞∑
n=

nt–P

(∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣ > εn/p
)
< ∞ for all ε > . (.)

Chow [] generalized the result of Baum and Katz [] by showing the following complete
moment convergence. If {Xn,n ≥ } is a sequence of i.i.d. random variables with EX = 
and E(|X|pt + |X| log( + |X|)) <∞ for some  < p < , t ≥ , and pt ≥ , then

∞∑
n=

nt––/pE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xi

∣∣∣∣∣ – εn/p
)
+

< ∞ for all ε > , (.)

where x+ =max{x, }. Note that (.) implies (.). Li and Spătaru [] gave a refinement of
the result of Baum and Katz [] as follows. Let {Xn,n ≥ } be a sequence of i.i.d. random
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variables with EX = , and let  < p < , t ≥ , q > , and pt ≥ . Then

⎧⎪⎪⎨
⎪⎪⎩
E|X|q < ∞ if q > pt,

E|X|pt log( + |X|) < ∞ if q = pt,

E|X|pt <∞ if q < pt,

(.)

if and only if

∫ ∞

ε

∞∑
n=

nt–P

(∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣ > x/qn/p
)
dx < ∞ for all ε > .

Recently, Chen and Wang [] proved that for any q > , any sequences {an,n ≥ } and
{bn,n ≥ } of positive real numbers and any sequence {Zn,n≥ } of random variables,

∫ ∞

ε

∞∑
n=

bnP
(|Zn| > x/qan

)
dx < ∞ for all ε > 

and

∞∑
n=

bna–qn E
(|Zn| – εan

)q
+ < ∞ for all ε > ,

are equivalent. Therefore, if {Xn,n≥ } is a sequence of i.i.d. randomvariableswithEX = 
and  < p < , t ≥ , q > , and pt ≥ , then the moment condition (.) is equivalent to

∞∑
n=

nt––q/pE

(∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣ – εn/p
)q

+

< ∞ for all ε > . (.)

When q = , the complete qth moment convergence (.) is reduced to complete moment
convergence.
The complete qth moment convergence for dependent random variables was estab-

lished by many authors. Chen and Wang [] showed that (.) and (.) are equivalent
for ϕ-mixing random variables. Zhou and Lin [] established complete qth moment con-
vergence theorems for moving average processes of ϕ-mixing random variables. Wu et al.
[] obtained complete qth moment convergence results for arrays of rowwise ρ*-mixing
random variables.
The purpose of this paper is to provide sets of sufficient conditions for complete qth

moment convergence of the form

∞∑
n=

bna–qn E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ – εan

)q

+

< ∞ for all ε > , (.)

where q ≥ , {an,n ≥ } and {bn,n ≥ } are sequences of positive real numbers, and
{Xni,  ≤ i ≤ n,n ≥ } is an array of random variables satisfying Marcinkiewicz-Zygmund
and Rosenthal type inequalities.When q = , similar results were established by Sung [].
From our results, we can easily obtain the results of Chen andWang [] andWu et al. [].
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2 Main results
In this section, we give sets of sufficient conditions for complete qth moment convergence
(.). The following theorem gives sufficient conditions under the assumption that the
array {Xni,  ≤ i ≤ n,n≥ } satisfies a Marcinkiewicz-Zygmund type inequality.

Theorem . Let  ≤ q <  and let {Xni,  ≤ i ≤ n,n ≥ } be an array of random variables
with EXni =  and E|Xni|q < ∞ for  ≤ i ≤ n and n ≥ . Let {an,n ≥ } and {bn,n ≥ } be
sequences of positive real numbers. Suppose that the following conditions hold:

(i) for some s ( ≤ q < s ≤ ), there exists a positive function αs(x) such that

E max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣

s

≤ αs(n)
n∑
i=

E
∣∣X ′

ni(x)
∣∣s for all n ≥  and x > , (.)

where X ′
ni(x) = XniI(|Xni| ≤ x/q) + x/qI(Xni > x/q) – x/qI(Xni < –x/q),

(ii)
∑∞

n= bna–sn αs(n)
∑n

i= E|Xni|sI(|Xni| ≤ an) < ∞,
(iii)

∑∞
n= bna

–q
n ( + αs(n))

∑n
i= E|Xni|qI(|Xni| > an) < ∞,

(iv)
∑n

i= E|Xni|I(|Xni| > an)/an → .
Then (.) holds.

Proof It is obvious that

∞∑
n=

bna–qn E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ – εan

)q

+

=
∞∑
n=

bna–qn
∫ ∞


P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan + x/q
)
dx

≤
∞∑
n=

bna–qn

{∫ aqn


P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan

)
dx +

∫ ∞

aqn
P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > x/q
)
dx

}

:= I + I.

We first show that I < ∞. For  ≤ i ≤ n and n≥ , define

X ′
ni = XniI

(|Xni| ≤ an
)
+ anI(Xni > an) – anI(Xni < –an), X ′′

ni = Xni –X ′
ni.

Then we have by EXni = , Markov’s inequality, and (i) that

P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan

)

= P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni – EX ′

ni +X ′′
ni – EX ′′

ni
)∣∣∣∣∣ > εan

)

≤ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > εan/

)
+ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′′
ni – EX ′′

ni
)∣∣∣∣∣ > εan/

)
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≤ sε–sa–sn E max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣

s

+ ε–a–n E max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′′
ni – EX ′′

ni
)∣∣∣∣∣

≤ sε–sa–sn αs(n)
n∑
i=

E
∣∣X ′

ni
∣∣s + ε–a–n

n∑
i=

E
∣∣X ′′

ni
∣∣

≤ sε–sa–sn αs(n)
n∑
i=

(
E|Xni|sI

(|Xni| ≤ an
)
+ asnP

(|Xni| > an
))

+ ε–a–n
n∑
i=

E|Xni|I
(|Xni| > an

)

≤ sε–sa–sn αs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)
+ sε–sa–qn αs(n)

n∑
i=

E|Xni|qI
(|Xni| > an

)

+ ε–a–qn
n∑
i=

E|Xni|qI
(|Xni| > an

)
.

It follows that

I =
∞∑
n=

bnP

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan

)

≤ sε–s
∞∑
n=

bna–sn αs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)

+
∞∑
n=

bna–qn
(
sε–sαs(n) + ε–

) n∑
i=

E|Xni|qI
(|Xni| > an

)
.

Hence I <∞ by (ii) and (iii).
We next show that I < ∞. By the definition of X ′

ni(x), we have that

P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > x/q
)

≤
n∑
i=

P
(|Xni| > x/q

)
+ P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

X ′
ni(x)

∣∣∣∣∣ > x/q
)
.

We also have by EXni =  and (iv) that

sup
x≥aqn

max
≤k≤n

x–/q
∣∣∣∣∣

k∑
i=

EX ′
ni(x)

∣∣∣∣∣
= sup

x≥aqn

max
≤k≤n

x–/q
∣∣∣∣∣

k∑
i=

E
(
Xni –X ′

ni(x)
)∣∣∣∣∣

≤ sup
x≥aqn

x–/q
n∑
i=

E|Xni|I
(|Xni| > x/q

)

≤ a–n
n∑
i=

E|Xni|I
(|Xni| > an

) → .
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Hence to prove that I < ∞, it suffices to show that

I :=
∞∑
n=

bna–qn
n∑
i=

∫ ∞

aqn
P
(|Xni| > x/q

)
dx <∞,

I :=
∞∑
n=

bna–qn
∫ ∞

aqn
P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣ > x/q/

)
dx <∞.

If x > aqn, then P(|Xni| > x/q) = P(|Xni|I(|Xni| > an) > x/q) and so
∫ ∞

aqn
P
(|Xni| > x/q

)
dx =

∫ ∞

aqn
P
(|Xni|I

(|Xni| > an
)
> x/q

)
dx

≤
∫ ∞


P
(|Xni|I

(|Xni| > an
)
> x/q

)
dx = E|Xni|qI

(|Xni| > an
)
,

which implies that

I ≤
∞∑
n=

bna–qn
n∑
i=

E|Xni|qI
(|Xni| > an

)
.

Hence I <∞ by (iii).
Finally, we show that I <∞. We get by Markov’s inequality and (i) that

I ≤ s
∞∑
n=

bna–qn
∫ ∞

aqn
x–s/qE max

≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣

s

dx

≤ s
∞∑
n=

bna–qn αs(n)
n∑
i=

∫ ∞

aqn
x–s/qE

∣∣X ′
ni(x)

∣∣s dx
= s

∞∑
n=

bna–qn αs(n)
n∑
i=

∫ ∞

aqn
x–s/q

(
E|Xni|sI

(|Xni| ≤ x/q
)
+ xs/qP

(|Xni| > x/q
))
dx

= s
∞∑
n=

bna–qn αs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)∫ ∞

aqn
x–s/q dx

+ s
∞∑
n=

bna–qn αs(n)
n∑
i=

∫ ∞

aqn
x–s/qE|Xni|sI

(
an < |Xni| ≤ x/q

)
dx

+ s
∞∑
n=

bna–qn αs(n)
n∑
i=

∫ ∞

aqn
P
(|Xni| > x/q

)
dx := I + I + I.

Using a simple integral and Fubini’s theorem, we obtain that

I = s
q

s – q

∞∑
n=

bna–sn αs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)
,

I = s
∞∑
n=

bna–qn αs(n)
n∑
i=

∫ ∞

aqn
x–s/qE|Xni|sI

(
an < |Xni| ≤ x/q

)
dx

= s
q

s – q

∞∑
n=

bna–qn αs(n)
n∑
i=

E|Xni|qI
(|Xni| > an

)
.
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Similarly to I,

I ≤ s
∞∑
n=

bna–qn αs(n)
n∑
i=

E|Xni|qI
(|Xni| > an

)
.

Hence I <∞ by (ii) and (iii). �

The next theorem gives sufficient conditions for complete qth moment convergence
(.) under the assumption that the array {Xni,  ≤ i ≤ n,n ≥ } satisfies a Rosenthal type
inequality.

Theorem . Let q ≥  and let {Xni,  ≤ i ≤ n,n ≥ } be an array of random variables
with EXni =  and E|Xni|q < ∞ for  ≤ i ≤ n and n ≥ . Let {an,n ≥ } and {bn,n ≥ } be
sequences of positive real numbers. Suppose that the following conditions hold:

(i) for some s >max{, q/r} (r is the same as in (v)), there exist positive functions βs(x)
and γs(x) such that

E max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣

s

≤ βs(n)
n∑
i=

E
∣∣X ′

ni(x)
∣∣s + γs(n)

( n∑
i=

E
∣∣X ′

ni(x)
∣∣)s/

for all n ≥  and x > , (.)

where X ′
ni(x) = XniI(|Xni| ≤ x/q) + x/qI(Xni > x/q) – x/qI(Xni < –x/q),

(ii)
∑∞

n= bna–sn βs(n)
∑n

i= E|Xni|sI(|Xni| ≤ an) < ∞,
(iii)

∑∞
n= bna

–q
n ( + βs(n))

∑n
i= E|Xni|qI(|Xni| > an) < ∞,

(iv)
∑n

i= E|Xni|I(|Xni| > an)/an → ,
(v)

∑∞
n= bnγs(n)(

∑n
i= a–rn E|Xni|r)s/ <∞ for some  < r ≤ .

Then (.) holds.

Proof The proof is similar to that of Theorem .. As in the proof of Theorem .,

∞∑
n=

bna–qn E

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ – εan

)q

+

≤
∞∑
n=

bna–qn

{∫ aqn


P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan

)
dx +

∫ ∞

aqn
P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > x/q
)
dx

}

:= J + J.

Similarly to I in the proof of Theorem ., we have by the cr-inequality that

P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xni

∣∣∣∣∣ > εan

)

≤ sε–sa–sn βs(n)
n∑
i=

(
E|Xni|sI

(|Xni| ≤ an
)
+ asnP

(|Xni| > an
))

http://www.journalofinequalitiesandapplications.com/content/2013/1/24
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+ sε–sa–sn γs(n)

( n∑
i=

E|Xni|I
(|Xni| ≤ an

)
+ anP

(|Xni| > an
))s/

+ ε–a–n
n∑
i=

E|Xni|I
(|Xni| > an

)

≤ sε–sa–sn βs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)

+
(
sε–sβs(n) + ε–

)
a–qn

n∑
i=

E|Xni|qI
(|Xni| > an

)

+ s/–ε–sγs(n)

( n∑
i=

a–rn E|Xni|rI
(|Xni| ≤ an

))s/

+ s/–ε–sγs(n)

( n∑
i=

a–rn E|Xni|rI
(|Xni| > an

))s/

.

Hence J < ∞ by (ii), (iii), and (v).
As in the proof of Theorem ., to prove that J < ∞, it suffices to show that

J :=
∞∑
n=

bna–qn
n∑
i=

∫ ∞

aqn
P
(|Xni| > x/q

)
dx < ∞,

J :=
∞∑
n=

bna–qn
∫ ∞

aqn
P

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣ > x/q/

)
dx < ∞.

The proof of J < ∞ is same as that of I in the proof of Theorem ..
For J, we have by Markov’s inequality and (i) that

J ≤ s
∞∑
n=

bna–qn
∫ ∞

aqn
x–s/qE max

≤k≤n

∣∣∣∣∣
k∑
i=

(
X ′
ni(x) – EX ′

ni(x)
)∣∣∣∣∣

s

dx

≤ s
∞∑
n=

bna–qn
∫ ∞

aqn
x–s/q

{
βs(n)

n∑
i=

E
∣∣X ′

ni(x)
∣∣s + γs(n)

( n∑
i=

E
∣∣X ′

ni(x)
∣∣)s/}

dx

:= J + J.

Similarly to I in the proof of Theorem ., we get that

J ≤ s
q

s – q

∞∑
n=

bna–sn βs(n)
n∑
i=

E|Xni|sI
(|Xni| ≤ an

)

+ s
(

q
s – q

+ 
) ∞∑

n=

bna–qn βs(n)
n∑
i=

E|Xni|qI
(|Xni| > an

)
.

Hence J <∞ by (ii) and (iii).
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Finally, we show that J < ∞. By the cr-inequality,

J = s
∞∑
n=

bna–qn γs(n)
∫ ∞

aqn
x–s/q

( n∑
i=

E|Xni|I
(|Xni| ≤ x/q

)
+ x/qP

(|Xni| > x/q
))s/

dx

≤ s/–
∞∑
n=

bna–qn γs(n)
∫ ∞

aqn
x–s/q

( n∑
i=

E|Xni|I
(|Xni| ≤ x/q

))s/

dx

+ s/–
∞∑
n=

bna–qn γs(n)
∫ ∞

aqn

( n∑
i=

P
(|Xni| > x/q

))s/

dx

≤ s/–
∞∑
n=

bna–qn γs(n)
∫ ∞

aqn
x–s/q

( n∑
i=

E|Xni|rx(–r)/q
)s/

dx

+ s/–
∞∑
n=

bna–qn γs(n)
∫ ∞

aqn

( n∑
i=

x–r/qE|Xni|r
)s/

dx

= s/
q

rs – q

∞∑
n=

bnγs(n)

( n∑
i=

a–rn E|Xni|r
)s/

.

Hence J < ∞ by (v). �

Remark . Marcinkiewicz-Zygmund and Rosenthal type inequalities hold for depen-
dent random variables as well as independent random variables.
() Let {Xni,  ≤ i ≤ n,n ≥ } be an array of rowwise negatively associated random vari-

ables. Then, for  < s ≤ , (.) holds for αs(n) = s–s = . For s > , (.) holds for
βs(n) = s(s/ log s)s and γs(n) = (s/ log s)s (see Shao []). Note that αs(n) and βs(n)
are multiplied by the factor s since E|X ′

ni(x) – EX ′
ni(x)|s ≤ sE|X ′

ni(x)|s.
() Let {Xni,  ≤ i ≤ n,n ≥ } be an array of rowwise negatively orthant dependent ran-

dom variables. By Corollary . of Asadian et al. [] and Theorem  of Móricz [], (.)
holds for αs(n) = C(logn)s, and (.) holds for βs(n) = C(logn)s and γs(n) = C(logn)s,
where C and C are constants depending only on s.
() Let {Xn,n ≥ } be a sequence of identically distributed ϕ-mixing random variables.

SetXni = Xi for  ≤ i≤ n and n≥ . By Shao’s [] result, (.) holds for a constant function
βs(x) and a slowly varying function γs(x). In particular, if

∑∞
n= ϕ

/(n) < ∞, then (.)
holds for some constant functions βs(x) and γs(x).
() Let {Xn,n ≥ } be a sequence of identically distributed ρ-mixing random variables.

Set Xni = Xi for  ≤ i ≤ n and n ≥ . By Shao’s [] result, (.) holds for some slowly
varying functions βs(x) and γs(x). In particular, if

∑∞
n= ρ

/s(n) < ∞, then (.) holds for
some constant functions βs(x) and γs(x).
() Let {Xn,n≥ } be a sequence of ρ*-mixing random variables. SetXni = Xi for  ≤ i ≤ n

and n≥ . By the result of Utev and Peligrad [], (.) holds for some constant functions
βs(x) and γs(x).

3 Corollaries
In this section, we establish some complete qth moment convergence results by using the
results obtained in the previous section.
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Corollary . (Chen andWang []) Let {Xn,n≥ } be a sequence of identically distributed
ϕ-mixing random variables with EX = , and let t ≥ ,  < p < , q ≥ , and pt ≥ .Assume
that (.) holds. Furthermore, suppose that

∞∑
n=

ϕ/(n) < ∞

if t =  and max{q,pt} < . Then

∞∑
n=

nt––q/pE

(
max
≤k≤n

∣∣∣∣∣
k∑
i=

Xi

∣∣∣∣∣ – εn/p
)q

+

< ∞ for all ε > .

Proof Let an = n/p and bn = nt– for n≥ , and letXni = Xi for  ≤ i ≤ n and n≥ . Then, for
s ≥ , (.) holds for a constant function βs(x) and a slowly varying function γs(x) (see Re-
mark .()). Under the additional condition that

∑∞
n= ϕ

/(n) < ∞, (.) holds for some
constant functions βs(x) and γs(x). In particular, for s = , (.) holds for a constant func-
tion αs(x) under this additional condition.
By a standard method, we have that

∞∑
n=

nt––s/pE|X|sI
(|X| ≤ n/p

) ≤ CE|X|pt if pt < s,

∞∑
n=

nt––q/pE|X|qI
(|X| > n/p

) ≤

⎧⎪⎪⎨
⎪⎪⎩
CE|X|q if q > pt,

CE|X|pt log( + |X|) if q = pt,

CE|X|pt if q < pt,

n–/pE|X|I
(|X| > n/p

) ≤ n–tE|X|ptI
(|X| > n/p

)
if pt ≥ ,

where C is a positive constant which is not necessarily the same one in each appear-
ance. Hence, the conditions (i)-(iv) of Theorem . hold if we take s > max{pt, , q/r}.
Under the additional conditions that max{q,pt} <  and

∑∞
n= ϕ

/(n) < ∞, all condi-
tions of Theorem . hold if we take s = . Therefore, the result follows from Theo-
rems . and . if we only show that the condition (v) of Theorem . holds when
t >  or max{q,pt} ≥ . To do this, we take r =  if max{q,pt} ≥  and r = max{q,pt} if
max{q,pt} < . If t >  ormax{q,pt} ≥ , then r > p and so we can choose s >  large enough
such that t –  + ( – r/p)s/ < . Then

∞∑
n=

bnγs(n)

( n∑
i=

a–rn E|Xni|r
)s/

=
(
E|X|r

)s/ ∞∑
n=

γs(n)nt–+(–r/p)s/ < ∞.

Hence the condition (v) of Theorem . holds. �

Let {	n(x),n≥ } be a sequence of positive even functions satisfying

	n(|x|)
|x|q ↑ and

	n(|x|)
|x|s ↓ as |x| ↑ (.)

for some  ≤ q < s.

http://www.journalofinequalitiesandapplications.com/content/2013/1/24
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Corollary . Let {	n(x),n ≥ } be a sequence of positive even functions satisfying (.)
for some  ≤ q < s ≤ . Let {Xni,  ≤ i≤ n,n≥ } be an array of random variables satisfying
EXni =  for  ≤ i ≤ n and n ≥ , and (.) for some constant function αs(x). Let {an,n ≥ }
and {bn,n≥ } be sequences of positive real numbers. Suppose that the following conditions
hold:

(i)
∑∞

n= bn
∑n

i= E	i(|Xni|)/	i(an) <∞,
(ii)

∑n
i= E	i(|Xni|)/	i(an)→ .

Then (.) holds.

Proof First note by	i(|x|)/|x|q ↑ that	i(|x|) is an increasing function. Since	i(|x|)/|x|s ↓,

|Xni|sI(|Xni| ≤ an)
asn

≤ 	i(|Xni|I(|Xni| ≤ an))
	i(an)

≤ 	i(|Xni|)
	i(an)

.

Since q ≥  and 	i(|x|)/|x|q ↑,
|Xni|I(|Xni| > an)

an
≤ |Xni|qI(|Xni| > an)

aqn
≤ 	i(|Xni|I(|Xni| > an))

	i(an)
≤ 	i(|Xni|)

	i(an)
.

It follows that all conditions of Theorem . are satisfied and so the result follows from
Theorem .. �

Corollary . Let {	n(x),n≥ } be a sequence of positive even functions satisfying (.) for
some q ≥  and s > max{,q}. Let {Xni,  ≤ i ≤ n,n ≥ } be an array of random variables
satisfying EXni =  for  ≤ i ≤ n and n ≥ , and (.) for some constant functions βs(x) and
γs(x). Let {an,n≥ } and {bn,n ≥ } be sequences of positive real numbers. Suppose that the
following conditions hold:

(i)
∑∞

n= bn
∑n

i= E	i(|Xni|)/	i(an) <∞,
(ii)

∑n
i= E	i(|Xni|)/	i(an)→ ,

(iii)
∑∞

n= bn(
∑n

i= a–n E|Xni|)s/ < ∞.
Then (.) holds.

Proof The proof is similar to that of Corollary .. By the proof of Corollary . and the
condition (iii), all conditions of Theorem . are satisfied and so the result follows from
Theorem .. �

Remark . When bn =  for n≥ , the condition (i) of Corollaries . and . is reduced
to the condition

∑∞
n=

∑n
i= E	i(|Xni|)/	i(an) < ∞, and so the condition (ii) of Corollar-

ies . and . follows from this reduced condition. For a sequence of ρ*-mixing random
variables, (.) holds for some constant function αs(x) if s = , and (.) holds for some
constant functions βs(x) and γs(x) if s >  (see Remark .()). Wu et al. [] proved Corol-
laries . and . when bn =  for n≥ , and {Xni} is an array of rowwise ρ*-mixing random
variables.
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