On the harmonic number expansion by Ramanujan

Cristinel Morticil ${ }^{1 *}$ and Chao-Ping Chen ${ }^{2}$

"Correspondence:
cmortici@valahia.ro
${ }^{1}$ Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii 18, Târgovişte, 130082, Romania
Full list of author information is available at the end of the article

Abstract

Let $\gamma=0.577215664 \ldots$ denote the Euler-Mascheroni constant, and let the sequences

$$
\begin{aligned}
u_{n}= & \sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right)-\frac{1}{r\left(n^{2}+n+\frac{1}{3}\right)+s\left(n^{2}+n+\frac{1}{3}\right)^{2}+t} \quad \text { and } \\
v_{n}= & \sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right) \\
& -\left(\frac{a}{\left(n^{2}+n+\frac{1}{3}\right)^{2}}+\frac{b}{\left(n^{2}+n+\frac{1}{3}\right)^{3}}+\frac{c}{\left(n^{2}+n+\frac{1}{3}\right)^{4}}+\frac{d}{\left(n^{2}+n+\frac{1}{3}\right)^{5}}\right) .
\end{aligned}
$$

The main aim of this paper is to find the values r, s, t, a, b, c and d which provide the fastest sequences $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ approximating the Euler-Mascheroni constant. Also, we give the upper and lower bounds for $\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right)-\gamma$ in terms of $n^{2}+n+\frac{1}{3}$.
MSC: 11Y60; 40A05; 33B15
Keywords: Euler-Mascheroni constant; harmonic numbers; inequality; psi function; polygamma functions; asymptotic expansion

1 Introduction

The Euler-Mascheroni constant $\gamma=0.577215664 \ldots$ is defined as the limit of the sequence

$$
\begin{equation*}
D_{n}=H_{n}-\ln n, \tag{1.1}
\end{equation*}
$$

where H_{n} denotes the nth harmonic number defined for $n \in \mathbb{N}:=\{1,2,3, \ldots\}$ by

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

Several bounds for $D_{n}-\gamma$ have been given in the literature [1-7]. For example, the following bounds for $D_{n}-\gamma$ were established in [3, 7]:

$$
\frac{1}{2(n+1)}<D_{n}-\gamma<\frac{1}{2 n} \quad(n \in \mathbb{N}) .
$$

The convergence of the sequence D_{n} to γ is very slow. Some quicker approximations to the Euler-Mascheroni constant were established in [8-21]. For example, Cesàro [8] proved that for every positive integer $n \geq 1$, there exists a number $c_{n} \in(0,1)$ such that the following approximation is valid:

$$
\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n\right)-\gamma=\frac{c_{n}}{6 n(n+1)} .
$$

Entry 9 of Chapter 38 of Berndt's edition of Ramanujan's Notebooks [22, p.521] reads,
'Let $m:=\frac{n(n+1)}{2}$, where n is a positive integer. Then, as n approaches infinity,

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k} \sim & \frac{1}{2} \ln (2 m)+\gamma+\frac{1}{12 m}-\frac{1}{120 m^{2}}+\frac{1}{630 m^{3}}-\frac{1}{1,680 m^{4}}+\frac{1}{2,310 m^{5}} \\
& -\frac{191}{360,360 m^{6}}+\frac{1}{30,030 m^{7}}-\frac{2,833}{1,166,880 m^{8}}+\frac{140,051}{17,459,442 m^{9}}-[\cdots] .
\end{aligned}
$$

For the history and the development of Ramanujan's formula, see [20].
Recently, by changing the logarithmic term in (1.1), DeTemple [15], Negoi [18] and Chen et al. [14] have presented, respectively, faster and faster asymptotic formulas as follows:

$$
\begin{align*}
& \sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)=\gamma+O\left(n^{-2}\right) \quad(n \rightarrow \infty) \tag{1.2}\\
& \sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}\right)=\gamma+O\left(n^{-3}\right) \quad(n \rightarrow \infty) \tag{1.3}\\
& \sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}\right)=\gamma+O\left(n^{-4}\right) \quad(n \rightarrow \infty) . \tag{1.4}
\end{align*}
$$

Chen and Mortici [13] provided a faster asymptotic formula than those in (1.2) to (1.4),

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}+\frac{1}{24 n}-\frac{1}{48 n^{2}}+\frac{23}{5,760 n^{3}}\right)=\gamma+O\left(n^{-5}\right) \quad(n \rightarrow \infty) \tag{1.5}
\end{equation*}
$$

and posed the following natural question.

Open problem For a given positive integer p, find the constants $a_{j}(j=0,1,2, \ldots, p)$ such that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\sum_{j=0}^{p} \frac{a_{j}}{n^{j}}\right) \tag{1.6}
\end{equation*}
$$

is the sequence which would converge to γ in the fastest way.

Very recently, Yang [21] published the solution of the open problem (1.6) by using logarithmic-type Bell polynomials.

For all $n \in \mathbb{N}$, let

$$
\begin{equation*}
P_{n}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right) \tag{1.7}
\end{equation*}
$$

and

$$
Q_{n}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{4} \ln \left[\left(n^{2}+n+\frac{1}{3}\right)^{2}-\frac{1}{45}\right] .
$$

Chen and Li [12] proved that for all integers $n \geq 1$,

$$
\begin{equation*}
\frac{1}{180(n+1)^{4}}<\gamma-P_{n}<\frac{1}{180 n^{4}} \tag{1.8}
\end{equation*}
$$

and

$$
\frac{8}{2,835(n+1)^{6}}<Q_{n}-\gamma<\frac{8}{2,835 n^{6}} .
$$

Now we define the sequences

$$
\begin{equation*}
u_{n}=\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right)-\frac{1}{r\left(n^{2}+n+\frac{1}{3}\right)+s\left(n^{2}+n+\frac{1}{3}\right)^{2}+t} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{align*}
v_{n}= & \sum_{k=1}^{n} \frac{1}{k}-\frac{1}{2} \ln \left(n^{2}+n+\frac{1}{3}\right) \\
& -\left(\frac{a}{\left(n^{2}+n+\frac{1}{3}\right)^{2}}+\frac{b}{\left(n^{2}+n+\frac{1}{3}\right)^{3}}+\frac{c}{\left(n^{2}+n+\frac{1}{3}\right)^{4}}+\frac{d}{\left(n^{2}+n+\frac{1}{3}\right)^{5}}\right), \tag{1.10}
\end{align*}
$$

respectively. Our Theorems 1 and 2 are to find the values r, s, t, a, b, c and d which provide the fastest sequences $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ approximating the Euler-Mascheroni constant.

Theorem 1 Let $\left(u_{n}\right)_{n \geq 1}$ be defined by (1.9). For

$$
r=-\frac{640}{7}, \quad s=-180, \quad t=\frac{26,770}{441}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{11}\left(u_{n}-u_{n+1}\right)=\frac{457,528}{123,773,265} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{10}\left(u_{n}-\gamma\right)=\frac{457,528}{123,773,265} . \tag{1.12}
\end{equation*}
$$

The speed of convergence of the sequence $\left(u_{n}\right)_{n \geq 1}$ is n^{-10}.

Theorem 2 Let $\left(v_{n}\right)_{n \geq 1}$ be defined by (1.10). For

$$
a=-\frac{1}{180}, \quad b=\frac{8}{2,835}, \quad c=-\frac{5}{1,512}, \quad d=\frac{592}{93,555},
$$

we have

$$
\lim _{n \rightarrow \infty} n^{13}\left(v_{n}-v_{n+1}\right)=-\frac{796,801}{3,648,645} \quad \text { and } \quad \lim _{n \rightarrow \infty} n^{12}\left(v_{n}-\gamma\right)=-\frac{796,801}{43,783,740} .
$$

The speed of convergence of the sequence $\left(v_{n}\right)_{n \geq 1}$ is n^{-12}.
Our Theorems 3 and 4 establish the bounds for $\gamma-P_{n}$ in terms of $n^{2}+n+\frac{1}{3}$.

Theorem 3 Let P_{n} be defined by (1.7). Then

$$
\begin{align*}
& \frac{1}{\frac{640}{7}\left(n^{2}+n+\frac{1}{3}\right)+180\left(n^{2}+n+\frac{1}{3}\right)^{2}} \\
& <\gamma-P_{n}<\frac{1}{\frac{640}{7}\left(n^{2}+n+\frac{1}{3}\right)+180\left(n^{2}+n+\frac{1}{3}\right)^{2}-\frac{26,770}{441}} . \tag{1.13}
\end{align*}
$$

Theorem 4 Let P_{n} be defined by (1.7). Then

$$
\begin{gather*}
\frac{\frac{1}{180}}{\left(n^{2}+n+\frac{1}{3}\right)^{2}}-\frac{\frac{8}{2,835}}{\left(n^{2}+n+\frac{1}{3}\right)^{3}}+\frac{\frac{5}{1,512}}{\left(n^{2}+n+\frac{1}{3}\right)^{4}}-\frac{\frac{592}{93,555}}{\left(n^{2}+n+\frac{1}{3}\right)^{5}} \\
<\gamma-P_{n}<\frac{\frac{1}{180}}{\left(n^{2}+n+\frac{1}{3}\right)^{2}}-\frac{\frac{8}{2,835}}{\left(n^{2}+n+\frac{1}{3}\right)^{3}}+\frac{\frac{5}{1,512}}{\left(n^{2}+n+\frac{1}{3}\right)^{4}} . \tag{1.14}
\end{gather*}
$$

Remark 1 The inequality (1.14) is sharper than (1.8), while the inequality (1.13) is sharper than (1.14).

2 Lemmas

Before we prove the main theorems, let us give some preliminary results.
The constant γ is deeply related to the gamma function $\Gamma(z)$ thanks to the Weierstrass formula:

$$
\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{k=1}^{\infty}\left\{\left(1+\frac{z}{k}\right)^{-1} e^{z / k}\right\} \quad\left(z \in \mathbb{C} \backslash Z_{0}^{-} ; Z_{0}^{-}:=\{-1,-2,-3, \ldots\}\right) .
$$

The logarithmic derivative of the gamma function

$$
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)} \quad \text { or } \quad \ln \Gamma(z)=\int_{1}^{z} \psi(t) \mathrm{d} t
$$

is known as the psi (or digamma) function. The successive derivatives of the psi function $\psi(z)$

$$
\psi^{(n)}(z):=\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}}\{\psi(z)\} \quad(n \in \mathbb{N})
$$

are called the polygamma functions.

The following recurrence and asymptotic formulas are well known for the psi function:

$$
\begin{equation*}
\psi(z+1)=\psi(z)+\frac{1}{z} \tag{2.1}
\end{equation*}
$$

(see [23, p.258]), and

$$
\begin{equation*}
\psi(z) \sim \ln z-\frac{1}{2 z}-\frac{1}{12 z^{2}}+\frac{1}{120 z^{4}}-\frac{1}{252 z^{6}}+\cdots \quad(z \rightarrow \infty \text { in }|\arg z|<\pi) \tag{2.2}
\end{equation*}
$$

(see [23, p.259]). From (2.1) and (2.2), we get

$$
\begin{equation*}
\psi(n+1) \sim \ln n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-\frac{1}{252 n^{6}}+\cdots \quad(n \rightarrow \infty) . \tag{2.3}
\end{equation*}
$$

It is also known [23, p.258] that

$$
\psi(n+1)=-\gamma+\sum_{k=1}^{n} \frac{1}{k} .
$$

Lemma $1[24,25]$ If $\left(\lambda_{n}\right)_{n \geq 1}$ is convergent to zero and there exists the limit

$$
\lim _{n \rightarrow \infty} n^{k}\left(\lambda_{n}-\lambda_{n+1}\right)=l \in \mathbb{R},
$$

with $k>1$, then there exists the limit

$$
\lim _{n \rightarrow \infty} n^{k-1} \lambda_{n}=\frac{l}{k-1}
$$

Lemma 1 gives a method for measuring the speed of convergence.

Lemma 2 [26, Theorem 9] Let $k \geq 1$ and $n \geq 0$ be integers. Then, for all real numbers $x>0$,

$$
\begin{equation*}
S_{k}(2 n ; x)<(-1)^{k+1} \psi^{(k)}(x)<S_{k}(2 n+1 ; x) \tag{2.4}
\end{equation*}
$$

where

$$
S_{k}(p ; x)=\frac{(k-1)!}{x^{k}}+\frac{k!}{2 x^{k+1}}+\sum_{i=1}^{p}\left[B_{2 i} \prod_{j=1}^{k-1}(2 i+j)\right] \frac{1}{x^{2 i+k}},
$$

and $B_{i}(i=0,1,2, \ldots)$ are Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{i=0}^{\infty} B_{i} \frac{t^{i}}{i!}
$$

It follows from (2.4) that for $x>0$,

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}} \\
& \quad<\psi^{\prime}(x)<\frac{1}{x}+\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}}+\frac{7}{6 x^{15}},
\end{aligned}
$$

from which we imply that for $x>0$,

$$
\begin{align*}
\frac{1}{x} & -\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}} \\
& <\psi^{\prime}(x+1) \\
& <\frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}}+\frac{7}{6 x^{15}} \tag{2.5}
\end{align*}
$$

3 Proofs of Theorems 1-4

Proof of Theorem 1 By using the Maple software, we write the difference $u_{n}-u_{n+1}$ as a power series in n^{-1} :

$$
\begin{align*}
u_{n}-u_{n+1}= & \left(-\frac{s+180}{45 s}\right) \frac{1}{n^{5}}+\left(\frac{s+180}{9 s}\right) \frac{1}{n^{6}} \\
& +\left(\frac{2\left(-6,048 s+567 r-32 s^{2}\right)}{189 s^{2}}\right) \frac{1}{n^{7}} \\
& +\left(\frac{2\left(-567 r+2,268 s+11 s^{2}\right)}{27 s^{2}}\right) \frac{1}{n^{8}} \\
& +\left(\frac{2\left(-23 s^{3}+2,430 s r-5,310 s^{2}+108 s t-108 r^{2}\right)}{27 s^{3}}\right) \frac{1}{n^{9}} \\
& +\left(\frac{2\left(-13,770 s r+19,170 s^{2}-1,620 s t+1,620 r^{2}+73 s^{3}\right)}{45 s^{3}}\right) \frac{1}{n^{10}} \\
& +\frac{1}{2,673 s^{4}}\left(-15,443 s^{4}+4,834,566 s^{2} r-4,650,624 s^{3}+1,033,560 s^{2} t\right. \\
& \left.-1,033,560 s r^{2}-53,460 s r t+26,730 r^{3}\right) \frac{1}{n^{11}} \\
& +O\left(\frac{1}{n^{12}}\right) . \tag{3.1}
\end{align*}
$$

According to Lemma 1, we have three parameters r, s and t which produce the fastest convergence of the sequence from (3.1)

$$
\left\{\begin{array}{l}
s+180=0 \\
-6,048 s+567 r-32 s^{2}=0 \\
-23 s^{3}+2,430 s r-5,310 s^{2}+108 s t-108 r^{2}=0
\end{array}\right.
$$

namely if

$$
r=-\frac{640}{7}, \quad s=-180, \quad t=\frac{26,770}{441} .
$$

Thus, we have

$$
u_{n}-u_{n+1}=\frac{457,528}{123,773,265 n^{11}}+O\left(\frac{1}{n^{12}}\right)
$$

By using Lemma 1, we obtain the assertion of Theorem 1.

Proof of Theorem 2 By using the Maple software, we write the difference $v_{n}-v_{n+1}$ as a power series in n^{-1} :

$$
\begin{align*}
v_{n}-v_{n+1}= & \left(-\frac{1}{45}-4 a\right) \frac{1}{n^{5}}+\left(\frac{1}{9}+20 a\right) \frac{1}{n^{6}}+\left(-64 a-6 b-\frac{64}{189}\right) \frac{1}{n^{7}} \\
& +\left(\frac{22}{27}+168 a+42 b\right) \frac{1}{n^{8}}+\left(-\frac{1,180}{3} a-8 c-\frac{46}{27}-180 b\right) \frac{1}{n^{9}} \\
& +\left(72 c+\frac{146}{45}+852 a+612 b\right) \frac{1}{n^{10}} \\
& +\left(-\frac{1,160}{3} c-\frac{15,443}{2,673}-\frac{5,426}{3} b-10 d-\frac{46,976}{27} a\right) \frac{1}{n^{11}} \\
& +\left(\frac{2,375}{243}+\frac{14,542}{3} b+\frac{4,840}{3} c+\frac{91,432}{27} a+110 d\right) \frac{1}{n^{12}}+O\left(\frac{1}{n^{13}}\right) . \tag{3.2}
\end{align*}
$$

According to Lemma 1 , we have four parameters a, b, c and d which produce the fastest convergence of the sequence from (3.2)

$$
\left\{\begin{array}{l}
-\frac{1}{45}-4 a=0 \\
-64 a-6 b-\frac{64}{189}=0 \\
-\frac{1,180}{3} a-8 c-\frac{46}{27}-180 b=0 \\
-\frac{1,160}{3} c-\frac{15,443}{2,673}-\frac{5,426}{3} b-10 d-\frac{46,976}{27} a=0
\end{array}\right.
$$

namely if

$$
a=-\frac{1}{180}, \quad b=\frac{8}{2,835}, \quad c=-\frac{5}{1,512}, \quad d=\frac{592}{93,555} .
$$

Thus, we have

$$
v_{n}-v_{n+1}=-\frac{796,801}{3,648,645 n^{13}}+O\left(\frac{1}{n^{14}}\right) .
$$

By using Lemma 1, we obtain the assertion of Theorem 2.

Proof of Theorem 3 Here we only prove the second inequality in (1.13). The proof of the first inequality in (1.13) is similar. The upper bound of (1.13) is obtained by considering the function F for $x \geq 1$ defined by

$$
F(x)=\frac{1}{2} \ln \left(x^{2}+x+\frac{1}{3}\right)-\psi(x+1)-\frac{1}{\frac{640}{7}\left(n^{2}+n+\frac{1}{3}\right)+180\left(n^{2}+n+\frac{1}{3}\right)^{2}-\frac{26,770}{441}} .
$$

Differentiation and applying the right-hand inequality of (2.5) yield

$$
\begin{aligned}
F^{\prime}(x)= & -\psi^{\prime}(x+1)+\frac{2 x+1}{2\left(x^{2}+x+\frac{1}{3}\right)} \\
& +\frac{55,566\left(126 x^{3}+189 x^{2}+137 x+37\right)}{5\left(7,938 x^{4}+15,876 x^{3}+17,262 x^{2}+9,324 x-451\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
> & -\left(\frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}}+\frac{7}{6 x^{15}}\right) \\
& +\frac{2 x+1}{2\left(x^{2}+x+\frac{1}{3}\right)}+\frac{55,566\left(126 x^{3}+189 x^{2}+137 x+37\right)}{5\left(7,938 x^{4}+15,876 x^{3}+17,262 x^{2}+9,324 x-451\right)^{2}} \\
= & \frac{P(x)}{30,030 x^{13}\left(3 x^{2}+3 x+1\right)^{6}},
\end{aligned}
$$

where

$$
\begin{aligned}
P(x)= & 35,471,898,974,548,627,145+138,773,138,144,376,345,519(x-4) \\
& +241,909,257,272,859,643,240(x-4)^{2} \\
& +253,899,751,881,744,791,655(x-4)^{3} \\
& +181,059,030,163,487,870,836(x-4)^{4} \\
& +93,303,260,620,236,720,571(x-4)^{5} \\
& +35,932,291,146,874,735,228(x-4)^{6}+10,519,794,292,714,982,599(x-4)^{7} \\
& +2,353,926,972,956,528,576(x-4)^{8}+400,626,844,002,342,775(x-4)^{9} \\
& +51,041,813,866,867,916(x-4)^{10}+4,719,218,347,433,667(x-4)^{11} \\
& +299,247,577,164,158(x-4)^{12}+11,646,155,626,560(x-4)^{13} \\
& +209,840,641,920(x-4)^{14}>0 \quad \text { for } x \geq 4 .
\end{aligned}
$$

Therefore, $F^{\prime}(x)>0$ for $x \geq 4$.
For $x=1,2,3,4$, we compute directly:

$$
\begin{aligned}
& F(1)=-0.000018306, \quad F(2)=-2.171 \times 10^{-7}, \\
& F(3)=-1.0 \times 10^{-8}, \quad F(4)=-1.0 \times 10^{-9} .
\end{aligned}
$$

Hence, the sequence $(F(n))_{n \geq 1}$ is strictly increasing. This leads to

$$
F(n)<\lim _{n \rightarrow \infty} F(n)=0
$$

by using the asymptotic formula (2.3). This completes the proof of the second inequality in (1.13).

Proof of Theorem 4 Here we only prove the first inequality in (1.14). The proof of the second inequality in (1.14) is similar. The lower bound of (1.14) is obtained by considering the function G for $x \geq 1$ defined by

$$
\begin{aligned}
G(x)= & \psi(x+1)-\frac{1}{2} \ln \left(x^{2}+x+\frac{1}{3}\right) \\
& +\left(\frac{\frac{1}{180}}{\left(x^{2}+x+\frac{1}{3}\right)^{2}}+\frac{-\frac{8}{2,835}}{\left(x^{2}+x+\frac{1}{3}\right)^{3}}+\frac{\frac{5}{1,512}}{\left(x^{2}+x+\frac{1}{3}\right)^{4}}+\frac{-\frac{592}{93,555}}{\left(x^{2}+x+\frac{1}{3}\right)^{5}}\right) .
\end{aligned}
$$

Differentiation and applying the left-hand inequality of (2.5) yield

$$
\begin{aligned}
G^{\prime}(x)= & \psi^{\prime}(x+1)-\frac{2 x+1}{2\left(x^{2}+x+\frac{1}{3}\right)} \\
& -\frac{3\left(4,158 x^{7}+14,553 x^{6}+19,701 x^{5}+12,870 x^{4}+8,283 x^{3}+6,831 x^{2}-8,276 x-5,194\right)}{770\left(3 x^{2}+3 x+1\right)^{6}} \\
> & \left(\frac{1}{x}-\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\frac{1}{30 x^{9}}+\frac{5}{66 x^{11}}-\frac{691}{2,730 x^{13}}\right)-\frac{2 x+1}{2\left(x^{2}+x+\frac{1}{3}\right)} \\
& -\frac{3\left(41,58 x^{7}+14,553 x^{6}+19,701 x^{5}+12,870 x^{4}+8,283 x^{3}+6,831 x^{2}-8,276 x-5,194\right)}{770\left(3 x^{2}+3 x+1\right)^{6}} \\
= & \frac{Q(x)}{30,030 x^{13}\left(3 x^{2}+3 x+1\right)^{6}},
\end{aligned}
$$

where

$$
\begin{aligned}
Q(x)= & 274,317,996,839,484+1,074,684,262,984,527(x-5) \\
& +1,571,352,927,565,772(x-5)^{2}+1,266,557,271,610,345(x-5)^{3} \\
& +652,427,951,634,329(x-5)^{4}+230,639,944,842,034(x-5)^{5} \\
& +57,987,546,990,473(x-5)^{6}+10,515,845,175,406(x-5)^{7} \\
& +1,371,027,303,124(x-5)^{8}+125,702,024,549(x-5)^{9} \\
& +7,709,579,845(x-5)^{10}+284,457,957(x-5)^{11} \\
& +4,780,806(x-5)^{12}>0 \quad \text { for } x \geq 5 .
\end{aligned}
$$

Therefore, $G^{\prime}(x)>0$ for $x \geq 5$.
For $x=1,2,3,4,5$, we compute directly:

$$
\begin{aligned}
& G(1)=-0.000046245 \ldots, \quad G(2)=-1.799 \times 10^{-7}, \quad G(3)=-4 \times 10^{-9}, \\
& G(4)=-1 \times 10^{-9}, \quad G(5)=-1 \times 10^{-10} .
\end{aligned}
$$

Hence, the sequence $(G(n))_{n \geq 1}$ is strictly increasing. This leads to

$$
G(n)<\lim _{n \rightarrow \infty} G(n)=0
$$

by using the asymptotic formula (2.3). This completes the proof of the first inequality in (1.14).

Remark 2 Some calculations in this work were performed by using the Maple software for symbolic calculations.

Remark 3 The work of the first author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CM proposed the sequence u_{n}. CPC proposed the sequence v_{n}. CM proposed to solve the problems using Lemma 1 , while CPC used Lemma 2 in evaluations. Both authors made the computations and verified their corectedness. The authors read and approved the final manuscript.

Author details

'Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii 18, Târgovişte, 130082, Romania. ${ }^{2}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454000, China

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 9 December 2012 Accepted: 12 April 2013 Published: 3 May 2013

References

1. Alzer, H: Inequalities for the gamma and polygamma functions. Abh. Math. Semin. Univ. Hamb. 68, 363-372 (1998)
2. Anderson, GD, Barnard, RW, Richards, KC, Vamanamurthy, MK, Vuorinen, M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347, 1713-1723 (1995)
3. Rippon, PJ: Convergence with pictures. Am. Math. Mon. 93, 476-478 (1986)
4. Tims, SR, Tyrrell, JA: Approximate evaluation of Euler's constant. Math. Gaz. 55, 65-67 (1971)
5. Tóth, L: Problem E3432. Am. Math. Mon. 98, 264 (1991)
6. Tóth, L: Problem E3432 (solution). Am. Math. Mon. 99, 684-685 (1992)
7. Young, RM: Euler's constant. Math. Gaz. 75, 187-190 (1991)
8. Cesàro, E: Sur la serie harmonique. Nouvelles Ann. Math. 4, 295-296 (1885)
9. Chen, C-P: The best bounds in Vernescu's inequalities for the Euler's constant. RGMIA Res. Rep. Coll. 12, Article 11 (2009). Available online at http://ajmaa.org/RGMIA/v12n3.php
10. Chen, C-P: Inequalities and monotonicity properties for some special functions. J. Math. Inequal. 3, 79-91 (2009)
11. Chen, C-P: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 23, 161-164 (2010)
12. Chen, C-P, Li, L: Two accelerated approximations to the Euler-Mascheroni constant. Sci. Magna 6, 102-110 (2010)
13. Chen, C-P, Mortici, C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64, 391-398 (2012)
14. Chen, C-P, Srivastava, HM, Li, L, Manyama, S: Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant. Integral Transforms Spec. Funct. 22, 681-693 (2011)
15. DeTemple, DW: A quicker convergence to Euler's constant. Am. Math. Mon. 100, 468-470 (1993)
16. Mortici, C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59, 2610-2614 (2010)
17. Mortici, C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215, 3443-3448 (2010)
18. Negoi, T: A faster convergence to the constant of Euler. Gaz. Mat., Ser. A 15, 111-113 (1997) (in Romanian)
19. Vernescu, A: A new accelerated convergence to the constant of Euler. Gaz. Mat., Ser. A 96(17), 273-278 (1999) (in Romanian)
20. Villarino, M: Ramanujan's harmonic number expansion into negative powers of a triangular number. J. Inequal. Pure Appl. Math. 9, Article 89 (2008). Available online at http://www.emis.de/journals/JIPAM/images/245_07_JPAM/245_07.pdf
21. Yang, S: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math. Anal. Appl. 396, 689-693 (2012)
22. Berndt, B: Ramanujan's Notebooks, vol. 5. Springer, New York (1998)
23. Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55, 9th printing. National Bureau of Standards, Washington (1972)
24. Mortici, C: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23, 97-100 (2010)
25. Mortici, C: Product approximations via asymptotic integration. Am. Math. Mon. 117, 434-441 (2010)
26. Alzer, H: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373-389 (1997)
