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Abstract
Let γ = 0.577215664 . . . denote the Euler-Mascheroni constant, and let the sequences
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)
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The main aim of this paper is to find the values r, s, t, a, b, c and d which provide the
fastest sequences (un)n≥1 and (vn)n≥1 approximating the Euler-Mascheroni constant.
Also, we give the upper and lower bounds for

∑n
k=1

1
k –

1
2 ln(n

2 + n + 1
3 ) – γ in terms of

n2 + n + 1
3 .
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1 Introduction
The Euler-Mascheroni constant γ = . . . . is defined as the limit of the sequence

Dn =Hn – lnn, (.)

where Hn denotes the nth harmonic number defined for n ∈ N := {, , , . . .} by

Hn =
n∑
k=


k
.

Several bounds for Dn – γ have been given in the literature [–]. For example, the fol-
lowing bounds for Dn – γ were established in [, ]:


(n + )

<Dn – γ <

n

(n ∈N).
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The convergence of the sequence Dn to γ is very slow. Some quicker approximations to
the Euler-Mascheroni constant were established in [–]. For example, Cesàro [] proved
that for every positive integer n≥ , there exists a number cn ∈ (, ) such that the follow-
ing approximation is valid:

n∑
k=


k
–


ln

(
n + n

)
– γ =

cn
n(n + )

.

Entry  of Chapter  of Berndt’s edition of Ramanujan’s Notebooks [, p.] reads,
‘Letm := n(n+)

 , where n is a positive integer. Then, as n approaches infinity,

∞∑
k=


k

∼ 

ln(m) + γ +


m

–


m +


m –


,m +


,m

–


,m +


,m –
,

,,m +
,

,,m – [· · · ].’

For the history and the development of Ramanujan’s formula, see [].
Recently, by changing the logarithmic term in (.), DeTemple [], Negoi [] and Chen

et al. [] have presented, respectively, faster and faster asymptotic formulas as follows:

n∑
k=


k
– ln

(
n +




)
= γ +O

(
n–

)
(n→ ∞); (.)

n∑
k=


k
– ln

(
n +



+


n

)
= γ +O

(
n–

)
(n→ ∞); (.)

n∑
k=


k
– ln

(
n +



+


n

–


n

)
= γ +O

(
n–

)
(n→ ∞). (.)

Chen and Mortici [] provided a faster asymptotic formula than those in (.) to (.),

n∑
k=


k
– ln

(
n +



+


n

–


n
+


,n

)
= γ +O

(
n–

)
(n→ ∞), (.)

and posed the following natural question.

Open problem For a given positive integer p, find the constants aj (j = , , , . . . ,p) such
that

n∑
k=


k
– ln

(
n +

p∑
j=

aj
nj

)
(.)

is the sequence which would converge to γ in the fastest way.

Very recently, Yang [] published the solution of the open problem (.) by using
logarithmic-type Bell polynomials.
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For all n ∈ N, let

Pn =
n∑
k=


k
–


ln

(
n + n +




)
(.)

and

Qn =
n∑
k=


k
–


ln

[(
n + n +




)

–



]
.

Chen and Li [] proved that for all integers n≥ ,


(n + )

< γ – Pn <


n
(.)

and


,(n + )

<Qn – γ <


,n
.

Now we define the sequences

un =
n∑
k=


k
–


ln

(
n + n +




)
–


r(n + n + 

 ) + s(n + n + 
 ) + t

(.)

and

vn =
n∑
k=


k
–


ln

(
n + n +




)

–
(

a
(n + n + 

 )
+

b
(n + n + 

 )
+

c
(n + n + 

 )
+

d
(n + n + 

 )

)
, (.)

respectively. Our Theorems  and  are to find the values r, s, t, a, b, c and d which provide
the fastest sequences (un)n≥ and (vn)n≥ approximating the Euler-Mascheroni constant.

Theorem  Let (un)n≥ be defined by (.). For

r = –



, s = –, t =
,


,

we have

lim
n→∞n(un – un+) =

,
,,

(.)

and

lim
n→∞n(un – γ ) =

,
,,

. (.)

The speed of convergence of the sequence (un)n≥ is n–.
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Theorem  Let (vn)n≥ be defined by (.). For

a = –



, b =


,

, c = –


,
, d =


,

,

we have

lim
n→∞n(vn – vn+) = –

,
,,

and lim
n→∞n(vn – γ ) = –

,
,,

.

The speed of convergence of the sequence (vn)n≥ is n–.

Our Theorems  and  establish the bounds for γ – Pn in terms of n + n + 
 .

Theorem  Let Pn be defined by (.). Then



 (n + n + 

 ) + (n + n + 
 )

< γ – Pn <



 (n + n + 

 ) + (n + n + 
 ) –

,


. (.)

Theorem  Let Pn be defined by (.). Then




(n + n + 
 )

–


,

(n + n + 
 )

+


,

(n + n + 
 )

–


,

(n + n + 
 )

< γ – Pn <




(n + n + 
 )

–


,

(n + n + 
 )

+


,

(n + n + 
 )

. (.)

Remark  The inequality (.) is sharper than (.), while the inequality (.) is sharper
than (.).

2 Lemmas
Before we prove the main theorems, let us give some preliminary results.
The constant γ is deeply related to the gamma function �(z) thanks to the Weierstrass

formula:

�(z) =
e–γ z

z

∞∏
k=

{(
 +

z
k

)–

ez/k
} (

z ∈C \ Z–
 ;Z

–
 := {–,–,–, . . .}).

The logarithmic derivative of the gamma function

ψ(z) =
�′(z)
�(z)

or ln�(z) =
∫ z


ψ(t) dt

is known as the psi (or digamma) function. The successive derivatives of the psi function
ψ(z)

ψ (n)(z) :=
dn

dzn
{
ψ(z)

}
(n ∈N)

are called the polygamma functions.
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The following recurrence and asymptotic formulas are well known for the psi function:

ψ(z + ) = ψ(z) +

z

(.)

(see [, p.]), and

ψ(z) ∼ ln z –

z

–


z
+


z

–


z
+ · · · (

z → ∞ in | arg z| < π
)

(.)

(see [, p.]). From (.) and (.), we get

ψ(n + )∼ lnn +

n

–


n
+


n

–


n
+ · · · (n→ ∞). (.)

It is also known [, p.] that

ψ(n + ) = –γ +
n∑
k=


k
.

Lemma  [, ] If (λn)n≥ is convergent to zero and there exists the limit

lim
n→∞nk(λn – λn+) = l ∈R,

with k > , then there exists the limit

lim
n→∞nk–λn =

l
k – 

.

Lemma  gives a method for measuring the speed of convergence.

Lemma  [, Theorem ] Let k ≥  and n ≥  be integers. Then, for all real numbers
x > ,

Sk(n;x) < (–)k+ψ (k)(x) < Sk(n + ;x), (.)

where

Sk(p;x) =
(k – )!
xk

+
k!

xk+
+

p∑
i=

[
Bi

k–∏
j=

(i + j)

]


xi+k
,

and Bi (i = , , , . . .) are Bernoulli numbers defined by

t
et – 

=
∞∑
i=

Bi
ti

i!
.

It follows from (.) that for x > ,


x
+


x

+


x
–


x

+


x
–


x

+


x
–


,x

<ψ ′(x) <

x
+


x

+


x
–


x

+


x
–


x

+


x
–


,x

+


x
,
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from which we imply that for x > ,


x
–


x

+


x
–


x

+


x
–


x

+


x
–


,x

< ψ ′(x + )

<

x
–


x

+


x
–


x

+


x
–


x

+


x
–


,x

+


x
. (.)

3 Proofs of Theorems 1-4

Proof of Theorem  By using the Maple software, we write the difference un – un+ as a
power series in n–:

un – un+ =
(
–
s + 
s

)

n

+
(
s + 
s

)

n

+
(
(–,s + r – s)

s

)

n

+
(
(–r + ,s + s)

s

)

n

+
(
(–s + ,sr – ,s + st – r)

s

)

n

+
(
(–,sr + ,s – ,st + ,r + s)

s

)

n

+


,s
(
–,s + ,,sr – ,,s + ,,st

– ,,sr – ,srt + ,r
) 
n

+O
(


n

)
. (.)

According to Lemma , we have three parameters r, s and t which produce the fastest
convergence of the sequence from (.)

⎧⎪⎪⎨
⎪⎪⎩
s +  = ,

–,s + r – s = ,

–s + ,sr – ,s + st – r = ,

namely if

r = –



, s = –, t =
,


.

Thus, we have

un – un+ =
,

,,n
+O

(

n

)
.

By using Lemma , we obtain the assertion of Theorem . �
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Proof of Theorem  By using the Maple software, we write the difference vn – vn+ as a
power series in n–:

vn – vn+ =
(
–




– a
)


n

+
(


+ a

)

n

+
(
–a – b –




)

n

+
(



+ a + b
)


n

+
(
–
,


a – c –



– b
)


n

+
(
c +




+ a + b
)


n

+
(
–
,


c –
,
,

–
,


b – d –
,


a
)


n

+
(
,


+
,


b +

,


c +
,


a + d
)


n

+O
(


n

)
. (.)

According to Lemma , we have four parameters a, b, c and d which produce the fastest
convergence of the sequence from (.)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

– 
 – a = ,

–a – b – 
 = ,

– ,
 a – c – 

 – b = ,

– ,
 c – ,

, – ,
 b – d – ,

 a = ,

namely if

a = –



, b =


,

, c = –


,
, d =


,

.

Thus, we have

vn – vn+ = –
,

,,n
+O

(

n

)
.

By using Lemma , we obtain the assertion of Theorem . �

Proof of Theorem  Here we only prove the second inequality in (.). The proof of the
first inequality in (.) is similar. The upper bound of (.) is obtained by considering
the function F for x≥  defined by

F(x) =


ln

(
x + x +




)
–ψ(x + ) –



 (n + n + 

 ) + (n + n + 
 ) –

,


.

Differentiation and applying the right-hand inequality of (.) yield

F ′(x) = –ψ ′(x + ) +
x + 

(x + x + 
 )

+
,(x + x + x + )

(,x + ,x + ,x + ,x – )
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> –
(

x
–


x

+


x
–


x

+


x
–


x

+


x
–


,x

+


x

)

+
x + 

(x + x + 
 )

+
,(x + x + x + )

(,x + ,x + ,x + ,x – )

=
P(x)

,x(x + x + )
,

where

P(x) = ,,,,,, + ,,,,,,(x – )

+ ,,,,,,(x – )

+ ,,,,,,(x – )

+ ,,,,,,(x – )

+ ,,,,,,(x – )

+ ,,,,,,(x – ) + ,,,,,,(x – )

+ ,,,,,,(x – ) + ,,,,,(x – )

+ ,,,,,(x – ) + ,,,,,(x – )

+ ,,,,(x – ) + ,,,,(x – )

+ ,,,(x – ) >  for x≥ .

Therefore, F ′(x) >  for x ≥ .
For x = , , , , we compute directly:

F() = –., F() = –.× –,

F() = –.× –, F() = –.× –.

Hence, the sequence (F(n))n≥ is strictly increasing. This leads to

F(n) < lim
n→∞F(n) = 

by using the asymptotic formula (.). This completes the proof of the second inequality
in (.). �

Proof of Theorem  Here we only prove the first inequality in (.). The proof of the
second inequality in (.) is similar. The lower bound of (.) is obtained by considering
the function G for x ≥  defined by

G(x) = ψ(x + ) –


ln

(
x + x +




)

+
( 



(x + x + 
 )

+
– 

,

(x + x + 
 )

+


,

(x + x + 
 )

+
– 

,

(x + x + 
 )

)
.
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Differentiation and applying the left-hand inequality of (.) yield

G′(x) = ψ ′(x + ) –
x + 

(x + x + 
 )

–
(,x + ,x + ,x + ,x + ,x + ,x – ,x – ,)

(x + x + )

>
(

x
–


x

+


x
–


x

+


x
–


x

+


x
–


,x

)
–

x + 
(x + x + 

 )

–
(,x + ,x + ,x + ,x + ,x + ,x – ,x – ,)

(x + x + )

=
Q(x)

,x(x + x + )
,

where

Q(x) = ,,,, + ,,,,,(x – )

+ ,,,,,(x – ) + ,,,,,(x – )

+ ,,,,(x – ) + ,,,,(x – )

+ ,,,,(x – ) + ,,,,(x – )

+ ,,,,(x – ) + ,,,(x – )

+ ,,,(x – ) + ,,(x – )

+ ,,(x – ) >  for x≥ .

Therefore, G′(x) >  for x ≥ .
For x = , , , , , we compute directly:

G() = –. . . . , G() = –.× –, G() = –× –,

G() = –× –, G() = –× –.

Hence, the sequence (G(n))n≥ is strictly increasing. This leads to

G(n) < lim
n→∞G(n) = 

by using the asymptotic formula (.). This completes the proof of the first inequality
in (.). �

Remark  Some calculations in this work were performed by using the Maple software
for symbolic calculations.

Remark  The work of the first author was supported by a grant of the Romanian Na-
tional Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-
PCE---.
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