Open Access

A new characterization of *Mathieu*-groups by the order and one irreducible character degree

Haijing Xu¹, Yanxiong Yan^{1,2} and Guiyun Chen^{1*}

*Correspondence: gychen@swu.edu.cn ¹ School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China Full list of author information is available at the end of the article

Abstract

The main aim of this article is to characterize the finite simple groups by less character quantity. In fact, we show that each *Mathieu*-group *G* can be determined by their largest and second largest irreducible character degrees. **MSC:** 20C15

Keywords: finite group; simple group; character degree

1 Introduction and preliminary results

Classifying finite groups by the properties of their characters is an interesting problem in group theory. In 2000, Huppert conjectured that each finite non-abelian simple group G is characterized by the set cd(G) of degrees of its complex irreducible characters. In [1-4], it was shown that many non-abelian simple groups such as $L_2(q)$ and $S_z(q)$ satisfy the conjecture. In this paper, we manage to characterize the finite simple groups by less character quantity. Let G be a finite group; L(G) denotes the largest irreducible character degree of G and S(G) denotes the second largest irreducible character degree of G. We characterize the five Mathieu groups G by the order of G and its largest and second largest irreducible character degrees. Our main results are the following theorems.

Theorem A Let G be a finite group and let M be one of the following Mathieu groups: M_{11} , M_{12} and M_{23} . Then $G \cong M$ if and only if the following conditions are fulfilled:

(2) L(G) = L(M).

Theorem B Let G be a finite group. Then $G \cong M_{24}$ if and only if $|G| = |M_{24}|$ and $S(G) = S(M_{24})$.

Theorem C Let G be a finite group. If $|G| = |M_{22}|$ and $L(G) = L(M_{22})$, then either G is isomorphic to M_{22} or $H \times M_{11}$, where H is a Frobenius group with an elementary kernel of order 8 and a cyclic complement of order 7.

We need the following lemmas.

© 2013 Xu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁽¹⁾ |G| = |M|;

Lemma 1 Let G be a non-solvable group. Then G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)|.

Proof Let *G* be a non-solvable group. Then *G* has a chief factor M/N such that M/N is a direct product of isomorphic non-abelian simple groups. Hence $C_{G/N}(M/N) \cap M/N = Z(M/N) = 1$, and so

$$M/N \cong \frac{C_{G/N}(M/N) \times M/N}{C_{G/N}(M/N)} \le \frac{G/N}{C_{G/N}(M/N)} \lesssim \operatorname{Aut}(M/N).$$

Let $K/N = C_{G/N}(M/N) \times M/N$ and $H/N = C_{G/N}(M/N)$. Then $G/K \le \text{Out}(M/N)$ and $K/H \cong M/N$ is a direct product of isomorphic non-abelian simple groups. Thus $1 \le H \le K \le G$ is a normal series, as desired.

Lemma 2 Let G be a finite solvable group of order $p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}$, where p_1, p_2, \ldots, p_n are distinct primes. If $kp_n + 1 \nmid p_i^{a_i}$ for each $i \le n - 1$ and k > 0, then the Sylow p_n -subgroup is normal in G.

Proof Let *N* be a minimal normal subgroup of *G*. Then $|N| = p^m$ for *G* is solvable. If $p = p_n$, by induction on G/N, we see that normality of the Sylow p_n -subgroup in *G*. Now suppose that $p = p_i$ for some i < n. Now consider G/N. By induction, the Sylow p_n -subgroup P/N of G/N is normal in G/N. Thus $P \trianglelefteq G$. Let *Q* be a Sylow p_n -subgroup of *P*. Then P = NQ. By Sylow's theorem, $|P:N_P(Q)| = p_i^l$ ($l \le m \le a_i$) and $p_n | p_i^l - 1$. But this means that $kp_n + 1 | p^{a_i}$, and then k = 0 by assumption. Hence $Q \trianglelefteq P$ and $Q \trianglelefteq G$.

2 Proof of theorems

Proof of Theorem A We only need to prove the sufficiency. We divide the proof into three cases.

Case 1.1 $M = M_{11}$

In this case, we have $|G| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$ and L(G) = 55. We first show that *G* is nonsolvable. Assume the contrary. By Lemma 2, we know that the Sylow 11-subgroup of *G* is normal in *G*. Let *N* be the 11-Sylow subgroup of *G*. Since *N* is abelian, we have $\chi(1) | |G/N|$ for all $\chi \in Irr(G)$. But L(G) = 55 and $55 \nmid |G/N|$, a contradiction. Therefore, *G* is nonsolvable.

Since *G* is non-solvable, by Lemma 1, we get that *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | $|\operatorname{Out}(K/H)|$. As $|G| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$, we have $K/H \cong A_5, A_6, L_2(11)$ or M_{11} .

We first assume that $K/H \cong A_5$. Since $|\operatorname{Out}(A_5)| = 2$, we have |G/K| | 2 and $|H| = 2^t \cdot 3 \cdot 11$, where t = 1 or 2. Let $\chi \in \operatorname{Irr}(G)$ such that $\chi(1) = L(G) = 55$ and $\theta \in \operatorname{Irr}(H)$ such that $[\chi_H, \theta] \neq 0$. Then $\theta(1) = 11$ by the Clifford theorem (see Theorem 6.2 in [5]). On the other hand, since $|H| = 2^t \cdot 3 \cdot 11$, we have H is solvable. Let N be a Sylow 11-subgroup of H. Then $N \leq H$ by Lemma 2. Hence $\theta(1) | |H/N| = 2^t \cdot 3$, a contradiction.

By the same reason as above, one has that $K/H \cong A_6$.

Suppose that $K/H \cong L_2(11)$. Since $|\operatorname{Out}(L_2(11))| = 2$, we have |G/K| | 2 and so $|H| = 2^a \cdot 3$, where a = 1 or 2. Let $\theta \in \operatorname{Irr}(H)$ such that $e = [\chi_H, \theta] \neq 0$ and let $t = |G: I_G(\theta)|$. Then $\theta(1) = 1$

and $et = \chi(1)/\theta(1) = 55$. Since $|H| = 2^t \cdot 3$, where a = 1 or 2, we have that $55 \nmid |\operatorname{Aut}(H/H')|$. Hence t = 1, e = 55. But $(55)^2 = e^2 t = [\chi_H, \chi_H] > |G:H| = 2^b \cdot 3 \cdot 5 \cdot 11$, where $2 \le b \le 3$, a contradiction.

If $K/H \cong M_{11}$, by comparing the orders of *G* and M_{11} , we have |H| = 1. Therefore $G = K \cong M_{11}$.

Case 1.2 $M = M_{23}$

In this case, we have $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$ and $L(G) = 2^3 \cdot 11 \cdot 23$. Then $O_{23}(G) = 1$. If not, then $|O_{23}(G)| = 23$ and $O_{23}(G)$ is abelian. Hence $L(G) = 2^3 \cdot 11 \cdot 23 | |G/O_{23}(G)|$, a contradiction.

If G is solvable, then the Sylow 23-subgroup of G is normal in G by Lemma 2, which leads to a contradiction as above. Therefore G is non-solvable.

Since *G* is non-solvable, by Lemma 1, we get that *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | $|\operatorname{Out}(K/H)|$. As $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$, we have that K/H can be isomorphic to one of the simple groups: A_5 , $L_2(7)$, A_6 , $L_2(8)$, $L_2(11)$, A_7 , M_{11} , $L_3(4)$, A_8 , M_{22} and M_{23} .

We first assume that $K/H \cong A_5$. Since $|\operatorname{Out}(A_5)| = 2$, we have |G/K| | 2 and $|H| = 2^m \cdot 3 \cdot 7 \cdot 11 \cdot 23$, where m = 4 or 5. Suppose that H is non-solvable. By Lemma 1, H has a normal series $1 \trianglelefteq A \trianglelefteq B \trianglelefteq H$ such that B/A is a direct product of isomorphic non-abelian simple groups and $|H/B| | |\operatorname{Out}(B/A)|$. Since $|H| = 2^m \cdot 3 \cdot 7 \cdot 11 \cdot 23$, we have $B/A \cong L_2(7)$ and |H/B| | 2. Thus $|A| = 2^a \cdot 11 \cdot 23$, where $0 \le a \le 2$. Let N be a Sylow 23-subgroup of A. Then $N \trianglelefteq A$ by Lemma 2. Hence we get a subnormal series of G, $NcharA \trianglelefteq B \trianglelefteq H \trianglelefteq K \trianglelefteq G$, which implies that $N \trianglelefteq G$. But $O_{23}(G) = 1$, a contradiction. If H is solvable, then the Sylow 23-subgroup of H is normal in H by Lemma 2, which leads to a contradiction as before.

By the same arguments as the proofs of $K/H \cong A_5$, we show that K/H cannot be isomorphic to one of the simple groups: A_6 , $L_2(7)$, $L_2(8)$, $L_2(11)$, A_7 , M_{11} , $L_3(4)$, A_8 and M_{22} .

If $K/H \cong M_{23}$, since $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$, we have that |H| = 1 and $G = K \cong M_{23}$. Case 1.3 $M = M_{12}$

In this case, $|G| = 2^6 \cdot 3^3 \cdot 5 \cdot 11$ and $L(G) = 2^4 \cdot 11$. Since 11 | L(G), by the same arguments as the proofs of Case 1.2, we have that $O_{11}(G) = 1$.

We will show that G is non-solvable. If G is solvable, then the Sylow 11-subgroup of G is normal in G by Lemma 2, a contradiction. Therefore, G is non-solvable.

By Lemma 1, we get that *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| || Out(K/H)|. As $|G| = 2^6 \cdot 3^3 \cdot 5 \cdot 11$, we have $K/H \cong A_5, A_6, L_2(11), M_{11}$ or M_{12} .

By the same arguments as the proofs of Case 1.2, we can prove that K/H cannot be isomorphic to A_5 or A_6 .

Assume that $K/H \cong L_2(11)$. Since $|\operatorname{Out}(L_2(11))| = 2$, we have |G/K| | 2 and $|H| = 2^a \cdot 3$, where a = 3 or 4. Suppose that |G/K| = 1. Then $|H| = 2^4 \cdot 3^2$. Let $\chi \in \operatorname{Irr}(G)$ such that $\chi(1) = L(G) = 2^4 \cdot 11$ and $\theta \in \operatorname{Irr}(H)$ such that $e = [\chi_H, \theta] \neq 0$. Then $\chi(1) = et\theta(1) = 176$, where $t = |G: I_G(\theta)|$. Since $\chi(1)/\theta(1) | |G/H|$, we have that $\theta(1) = 4$ or 8. If $\theta(1) = 4$, then et = 44. Since $|H| = 2^4 \cdot 3^2$, we have that H has at most eight irreducible characters of degree 4. Hence $t \leq 4$. We assert that $I_G(\theta) = G$. If not, then $I_G(\theta) < G$. Let U containing $I_G(\theta)$ be a maximal subgroup of G. Then $1 \leq |G: U| | |G: I_G(\theta)| = 4$. By checking the maximal subgroups of $L_2(11)$ (see ATLAS table in [6]), it is easy to get a contradiction. Hence $I_G(\theta) = G$, and so t = 1 and e = 44. But $e^2 \cdot t = [\chi_H, \chi_H] > |G:H|$, a contradiction. If $\theta(1) = 8$, then $|O_3(H)| = 9$ and $I_G(\theta) = G$. Since $H \leq G$, we have that $O_3(H) \leq G$. Let $\lambda \in$ Irr($O_3(H)$) such that $[\theta_{O_3(H)}, \lambda] \neq 0$. Since $\theta(1) = 8$, we have $4 \leq |H: I_H(\lambda)| \leq 8$. But $I_G(\theta) = G$, which implies that $4 \leq |G: I_G(\lambda)| = |H: I_H(\lambda)| \leq 8$. Let $S = \bigcap_{g \in G} I_G(\lambda)^g$. Then $S \leq G$ and $G/S \leq S_8$. By the Jordan-Hölder theorem, S has a normal series $1 \leq O_3(H) \leq C \leq D \leq S$ such that $D/C \cong L_2(11)$ and $|C/O_3(H)| = 1, 2$ or 4. Let $\alpha \in Irr(S)$ such that $[\chi_S, \alpha] \neq 0$. Since $\chi(1)/\alpha(1) \mid |G/S|$, we have that 22 $\mid \alpha(1)$. Since λ^g is invariant in S, for each $g \in G$ and $4 \leq |G: I_G(\lambda)|$, we have that each irreducible character is invariant in S and $O_3(H) \leq Z(S)$. Therefore, the following conclusions hold:

- (a) $S \cong L_2(11) \times O_3(H)$ if $|C/O_3(H)| = 1$;
- (b) $S \cong (2 \cdot L_2(11)) \times O_3(H)$ or $(Z_2 \times L_2(11)) \times O_3(H)$ if $|C/O_3(H)| = 2$.

By checking the character table of $2 \cdot L_2(11)$ and $L_2(11)$, we see that both conclusions (a) and (b) are not satisfied with the above conditions. Now, we suppose that $|C/O_3(H)| = 4$. Then 44 | $\alpha(1)$. Since $O_3(H) \leq Z(S)$, one has that $C \cong O_3(H) \times B$, where *B* is a group of order 4. Let β be an irreducible component of α_C and $t_1 = |S : I_S(\beta)|$. Then $\beta(1) = 1$ and $t_1 | \alpha(1)/\beta(1) | 44$. Since the indexes of the maximal subgroups of *S* containing $I_S(\beta)$ divide t_1 and $t_1 | |\operatorname{Aut}(C)|$, we have that $t_1 = 1$. Hence $[\alpha_C, \alpha_C] > |S : C| = 2^2 \cdot 3 \cdot 5 \cdot 11$, a contradiction.

Similarly, we can show that $|G/K| \neq 2$.

Suppose that $K/H \cong M_{11}$. Since $|\operatorname{Out}(M_{11})| = \operatorname{Mult}(M_{11}) = 1$, we have $G \cong H \times M_{11}$, where $|H| = 2^2 \cdot 3$. By checking the character table of M_{11} , we see that G has no irreducible character of degree $L(G) = 2^4 \cdot 11$, a contradiction.

If $K/H \cong M_{12}$, since $|G| = 2^6 \cdot 3^3 \cdot 5 \cdot 11$, we conclude that |H| = 1 and $G = K \cong M_{12}$, which completes the proof of Theorem A.

Proof of Theorem B We only need to prove the sufficiency.

In this case, we have $|G| = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$ and $S(G) = 2^2 \cdot 3^2 \cdot 7 \cdot 23$. Let $\chi \in Irr(G)$ such that $\chi(1) = S(G)$. If $O_{23}(G) \neq 1$, then $|O_{23}(G)| = 23$, which implies that $\chi(1) | |G : N|$, a contradiction. Hence $O_{23}(G) = 1$.

We have to show that *G* is non-solvable. Assume the contrary, by Lemma 2, we have that the Sylow 23-subgroup is normal in *G*, a contradiction. Therefore, *G* is non-solvable.

Since *G* is non-solvable, by Lemma 1, one has that *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | | | Out(K/H)|. As $|G| = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$, then K/H can be isomorphic to one of the following simple groups: A_5 , $L_2(7)$, A_6 , $L_2(8)$, $L_2(11)$, A_7 , $U_3(3)$, M_{11} , $L_3(4)$, A_8 , M_{12} , M_{23} , M_{23} and M_{24} .

We first assume that $K/H \cong A_5$. Since $|\operatorname{Out}(A_5)| = 2$, we have |G/K| | 2 and $|H| = 2^t \cdot 3^2 \cdot 7 \cdot 11 \cdot 23$, where t = 7 or 8. Let $\theta \in \operatorname{Irr}(H)$ such that $[\chi_H, \theta] \neq 0$. Since $\chi(1)/\theta(1) | |G/H|$, it implies that 23 $| \theta(1)$. If H is solvable, then $O_{23}(H) \neq 1$ by Lemma 2, which implies that $O_{23}(H) = O_{23}(G) \neq 1$, a contradiction. Thus H is non-solvable. Then there exists a normal series of $H: 1 \leq N \leq M \leq H$ such that M/N is a direct product of isomorphic non-abelian simple groups and $|H/M| | |\operatorname{Out}(M/N)|$. As $|H| = 2^t \cdot 3^2 \cdot 7 \cdot 11 \cdot 23$, we have $M/N \cong L_2(7)$ or $L_2(8)$, which implies that 23 | N|. Hence $O_{23}(N) \neq 1$ by Lemma 2, which implies that $O_{23}(N) = O_{23}(G) \neq 1$, a contradiction.

By the same arguments as the proof of $K/H \cong A_5$, we show that K/H cannot be isomorphic to one of the simple groups: $L_2(7)$, A_6 , $L_2(8)$, $L_2(11)$, A_7 , $U_3(3)$, M_{11} , $L_3(4)$, A_8 , M_{12} and M_{22} .

Suppose that $K/H \cong M_{23}$. Since $|\operatorname{Out}(M_{23})| = \operatorname{Mult}(M_{23}) = 1$, we have that $G \cong H \times M_{23}$, where $|H| = 2^3 \cdot 3$. By checking the character table of M_{23} , it is easy to see that there exists no irreducible character of degree $2^2 \cdot 3^2 \cdot 7 \cdot 23$ in *G*, a contradiction.

If $K/H \cong M_{24}$, since $|G| = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$, one has that |H| = 1 and $G = K \cong M_{24}$, which completes the proof of Theorem B.

Proof of Theorem C We only need to prove the sufficiency.

In this case, $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$ and L(G) = 385. Let $\chi \in Irr(G)$ such that $\chi(1) = L(G) = 5 \cdot 7 \cdot 11$. We assert that $O_{11}(G) = 1$. Otherwise, we have that $|O_{11}(G)| = 11$ and $O_{11}(G)$ is abelian. Hence $\chi(1) | |G/O_{11}(G)|$, a contradiction. Similarly, $O_5(G) = O_7(G) = 1$.

If G is solvable, then the Sylow 11-subgroup of G is normal in G by Lemma 2. But $O_{11}(G) = 1$, a contradiction. Therefore, G is non-solvable.

Since *G* is non-solvable, by Lemma 1, we get that *G* has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic non-abelian simple groups and |G/K| | $|\operatorname{Out}(K/H)|$. As $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, we see that K/H is isomorphic to one of the simple groups: A_5 , $L_2(7)$, A_6 , $L_2(8)$, $L_2(11)$, A_7 , M_{11} , $L_3(4)$, A_8 and M_{22} .

We first assume that $K/H \cong A_5$. Since $|\operatorname{Out}(A_5)| = 2$, we have |G/K| | 2 and $|H| = 2^t \cdot 3 \cdot 7 \cdot 11$, where t = 4 or 5. If H is solvable, then $O_{11}(H) = O_{11}(G) \neq 1$ by Lemma 2, a contradiction. Hence H is non-solvable and H has a normal series $1 \leq N \leq M \leq H$ such that M/N is a direct product of isomorphic non-abelian simple groups and $|H/M| | |\operatorname{Out}(M/N)|$. As $|H| = 2^t \cdot 3 \cdot 7 \cdot 11$, one has that $M/N \cong L_3(2)$ and $|N| = 2^s \cdot 11$, where $0 \leq s \leq 2$. Let P be the Sylow 11-subgroup of N. Then P is normal in N by Sylow theorem. Since P is also a Sylow 11-subgroup in G and N is subnormal in G, we have $P \leq G$, a contradiction.

Similarly, K/H cannot be isomorphic to the simple groups: $L_2(7)$, A_6 , $L_2(8)$, $L_2(11)$, A_7 , $L_3(4)$ or A_8 .

Assume that $K/H \cong L_2(11)$. Since $|\operatorname{Out}(L_2(11))| = 2$, we have |G/K| | 2 and $|H| = 2^{\alpha} \cdot 3 \cdot 7$, where $\alpha = 4$ or 5. Suppose that H = H'. Then *H* has a normal subgroup *S* such that $H/S \cong$ $L_2(7)$, where |S| = 2 or 4. Obviously, we know that $S \leq Z(H)$, and then $S \leq G$. Let $\theta \in Irr(S)$ such that $[\chi_S, \theta] \neq 0$. Then $\theta(1) = 1$ since S is abelian. Let $e = [\chi_S, \theta]$ and $t = |G: I_G(\theta)|$. Then t = 1 and $e = \chi(1) = 385$ by the Clifford theorem (see Theorem 6.2 in [5]). But $e^2 \cdot t =$ $[\chi_H, \chi_H] > |G:H|$, a contradiction. Hence H' < H. Suppose that |H/H'| = 2. Then H/H'is central in *G*/*H*. Let β be an irreducible component of χ_H , and let θ be an irreducible component of $\beta_{H'}$. Then $\theta(1) = \beta(1) = 7$ and θ is extendible to β . Hence $\lambda\beta$ is invariant in *G* for every $\lambda \in \text{Irr}(H/H')$ if β is invariant in *G*. Since $|H| = 2^{\alpha} \cdot 3 \cdot 7 \cdot 11$, where $\alpha = 4$ or 5, *H* has at most 12 irreducible characters of degree 7. Let $t = |G: I_G(\beta)|$. Then $t \leq 12$. Since the index of the maximal subgroup of U containing $I_G(\theta)$ divides t, we have that t = 1 or 11 by checking maximal subgroups of $L_2(11)$ (see ATLAS table in [6]). If t = 11, then H has exactly 12 irreducible characters of degree 7, and one of them, say δ , is invariant in G. Hence, $\lambda\delta$ is also invariant in *G* for $\lambda \in Irr(H/H')$, which forces $t \leq 10$, a contradiction. Therefore t = 1 and e = 55. But $(55)^2 = [\chi_H, \chi_H] > |G:H|$, a contradiction. By the same reasoning as before, we can prove that $|H/H'| \neq 2^m \cdot 3^n$, where $1 \leq m \leq 3$ and $0 \leq n \leq 1$. If $|H/H'| = 2^m \cdot 3^n$, where m = 4 or 5, then the Sylow 7 subgroup of H' is normal in H', and so it is normal in *G*, a contradiction. Now we assume that $7 \mid |H/H'|$. Let $H' < A \lhd H$ such that |H/A| = 7, then $H/A \leq Z(G/A)$. Since Mult $(L_2(11)) = 2$, we have $G/A \cong H/A \times L_2(11)$. Hence G has a normal series $1 \leq N \leq M \leq G$ such that $M/N \cong L_2(11)$ and $|N| = 2^{\alpha} \cdot 3$, where $\alpha = 4$ or 5. Let φ be an irreducible component of χ_M , and let η be an irreducible

component of φ_N . Then $\varphi(1) = 55$ and $\eta(1) = 1$ by the Clifford theorem (see Theorem 6.2 in [5]). Since $|\operatorname{Aut}(N)|$ is not divided by 5 and 11, one has that $t = |M : I_M(\eta)| = 1$. Therefore $(55)^2 = [\varphi_N, \varphi_N] > |M : N|$, a contradiction.

Suppose that $K/H \cong M_{11}$. Since $|\operatorname{Out}(M_{11})| = \operatorname{Mult}(M_{11}) = 1$, we have $G \cong H \times M_{11}$, where $|H| = 2^3 \cdot 7$. Let $\theta \in \operatorname{Irr}(H)$ such that $[\chi_H, \theta] \neq 0$. Since $\theta(1) | \chi(1)$ and $\theta(1) | |H|$, one has that $\theta(1) = 7$, which implies that H is a Frobenius group with an elementary kernel of order 8 and a cyclic complement of order 7.

Suppose that $K/H \cong M_{22}$. Since $|G| = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, we have that |H| = 1 and $G = K \cong M_{22}$, which completes the proof of Theorem *C*.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HX carried out the study of the Mathieu groups M_{11} , M_{12} and M_{23} . YY carried out the study of the Mathieu group M_{24} . GC carried out the study of the Mathieu group M_{22} . All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China. ²Department of Mathematics and Information Engineering, Chongqing University of Education, Chongqing, 400067, China.

Acknowledgements

Article is supported by the Natural Science Foundation of China (Grant No. 11271301; 11171364), The Fundamental Research Funds for the Central Universities (Grant No. XDJK2009C074), Graduate-Innovation Funds of Science of SWU (Grant No. ky2009013) and Natural Science Foundation Project of CQ CSTC (Grant No. cstc2011jjA00020).

Received: 29 December 2012 Accepted: 15 April 2013 Published: 26 April 2013

References

- 1. Huppert, B: Some simple groups which are determined by the set of their character degrees, I. III. J. Math. 44(4), 828-842 (2000)
- Huppert, B: Some simple groups which are determined by the set of their character degrees, II. Rend. Semin. Mat. Univ. Padova 115, 1-13 (2006)
- 3. Wakefield, TP: Verifying Huppert's conjecture for PSL₃(q) and PSU₃(q²). Commun. Algebra 37, 2887-2906 (2009)
- 4. Tong-Viet, HP, Wakefield, TP: On Huppert's conjecture for $G^2(q)$, $q \ge 7$. J. Pure Appl. Algebra **216**, 2720-2729 (2012)
- 5. Isaacs, IM: Character Theory of Finite Groups. Academic Press, New York (1976)
- 6. Conway, JH, Nortion, SP, Parker, RA, Wilson, RA: Atlas of Finite Groups. Oxford University Press, Oxford (1985)

doi:10.1186/1029-242X-2013-209

Cite this article as: Xu et al.: A new characterization of *Mathieu*-groups by the order and one irreducible character degree. *Journal of Inequalities and Applications* 2013 2013:209.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com