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Abstract
In this paper, we present integral versions of some recently proved results which
refine the Jensen-Steffensen inequality. We prove the n-exponential convexity and
log-convexity of the functions associated with the linear functionals constructed from
the refined inequalities and also prove the monotonicity property of the generalized
Cauchy means. Finally, we give several examples of the families of functions for which
the results can be applied.
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1 Introduction
Inmathematics, Jensen’s inequality is a powerfulmathematical tool which relates the value
of a convex function of an integral to the integral of the convex function. A basic form of
the Jensen weighted integral inequality is given below.

Theorem . Let g,p : [a,b] → R be functions defined on [a,b] and J be an interval such
that g(x) ∈ J for every x ∈ [a,b]. Let f : J → R be a convex function and suppose that p,
pg , p · (f ◦ g) are all integrable on [a,b]. If p(u) ≥  on [a,b] and

∫ b
a p(u)du > , then the

inequality

f
(∫ b

a p(u)g(u)du∫ b
a p(u)du

)
≤

∫ b
a p(u)f (g(u))du∫ b

a p(u)du
()

holds.

Theorem . Let g,p : [a,b] → R be functions defined on [a,b] and J be an interval such
that g(x) ∈ J for every x ∈ [a,b]. Let f : J → R be a convex function and suppose that p, pg ,
p · (f ◦ g) are all integrable on [a,b]. If g is monotonic on [a,b] and p satisfies

 ≤
∫ x

a
p(u)du≤

∫ b

a
p(u)du for every x ∈ [a,b] and

∫ b

a
p(u)du > , ()

then () holds.
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Inequality () under conditions from Theorem . is known as the Jensen-Steffensen
weighted integral inequality.
In Section , we present an integral version of some results recently proved in []. We

define linear functionals constructed from the non-negative difference of the refined in-
equalities and give mean value theorems for the linear functionals. In Section , we give
definitions and results that will be needed later. Further, we investigate the n-exponential
convexity and log-convexity of the functions associated with the linear functionals and
also deduce Lyapunov-type inequalities. We also prove the monotonicity property of the
generalized Cauchy means obtained via these functionals. Finally, in Section , we give
several examples of the families of functions for which the obtained results can be applied.

2 Main results
The following theorem is our first main result.

Theorem . Let g,p : [a,b] → R be functions defined on [a,b] such that g is monotonic
and differentiable. Let J be an interval such that g(x) ∈ J for every x ∈ [a,b] and f : J → R

be a differentiable convex function. If p, pg , p · (f ◦ g) are all integrable on [a,b] and ()
holds, then the function

F(x) =
∫ x
a p(u)f (g(u))du + f (g(x))

∫ b
x p(u)du∫ b

a p(u)du

– f
(∫ x

a p(u)g(u)du + g(x)
∫ b
x p(u)du∫ b

a p(u)du

)
()

is increasing on [a,b], i.e., for all x, y ∈ [a,b] such that a ≤ x≤ y ≤ b, we have

 ≤ F(x)≤ F(y) ≤
∫ b
a p(u)f (g(u))du∫ b

a p(u)du
– f

(∫ b
a p(u)g(u)du∫ b

a p(u)du

)
. ()

Proof We have

F ′(x) =
g ′(x)

∫ b
x p(u)du∫ b

a p(u)du

[
f ′(g(x)) – f ′

(∫ x
a p(u)g(u)du + g(x)

∫ b
x p(u)du∫ b

a p(u)du

)]
,

where
∫ b
x p(u)du∫ b
a p(u)du

≥  as () holds. The claim will follow if F ′(x) ≥ , i.e., if

g ′(x)
∫ b
x p(u)du∫ b

a p(u)du
≥  ()

and

f ′(g(x)) – f ′
(∫ x

a p(u)g(u)du + g(x)
∫ b
x p(u)du∫ b

a p(u)du

)
≥  ()
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hold or if

g ′(x)
∫ b
x p(u)du∫ b

a p(u)du
≤  ()

and

f ′(g(x)) – f ′
(∫ x

a p(u)g(u)du + g(x)
∫ b
x p(u)du∫ b

a p(u)du

)
≤  ()

hold.
Now, we discuss the following two cases.

Case I. If g is increasing, then () holds and g(x) –
∫ x
a p(u)g(u)du+g(x)

∫ b
x p(u)du∫ b

a p(u)du
≥ . Since f is

a differentiable convex function defined on J , f ′ is increasing on J , and so () holds, which
together with () implies that F ′(x)≥ .

Case II. If g is decreasing, then () holds and g(x) –
∫ x
a p(u)g(u)du+g(x)

∫ b
x p(u)du∫ b

a p(u)du
≤ . Again, by

using the convexity of f , () holds, which together with () implies that F ′(x) ≥ .
Now, as F(x) is increasing on [a,b], for all x, y ∈ [a,b] such that a≤ x ≤ y≤ b, we have

F(a)≤ F(x)≤ F(y) ≤ F(b). ()

At x = a and at x = b, () gives F(a) =  and F(b) =
∫ b
a p(u)f (g(u))du∫ b

a p(u)du
– f (

∫ b
a p(u)g(u)du∫ b
a p(u)du

) respectively.
By using these values of F(a) and F(b) in (), we have (). �

The second main result states the following.

Theorem . Let all the conditions of Theorem . be satisfied. Then the function

F̄(x) =
∫ b
x p(u)f (g(u))du + f (g(x))

∫ x
a p(u)du∫ b

a p(u)du

– f
(∫ b

x p(u)g(u)du + g(x)
∫ x
a p(u)du∫ b

a p(u)du

)
()

is decreasing on [a,b], i.e., for all x, y ∈ [a,b] such that a ≤ x≤ y≤ b, we have

 ≤ F̄(y) ≤ F̄(x) ≤
∫ b
a p(u)f (g(u))du∫ b

a p(u)du
– f

(∫ b
a p(u)g(u)du∫ b

a p(u)du

)
. ()

Proof We have

F̄ ′(x) =
g ′(x)

∫ x
a p(u)du∫ b

a p(u)du

[
f ′(g(x)) – f ′

(∫ b
x p(u)g(u)du + g(x)

∫ x
a p(u)du∫ b

a p(u)du

)]
,

where
∫ x
a p(u)du∫ b
a p(u)du

≥  as () holds. The claim will follow if F̄ ′(x) ≤ , i.e., if

g ′(x)
∫ x
a p(u)du∫ b

a p(u)du
≥  ()
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and

f ′(g(x)) – f ′
(∫ b

x p(u)g(u)du + g(x)
∫ x
a p(u)du∫ b

a p(u)du

)
≤  ()

hold or if

g ′(x)
∫ x
a p(u)du∫ b

a p(u)du
≤  ()

and

f ′(g(x)) – f ′
(∫ b

x p(u)g(u)du + g(x)
∫ x
a p(u)du∫ b

a p(u)du

)
≥  ()

hold.
Now, we discuss the following two cases.

Case I. If g is increasing, then () holds and g(x) –
∫ b
x p(u)g(u)du+g(x)

∫ x
a p(u)du∫ b

a p(u)du
≤ . Since f is

a differentiable convex function defined on J , f ′ is increasing on J and so () holds, which
together with () implies that F̄ ′(x) ≤ .

Case II. If g is decreasing, then () holds and g(x) –
∫ b
x p(u)g(u)du+g(x)

∫ x
a p(u)du∫ b

a p(u)du
≥ . Again,

by using the convexity of f , () holds, which together with () implies that F̄ ′(x)≤ .
Now, as F̄ is decreasing on [a,b], for any x, y ∈ [a,b] such that a ≤ x≤ y ≤ b, we have

F̄(b)≤ F̄(y) ≤ F̄(x)≤ F̄(a). ()

At x = a and at x = b, () gives F̄(a) =
∫ b
a p(u)f (g(u))du∫ b

a p(u)du
– f (

∫ b
a p(u)g(u)du∫ b
a p(u)du

) and F̄(b) =  respec-

tively. By using these values of F̄(a) and F̄(b) in (), we have (). �

Let us observe the inequalities () and (). Motivated by them, we define two linear
functionals �i (i = , )

�(x, y;p, g, f ) = F(y) – F(x), x ≤ y, ()

�(x, y;p, g, f ) = F̄(x) – F̄(y), x≤ y, ()

where x, y ∈ [a,b], p is a function satisfying (), g is a monotone differentiable function
and the functions F and F̄ are as in () and () respectively. If f is a differentiable convex
function defined on J , then Theorems . and . imply that �i(x, y;p, g, f ) ≥ , i = , .
Now, we give mean value theorems for the functionals �i, i = , . These theorems enable
us to define various classes of means that can be expressed in terms of linear functionals.
First, we state the Lagrange-type mean value theorem related to �i, i = , .

Theorem . Let x, y ∈ [a,b] be such that x ≤ y, p be a function satisfying () and g be a
monotone differentiable function. Let J be a compact interval such that g(x) ∈ J for every
x ∈ [a,b] and f ∈ C(J). Suppose that � and � are linear functionals defined as in ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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and (). Then there exist ξ, ξ ∈ J such that

�i(x, y;p, g, f ) =
f ′′(ξi)


�i(x, y;p, g, f), i = , , ()

where f(x) = x.

Proof Analogous to the proof of Theorem . in []. �

The following theorem is a new analogue of the classical Cauchy mean value theorem,
related to the functionals �i, i = , .

Theorem . Let x, y ∈ [a,b] be such that x ≤ y, p be a function satisfying () and g be a
monotone differentiable function. Let J be a compact interval such that g(x) ∈ J for every
x ∈ [a,b] and f ,k ∈ C(J). Suppose that � and � are linear functionals defined as in ()
and (). Then there exist ξ, ξ ∈ J such that

�i(x, y;p, g, f )
�i(x, y;p, g,k)

=
f ′′(ξi)
k′′(ξi)

, i = , , ()

provided that the denominators are not equal to zero.

Proof Analogous to the proof of Theorem . in []. �

Remark .
(i) By taking f (x) = xs and k(x) = xq in (), where s,q ∈R \ {, } are such that s �= q, we

have

ξ
s–q
i =

q(q – )�i(x, y;p, g,xs)
s(s – )�i(x, y;p, g,xq)

, i = , .

(ii) If the inverse of the function f ′′
k′′ exists, then () gives

ξi =
(
f ′′

k′′

)–(
�i(x, y;p, g, f )
�i(x, y;p, g,k)

)
, i = , .

3 n-exponential convexity and log-convexity of the functions associated with
integral Jensen-Steffensen differences

In this section, we give definitions and properties which will be needed for the proofs of
our results. In the sequel, let I be an open interval in R.
We recall the following definition of a convex function (see [, p.]).

Definition  A function f : I →R is convex on I if

(x – x)f (x) + (x – x)f (x) + (x – x)f (x) ≥  ()

holds for all x,x,x ∈ I such that x < x < x.

The following proposition will be useful further (see [, p.]).

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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Proposition . If f is a convex function on an interval I and if x ≤ y, x ≤ y, x �= x,
y �= y, then the following inequality is valid:

f (x) – f (x)
x – x

≤ f (y) – f (y)
y – y

. ()

If the function f is concave, the inequality reverses (see [, p.]).

Another interesting type of convexity we consider is the n-exponential convexity.

Definition  A function h : I →R is n-exponentially convex in the Jensen sense on I if

n∑
i,j=

αiαjh
(
xi + xj


)
≥ 

holds for every αi ∈R and xi ∈ I , i = , . . . ,n (see [, ]).

Definition A function h : I →R is n-exponentially convex if it is n-exponentially convex
in the Jensen sense and continuous on I .

Remark . From the above definition, it is clear that -exponentially convex functions in
the Jensen sense are non-negative functions. Also, n-exponentially convex functions in the
Jensen sense are k-exponentially convex functions in the Jensen sense for all k ∈ N, k ≤ n.

Positive semi-definite matrices represent a basic tool in our study. By the definition
of positive semi-definite matrices and some basic linear algebra, we have the following
proposition.

Proposition . If h is n-exponentially convex in the Jensen sense, then the matrix
[h( xi+xj )]ki,j= is a positive semi-definite matrix for all k ∈N, k ≤ n. Particularly,

det

[
h
(
xi + xj


)]k

i,j=
≥  for every k ∈ N, k ≤ n, xi ∈ I, i = , . . . ,n.

Definition  A function h : I → R is exponentially convex in the Jensen sense if it is
n-exponentially convex in the Jensen sense for all n ∈N.

Definition  A function h : I →R is exponentially convex if it is exponentially convex in
the Jensen sense and continuous.

Lemma . A function h : I → (,∞) is log-convex in the Jensen sense, that is, for every
x, y ∈ I ,

h
(
x + y


)
≤ h(x)h(y)

holds if and only if the relation

αh(x) + αβh
(
x + y


)
+ βh(y) ≥ 

holds for every α,β ∈ R and x, y ∈ I .

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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Remark . It follows that a function is log-convex in the Jensen sense if and only if it
is -exponentially convex in the Jensen sense. Also, by using the basic convexity theory, a
function is log-convex if and only if it is -exponentially convex. For more results about
log-convexity, see [] and the references therein.

Definition  The second-order divided difference of a function f : [a,b]→R at mutually
distinct points y, y, y ∈ [a,b] is defined recursively by

[yi, yi+; f ] =
f (yi+) – f (yi)

yi+ – yi
, i = , ,

[y, y, y; f ] =
[y, y; f ] – [y, y; f ]

y – y
. ()

Remark . The value [y, y, y; f ] is independent of the order of the points y, y and
y. This definition may be extended to include the case in which some or all the points
coincide (see [, p.]). Namely, taking the limit y → y in (), we get

lim
y→y

[y, y, y; f ] = [y, y, y; f ] =
f (y) – f (y) – f ′(y)(y – y)

(y – y)
, y �= y,

provided that f ′ exists; and furthermore, taking the limits yi → y, i = , , in (), we get

lim
y→y

lim
y→y

[y, y, y; f ] = [y, y, y; f ] =
f ′′(y)


provided that f ′′ exists.

The following definition of a real-valued convex function is characterized by the second-
order divided difference (see [, p.]).

Definition  A function f : [a,b] → R is said to be convex if and only if for all choices of
three distinct points y, y, y ∈ [a,b], [y, y, y; f ] ≥ .

Next, we study the n-exponential convexity and log-convexity of the functions associ-
ated with the linear functionals �i (i = , ) defined in () and ().

Theorem . Let � = {fs : s ∈ I ⊆ R} be a family of differentiable functions defined on J
such that the function s �→ [y, y, y; fs] is n-exponentially convex in the Jensen sense on I
for every three mutually distinct points y, y, y ∈ J . Let �i (i = , ) be linear functionals
defined as in () and (). Then the following statements hold.

(i) The function s �→ �i(x, y;p, g, fs) is n-exponentially convex in the Jensen sense on I
and the matrix [�i(x, y;p, g, f sj+sk


)]mj,k= is a positive semi-definite matrix for all

m ∈N,m ≤ n and s, . . . , sm ∈ I . Particularly,

det
[
�i(x, y;p, g, f sj+sk


)
]m
j,k= ≥ , ∀m ∈N, m ≤ n.

(ii) If the function s �→ �i(x, y;p, g, fs) is continuous on I , then it is n-exponentially
convex on I .

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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Proof The idea of the proof is the same as that of Theorem . in [].
(i) Let αj ∈R (j = , . . . ,n) and consider the function

ϕ(y) =
n∑

j,k=

αjαkf sj+sk


(y),

where sj ∈ I and f sj+sk


∈ �. Then

[y, y, y;ϕ] =
n∑

j,k=

αjαk[y, y, y; f sj+sk


]

and since [y, y, y; f sj+sk


] is n-exponentially convex in the Jensen sense on I by assumption,
it follows that

[y, y, y;ϕ] =
n∑

j,k=

αjαk[y, y, y; f sj+sk


] ≥ .

And so, by using Definition , we conclude that ϕ is a convex function. Hence,

�i(x, y;p, g,ϕ) ≥ , i = , ,

which is equivalent to

n∑
j,k=

αjαk�i(x, y;p, g, f sj+sk


) ≥ , i = , ,

and so we conclude that the function s �→ �i(x, y;p, g, fs) is n-exponentially convex in the
Jensen sense on I .
The remaining part follows from Proposition ..
(ii) If the function s �→ �i(x, y;p, g, fs) is continuous on I , then from (i) and by Defini-

tion , it follows that it is n-exponentially convex on I . �

The following corollary is an immediate consequence of the above theorem.

Corollary . Let � = {fs : s ∈ I ⊆ R} be a family of differentiable functions defined on
J such that the function s �→ [y, y, y; fs] is exponentially convex in the Jensen sense on I
for every three mutually distinct points y, y, y ∈ J . Let �i (i = , ) be linear functionals
defined as in () and (). Then the following statements hold.

(i) The function s �→ �i(x, y;p, g, fs) is exponentially convex in the Jensen sense on I and
the matrix [�i(x, y;p, g, f sj+sk


)]nj,k= is a positive semi-definite matrix for all n ∈N and

s, . . . , sn ∈ I .
(ii) If the function s �→ �i(x, y;p, g, fs) is continuous on I , then it is exponentially convex

on I .

Corollary . Let � = {fs : s ∈ I ⊆ R} be a family of differentiable functions defined on J
such that the function s �→ [y, y, y; fs] is -exponentially convex in the Jensen sense on I

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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for every three mutually distinct points y, y, y ∈ J . Let �i (i = , ) be linear functionals
defined as in () and (). Further, assume �i(x, y;p, g, fs) (i = , ) is strictly positive for
fs ∈ �. Then the following statements hold.

(i) If the function s �→ �i(x, y;p, g, fs) is continuous on I , then it is -exponentially
convex on I and so it is log-convex and for r, s, t ∈ I such that r < s < t, we have

[
�i(x, y;p, g, fs)

]t–r ≤ [
�i(x, y;p, g, fr)

]t–s[
�i(x, y;p, g, ft)

]s–r
, ()

known as Lyapunov’s inequality.
(ii) If the function s �→ �i(x, y;p, g, fs) is differentiable on I , then for every s,q,u, v ∈ I

such that s ≤ u and q ≤ v, we have

μs,q(x, y,p, g,�i,�) ≤ μu,v(x, y,p, g,�i,�), i = , , ()

where

μs,q(x, y,p, g,�i,�) =

⎧⎪⎨
⎪⎩

(
�i(x,y;p,g,fs)
�i(x,y;p,g,fq)

) 
s–q , s �= q,

exp
( d

ds�i(x,y;p,g,fs)
�i(x,y;p,g,fs)

)
, s = q,

()

for fs, fq ∈ �.

Proof The idea of the proof is the same as that of Corollary . in [].
(i) The claim that the function s �→ �i(x, y;p, g, fs) is log-convex on I is an immediate

consequence of Theorem . and Remark ., and () can be obtained by replacing the
convex function f with the convex function f (z) = log�i(x, y;p, g, fz) for z = r, s, t in (),
where r, s, t ∈ I such that r < s < t.
(ii) Since by (i) the function s �→ �i(x, y;p, g, fs) is log-convex on I , that is, the func-

tion s �→ log�i(x, y;p, g, fs) is convex on I . Applying Proposition . with setting f (z) =
log�i(x, y;p, g, fz) (i = , ), we get

log�i(x, y;p, g, fs) – log�i(x, y;p, g, fq)
s – q

≤ log�i(x, y;p, g, fu) – log�i(x, y;p, g, fv)
u – v

()

for s ≤ u, q ≤ v, s �= q, u �= v; and therefore, we conclude that

μs,q(x, y,p, g,�i,�) ≤ μu,v(x, y,p, g,�i,�), i = , .

If s = q, we consider the limit when q → s in () and conclude that

μs,s(x, y,p, g,�i,�) ≤ μu,v(x, y,p, g,�i,�), i = , .

The case u = v can be treated similarly. �

Remark . Note that the results from Theorem ., Corollary . and Corollary .
still hold when two of the points y, y, y ∈ J coincide, say y = y, for a family of differ-
entiable functions fs such that the function s �→ [y, y, y; fs] is n-exponentially convex in

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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the Jensen sense (exponentially convex in the Jensen sense, log-convex in Jensen sense on
I); and furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark . and by using suitable characterizations of convexity.

4 Examples
In this section, we present several families of functions which fulfill the conditions of The-
orem ., Corollary ., Corollary . and Remark .. This enables us to construct large
families of functions which are exponentially convex.

Example . Consider the family of functions

� =
{
gs :R → [,∞) : s ∈ R

}

defined by

gs(x) =

⎧⎨
⎩


s e

sx, s �= ,

x

, s = .

We have d
dx gs(x) = esx > , which shows that gs is convex on R for every s ∈ R and

s �→ d
dx gs(x) is exponentially convex by definition (see also []). In order to prove that

the function s �→ [y, y, y; gs] is exponentially convex, it is enough to show that

n∑
j,k=

αjαk[y, y, y; g sj+sk


] =

[
y, y, y;

n∑
j,k=

αjαkg sj+sk


]
≥ , ()

∀n ∈ N, αj, sj ∈ R, j = , . . . ,n. By Definition , () will hold if ϒ(x) :=
∑n

j,k= αjαkg sj+sk


is convex. Since s �→ g ′′
s (x) is exponentially convex, i.e.,

∑n
j,k= αjαkg ′′

sj+sk


≥ , ∀n ∈ N,

αj, sj ∈ R, j = , . . . ,n, showing the convexity of ϒ(x) and so () holds. Now, as the func-
tion s �→ [y, y, y; gs] is exponentially convex, s �→ [y, y, y; gs] is exponentially convex
in the Jensen sense and by using Corollary ., we have s �→ �i(x, y;p, g, gs) (i = , ) are
exponentially convex in the Jensen sense. Since these mappings are continuous (although
the mapping s �→ gs is not continuous for s = ), so s �→ �i(x, y;p, g, gs) (i = , ) are expo-
nentially convex.
For this family of functions, by taking � = � in (), 	i

s,q; := μs,q(x, y,p, g,�i,�) (i =
, ) are of the from

	
s,q; =

(
q

s
·

∫ y
x p(u)e

sg(u) du + esg(y)
∫ b
y p(u)du – esg(x)

∫ b
x p(u)du + (esX̂ – esŶ )

∫ b
a p(u)du∫ y

x p(u)eqg(u) du + eqg(y)
∫ b
y p(u)du – eqg(x)

∫ b
x p(u)du + (eqX̂ – eŶ )

∫ b
a p(u)du

) 
s–q

,

s �= q �= ,

	
s,; =

(

s

·
∫ y
x p(u)e

sg(u) du + esg(y)
∫ b
y p(u)du – esg(x)

∫ b
x p(u)du + (esX̂ – esŶ )

∫ b
a p(u)du∫ y

x p(u)g(u)du + g(y)
∫ b
y p(u)du – g(x)

∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du

) 
s
,

s �= ,
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s,s; = exp

⎛
⎜⎜⎜⎜⎝

∫ y
x p(u)e

sg(u)(sg(u) – )du + esg(y)(sg(y) – )
∫ b
y p(u)du

– esg(x)(sg(x) – )
∫ b
x p(u)du + (esX̂(sX̂ – ) – esŶ (sŶ – ))

∫ b
a p(u)du

s(
∫ y
x p(u)esg(u) du + esg(y)

∫ b
y p(u)du – esg(x)

∫ b
x p(u)du + (esX̂ – esŶ )

∫ b
a p(u)du)

⎞
⎟⎟⎟⎟⎠ ,

s �= ,

	
,; = exp

(



·
∫ y
x p(u)g

(u)du + g(y)
∫ b
y p(u)du – g(x)

∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du∫ y

x p(u)g(u)du + g(y)
∫ b
y p(u)du – g(x)

∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du

)
,

	
s,q; =

(
q

s
·

∫ y
x p(u)e

sg(u) du + esg(x)
∫ x
a p(u)du – esg(y)

∫ y
a p(u)du + (esỸ – esX̃)

∫ b
a p(u)du∫ y

x p(u)eqg(u) du + eqg(x)
∫ x
a p(u)du – eqg(y)

∫ y
a p(u)du + (eqỸ – eqX̃ )

∫ b
a p(u)du

) 
s–q

,

s �= q �= ,

	
s,; =

(

s

·
∫ y
x p(u)e

sg(u) du + esg(x)
∫ x
a p(u)du – esg(y)

∫ y
a p(u)du + (esỸ – esX̃)

∫ b
a p(u)du∫ y

x p(u)g(u)du + g(x)
∫ x
a p(u)du – g(y)

∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du

) 
s
,

s �= ,

	
s,s; = exp

⎛
⎜⎜⎜⎝

∫ y
x p(u)e

sg(u)(sg(u) – )du + esg(x)(sg(x) – )
∫ x
a p(u)du

– esg(y)(sg(y) – )
∫ y
a p(u)du + (esỸ (sỸ – ) – esX̃(sX̃ – ))

∫ b
a p(u)du

s(
∫ y
x p(u)esg(u) du + esg(x)

∫ x
a p(u)du – esg(y)

∫ y
a p(u)du + (esỸ – esX̃)

∫ b
a p(u)du)

⎞
⎟⎟⎟⎠ ,

s �= ,

	
,; = exp

(



·
∫ y
x p(u)g

(u)du + g(x)
∫ x
a p(u)du – g(y)

∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du∫ y

x p(u)g(u)du + g(x)
∫ x
a p(u)du – g(y)

∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du

)
,

where

X̂ =
∫ x
a p(u)g(u)du + g(x)

∫ b
x p(u)du∫ b

a p(u)du
, Ŷ =

∫ y
a p(u)g(u)du + g(y)

∫ b
y p(u)du∫ b

a p(u)du
,

X̃ =
∫ b
x p(u)g(u)du + g(x)

∫ x
a p(u)du∫ b

a p(u)du
, Ỹ =

∫ b
y p(u)g(u)du + g(y)

∫ y
a p(u)du∫ b

a p(u)du
.

()

By using (),	i
s,q; (i = , ) aremonotonous in parameters s and q. By using Theorem .,

it follows that

Ms,q(x, y,p, g,�i,�) = logμs,q(x, y,p, g,�i,�), i = , ,

satisfy minx∈[a,b] g(x) ≤ Ms,q(x, y,p, g,�i,�) ≤ maxx∈[a,b] g(x), showing that Ms,q(x, y,p, g,
�i,�) (i = , ) are means.

Example . Consider the family of functions

� =
{
fs : (,∞)→R : s ∈R

}
defined by

fs(x) =

⎧⎪⎪⎨
⎪⎪⎩

xs
s(s–) , s �= , ,

– lnx, s = ,

x lnx, s = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/20
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Here, d
dx fs(x) = xs– = e(s–) lnx > , which shows that fs is convex for x >  and s �→

d
dx fs(x) is exponentially convex by definition (see also []). It is easy to prove that the
function s �→ [y, y, y; fs] is exponentially convex. Arguing as in Example ., we have
s �→ �i(x, y;p, g, fs) (i = , ) are exponentially convex.
If s ∈ R \ {, } and r, t ∈ {, } such that r < s < t, then from () we have

�i(x, y;p, g, fs) ≤
[
�i(x, y;p, g, fr)

] t–s
t–r

[
�i(x, y;p, g, ft)

] s–r
t–r . ()

If r < t < s or s < r < t, then opposite inequalities hold in ().
Particularly, for  < s <  and for i = , , we have


s(s – )

(∫ y
x p(u)g

s(u)du + gs(y)
∫ b
y p(u)du – gs(x)

∫ b
x p(u)du∫ b

a p(u)du
+ X̂s – Ŷ s

)

≤
(
–

∫ y
x p(u) ln(g(u))du + ln(g(y))

∫ b
y p(u)du – ln(g(x))

∫ b
x p(u)du∫ b

a p(u)du
– ln X̂ + ln Ŷ

)–s

×
(∫ y

x p(u)g(u) ln(g(u))du + g(y) ln(g(y))
∫ b
y p(u)du – g(x) ln(g(x))

∫ b
x p(u)du∫ b

a p(u)du

+ ln X̂X̂ – ln Ŷ Ŷ
) s

and


s(s – )

(∫ y
x p(u)g

s(u)du + gs(x)
∫ x
a p(u)du – gs(y)

∫ y
a p(u)du∫ b

a p(u)du
+ Ỹ s – X̃s

)

≤
(
–

∫ y
x p(u) ln(g(u))du + ln(g(x))

∫ x
a p(u)du – ln(g(y))

∫ y
a p(u)du∫ b

a p(u)du
– ln Ỹ + ln X̃

)–s

×
(∫ y

x p(u)g(u) ln(g(u))du + g(x) ln(g(x))
∫ x
a p(u)du – g(y) ln(g(y))

∫ y
a p(u)du∫ b

a p(u)du

+ ln Ỹ Ỹ – ln X̃X̃
) s

respectively, where X̂, Ŷ , X̃ and Ỹ are the same as defined in ().

By taking � = � in (), 	i
s,q; := μs,q(x, y,p, g,�i,�) (i = , ) for x, y > , where x, y ∈

[a,b] are of the form

	
s,q; =

⎛
⎜⎜⎜⎜⎝
q(q – )
s(s – )

·

∫ y
x p(u)g

s(u)du + gs(y)
∫ b
y p(u)du

– gs(x)
∫ b
x p(u)du + (X̂s – Ŷ s)

∫ b
a p(u)du∫ y

x p(u)g
q(u)du + gq(y)

∫ b
y p(u)du

– gq(x)
∫ b
x p(u)du + (X̂q – Ŷ q)

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s–q

, s �= q �= , ,

	
s,; =

⎛
⎜⎜⎜⎜⎝

–
s(s – )

·

∫ y
x p(u)g

s(u)du + gs(y)
∫ b
y p(u)du

– gs(x)
∫ b
x p(u)du + (X̂s – Ŷ s)

∫ b
a p(u)du∫ y

x p(u) ln(g(u))du + ln(g(y))
∫ b
y p(u)du

– ln(g(x))
∫ b
x p(u)du + (ln X̂ – ln Ŷ )

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s

, s �= , ,
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s,; =

⎛
⎜⎜⎜⎜⎝


s(s–) (

∫ y
x p(u)g

s(u)du + gs(y)
∫ b
y p(u)du

– gs(x)
∫ b
x p(u)du + (X̂s – Ŷ s)

∫ b
a p(u)du)∫ y

x p(u)g(u) ln(g(u))du + g(y) ln(g(y))
∫ b
y p(u)du

– g(x) ln(g(x))
∫ b
x p(u)du + (ln X̂X̂ – ln Ŷ Ŷ )

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s–

, s �= , ,

	
,; = –

∫ y
x p(u)g(u) ln(g(u))du + g(y) ln(g(y))

∫ b
y p(u)du

– g(x) ln(g(x))
∫ b
x p(u)du + (X̂ ln X̂ – Ŷ ln Ŷ )

∫ b
a p(u)du∫ y

x p(u) ln(g(u))du + ln(g(y))
∫ b
y p(u)du

– ln(g(x))
∫ b
x p(u)du + (ln X̂ – ln Ŷ )

∫ b
a p(u)du

,

	
s,s; = exp

⎛
⎜⎜⎜⎜⎝

 – s
s(s – )

+

∫ y
x p(u)g

s(u) ln(g(u))du + gs(y) ln(g(y))
∫ b
y p(u)du

– gs(x) ln(g(x))
∫ b
x p(u)du + (X̂s ln X̂ – Ŷ s ln Ŷ )

∫ b
a p(u)du∫ y

x p(u)g
s(u)du + gs(y)

∫ b
y p(u)du

– gs(x)
∫ b
x p(u)du + (X̂s – Ŷ s)

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠ ,

s �= , ,

	
,; = exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ y
x p(u) ln(g(u))( + ln(g(u)))du + ln(g(y))( + ln(g(y)))

∫ b
y p(u)du

– ln(g(x))( + ln(g(x)))
∫ b
x p(u)du + (ln X̂( + ln X̂)

– ln Ŷ ( + ln Ŷ ))
∫ b
a p(u)du

(
∫ y
x p(u) ln(g(u))du + ln(g(y))

∫ b
y p(u)du

– ln(g(x))
∫ b
x p(u)du + (ln X̂ – ln Ŷ )

∫ b
a p(u)du)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

	
,; = exp

⎛
⎜⎜⎜⎜⎜⎝– +

∫ b
a p(u)du

(
∫ y
x p(u)g(u) ln

(g(u))du + g(y) ln(g(y))
∫ b
y p(u)du

– g(x) ln(g(x))
∫ b
x p(u)du) + X̂ ln X̂ – Ŷ ln Ŷ

∫ b
a p(u)du

(
∫ y
x p(u)g(u) ln(g(u))du + g(y) ln(g(y))

∫ b
y p(u)du

– g(x) ln(g(x))
∫ b
x p(u)du) + (X̂ ln X̂ – Ŷ ln Ŷ )

⎞
⎟⎟⎟⎟⎟⎠ ,

	
s,q; =

⎛
⎜⎜⎜⎝q(q – )

s(s – )
·

∫ y
x p(u)g

s(u)du + gs(x)
∫ x
a p(u)du

– gs(y)
∫ y
a p(u)du + (Ỹ s – X̃s)

∫ b
a p(u)du∫ y

x p(u)g
q(u)du + gq(x)

∫ x
a p(u)du

– gq(y)
∫ y
a p(u)du + (Ỹ q – X̃q)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s–q

, s �= q �= , ,

	
s,; =

⎛
⎜⎜⎜⎝ –
s(s – )

·

∫ y
x p(u)g

s(u)du + gs(x)
∫ x
a p(u)du

– gs(y)
∫ y
a p(u)du + (Ỹ s – X̃s)

∫ b
a p(u)du∫ y

x p(u) ln(g(u))du + ln(g(x))
∫ x
a p(u)du

– ln(g(y))
∫ y
a p(u)du + (ln Ỹ – ln X̃)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s

, s �= , ,

	
s,; =

⎛
⎜⎜⎜⎝


s(s–) (

∫ y
x p(u)g

s(u)du + gs(x)
∫ x
a p(u)du

– gs(y)
∫ y
a p(u)du + (Ỹ s – X̃s)

∫ b
a p(u)du)∫ y

x p(u)g(u) ln(g(u))du + g(x) ln(g(x))
∫ x
a p(u)du

– g(y) ln(g(y))
∫ y
a p(u)du + (ln Ỹ Ỹ – ln X̃X̃)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s–

, s �= , ,

	
,; = –

∫ y
x p(u)g(u) ln(g(u))du + g(x) ln(g(x))

∫ x
a p(u)du

– g(y) ln(g(y))
∫ y
a p(u)du + (Ỹ ln Ỹ – X̃ ln X̃)

∫ b
a p(u)du∫ y

x p(u) ln(g(u))du + ln(g(x))
∫ x
a p(u)du

– ln(g(y))
∫ y
a p(u)du + (ln Ỹ – ln X̃)

∫ b
a p(u)du

,

	
s,s; = exp

⎛
⎜⎜⎜⎝  – s
s(s – )

+

∫ y
x p(u)g

s(u) ln(g(u))du + gs(x) ln(g(x))
∫ x
a p(u)du

– gs(y) ln(g(y))
∫ y
a p(u)du + (Ỹ s ln Ỹ – X̃s ln X̃)

∫ b
a p(u)du∫ y

x p(u)g
s(u)du + gs(x)

∫ x
a p(u)du

– gs(y)
∫ y
a p(u)du + (Ỹ s – X̃s)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠ ,

s �= , ,
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,; = exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ y
x p(u) ln(g(u))( + ln(g(u)))du + ln(g(x))( + ln(g(x)))

∫ x
a p(u)du

– ln(g(y))( + ln(g(y)))
∫ y
a p(u)du + (ln Ỹ ( + ln Ỹ )

– ln X̃( + ln X̃))
∫ b
a p(u)du

(
∫ y
x p(u) ln(g(u))du + ln(g(x))

∫ x
a p(u)du

– ln(g(y))
∫ y
a p(u)du + (ln Ỹ – ln X̃)

∫ b
a p(u)du)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

	
,; = exp

⎛
⎜⎜⎜⎝– +

∫ y
x p(u)g(u) ln

(g(u))du + g(x) ln(g(x))
∫ x
a p(u)du

– g(y) ln(g(y))
∫ y
a p(u)du + (Ỹ ln Ỹ – X̃ ln X̃)

∫ b
a p(u)du

(
∫ y
x p(u)g(u) ln(g(u))du + g(x) ln(g(x))

∫ x
a p(u)du

– g(y) ln(g(y))
∫ x
a p(u)du + (Ỹ ln Ỹ – X̃ ln X̃)

∫ b
a p(u)du)

⎞
⎟⎟⎟⎠ ,

where X̂, Ŷ , X̃ and Ỹ are the same as defined in ().
If�i (i = , ) are positive, thenTheorem. applied to J = [minx∈[a,b] g(x),maxx∈[a,b] g(x)],

f = fs ∈ � and k = fq ∈ � yields that there exists ξi ∈ J such that

ξ
s–q
i =

�i(x, y;p, g, fs)
�i(x, y;p, g, fq)

, i = , .

Since the functions ξi �→ ξ
s–q
i (i = , ) are invertible for s �= q, we have

min
x∈[a,b]

g(x) ≤
(

�i(x, y;p, g, fs)
�i(x, y;p, g, fq)

) 
s–q

≤ max
x∈[a,b]

g(x), i = , , ()

which together with the fact that 	i
s,q; (i = , ) are continuous, symmetric and monoto-

nous (by ()) shows that 	i
s,q; are means.

Now, by the substitutions x → xt , y → yt , s → s
t , q → q

t (t �= , s �= q), where x, y ∈ [a,b],
from () we have

min
{(

min
x∈[a,b]

g(x)
)t
,
(
max
x∈[a,b]

g(x)
)t} ≤

(
�i(xt , yt ;p, g, fs/t
�i(xt , yt ;p, g, fq/t

) t
s–q

≤ max
{(

min
x∈[a,b]

g(x)
)t
,
(
max
x∈[a,b]

g(x)
)t}

.

We define a new mean (for i = , ) as follows:

μs,q;t(x, y,p, g,�i,�) =

⎧⎨
⎩(μ s

t ,
q
t
(xt , yt ,p, g,�i,�))


t , t �= ,

μs,q(lnx, ln y,p, g,�i,�), t = .

These new means are also monotonous. More precisely, for s,q,u, v ∈ R such that s ≤
u,q ≤ v, s �= q, u �= v, we have

μs,q;t(x, y,p, g,�i,�) ≤ μu,v;t(x, y,p, g,�i,�), i = , .

We know that

μ s
t ,

q
t

(
xt , yt ,p, g,�i,�

) ≤ μ u
t ,

v
t

(
xt , yt ,p, g,�i,�

)
, i = , ,
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equivalently

(
�i(xt , yt ;p, g, fs/t)
�i(xt , yt ;p, g, fq/t)

) t
s–q

≤
(

�i(xt , yt ;p, g, fu/t)
�i(xt , yt ;p, g, fv/t)

) t
u–v

for s,q,u, v ∈ I such that s/t ≤ u/t, q/t ≤ v/t and t �= , since μs,q(x, y,p, g,�i,�) (i = , )
aremonotonous in both parameters, so the claim follows. For t = , we obtain the required
result by taking the limit t → .

Example . Consider the family of functions

� =
{
hs : (,∞) → (,∞) : s ∈ (,∞)

}
defined by

hs(x) =

⎧⎨
⎩

s–x
ln s , s �= ,
x
 , s = .

We have d
dx hs(x) = s–x > , which shows that hs is convex for all s > . Since s �→

d
dx hs(x) = s–x is the Laplace transform of a non-negative function (see [, ]), it is expo-
nentially convex. It is easy to see that the function s �→ [y, y, y;hs] is also exponentially
convex. Arguing as in Example ., we have s �→ �i(x, y;p, g,hs) (i = , ) are exponentially
convex.
In this case, by taking � = � in (), 	i

s,q; := μs,q(x, y,p, g,�i,�) (i = , ) for x, y > ,
where x, y ∈ [a,b] are of the form

	
s,q; =

⎛
⎜⎜⎜⎜⎝
ln q
ln s

·

∫ y
x p(u)s

–g(u) du + s–g(y)
∫ b
y p(u)du

– s–g(x)
∫ b
x p(u)du + (s–X̂ – s–Ŷ )

∫ b
a p(u)du∫ y

x p(u)q
–g(u) du + q–g(y)

∫ b
y p(u)du

– q–g(x)
∫ b
x p(u)du + (q–X̂ – q–Ŷ )

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s–q

, s �= q �= ,

	
s,; =

⎛
⎜⎜⎜⎜⎝


ln s

·

∫ y
x p(u)s

–g(u) du + s–g(y)
∫ b
y p(u)du

– s–g(x)
∫ b
x p(u)du + (s–X̂ – s–Ŷ )

∫ b
a p(u)du∫ y

x p(u)g
(u)du + g(y)

∫ b
y p(u)du

– g(x)
∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s–

, s �= ,

	
s,s; = exp

⎛
⎜⎜⎜⎜⎜⎝

∫ b
a p(u)du

[
∫ y
x p(u)s

–g(u)( + g(u) ln s)du + s–g(y)( + g(y) ln s)
∫ b
y p(u)du

– s–g(x)( + g(x) ln s)
∫ b
x p(u)du] + s–X̂( + X̂ ln s) – s–Ŷ ( + Ŷ ln s)

–s ln s∫ b
a p(u)du

(
∫ y
x p(u)s

–g(u) du + s–g(y)
∫ b
y p(u)du

– s–g(x)
∫ b
x p(u)du + (s–X̂ – s–Ŷ )

∫ b
a p(u)du)

⎞
⎟⎟⎟⎟⎟⎠ , s �= ,

	
,; = exp

⎛
⎜⎜⎜⎜⎝–




·

∫ y
x p(u)g

(u)du + g(y)
∫ b
y p(u)du

– g(x)
∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du∫ y

x p(u)g
(u)du + g(y)

∫ b
y p(u)du

– g(x)
∫ b
x p(u)du + (X̂ – Ŷ )

∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠ ,

	
s,q; =

⎛
⎜⎜⎜⎝ ln q

ln s
·

∫ y
x p(u)s

–g(u) du + s–g(x)
∫ x
a p(u)du

– s–g(y)
∫ y
a p(u)du + (s–Ỹ – s–X̃)

∫ b
a p(u)du∫ y

x p(u)q
–g(u) du + q–g(x)

∫ x
a p(u)du

– q–g(y)
∫ y
a p(u)du + (q–Ỹ – q–X̃)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s–q

, s �= q �= ,
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s,; =

⎛
⎜⎜⎜⎝ 
ln s

·

∫ y
x p(u)s

–g(u) du + s–g(x)
∫ x
a p(u)du

– s–g(y)
∫ y
a p(u)du + (s–Ỹ – s–X̃)

∫ b
a p(u)du∫ y

x p(u)g
(u)du + g(x)

∫ x
a p(u)du

– g(y)
∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s–

, s �= ,

	
s,s; = exp

⎛
⎜⎜⎜⎜⎝

∫ b
a p(u)du

[
∫ y
x p(u)s

–g(u)( + g(u) ln s)du + s–g(x)( + g(x) ln s)
∫ x
a p(u)du

– s–g(y)( + g(y) ln s)
∫ y
a p(u)du] + s–Ỹ ( + Ỹ ln s) – s–X̃( + X̃ ln s)

–s ln s∫ b
a p(u)du

(
∫ y
x p(u)s

–g(u) du + s–g(x)
∫ x
a p(u)du

– s–g(y)
∫ y
a p(u)du + (s–Ỹ – s–X̃)

∫ b
a p(u)du)

⎞
⎟⎟⎟⎟⎠ , s �= ,

	
,; = exp

⎛
⎜⎜⎜⎝–




·

∫ y
x p(u)g

(u)du + g(x)
∫ x
a p(u)du

– g(y)
∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du∫ y

x p(u)g
(u)du + g(x)

∫ x
a p(u)du

– g(y)
∫ y
a p(u)du + (Ỹ  – X̃)

∫ b
a p(u)du

⎞
⎟⎟⎟⎠ ,

where X̂, Ŷ , X̃ and Ỹ are the same as in (). By using (), μs,q(x, y,�i,�) (i = , ) are
monotonous in parameters s and q. By using Theorem ., it can be seen that

Ms,q(x, y,p, g,�i,�) = –L(s,q) logμs,q(x, y,p, g,�i,�), i = , ,

satisfy minx∈[a,b] g(x) ≤ Ms,q(x, y,p, g,�i,�) ≤ maxx∈[a,b] g(x) and so Ms,q(x, y,p, g,�i,�)
(i = , ) are means, where L(s,q) = s–q

log s–logq , s �= q, L(s, s) = s, is known as the logarithmic
mean.

Example . Consider the family of functions

� =
{
ks : (,∞)→ (,∞) : s ∈ (,∞)

}
defined by

ks(x) =
e–x

√
s

s
.

Here, d
dx ks(x) = e–x

√
s > , which shows that ks is convex for all s > . Since s �→ d

dx ks(x) =
e–x

√
s is the Laplace transform of a non-negative function (see [, ]), it is exponentially

convex. It is easy to prove that the function s �→ [y, y, y;ks] is also exponentially convex.
Arguing as in Example ., we have s �→ �i(x, y;p, g,ks) (i = , ) are exponentially convex.

In this case, by taking � = � in (), 	i
s,q; := μs,q(x, y,p, g,�i,�) (i = , ) for x, y > ,

where x, y ∈ [a,b] are of the form

	
s,q; =

⎛
⎜⎜⎜⎜⎝
q
s

·

∫ y
x p(u)e

–g(u)
√
s du + e–g(y)

√
s ∫ b

y p(u)du
– e–g(x)

√
s ∫ b

x p(u)du + (e–X̂
√
s – e–Ŷ

√
s)

∫ b
a p(u)du∫ y

x p(u)e
–g(u)√q du + e–g(y)

√q ∫ b
y p(u)du

– e–g(x)
√q ∫ b

x p(u)du + (e–X̂
√q – e–Ŷ

√q)
∫ b
a p(u)du

⎞
⎟⎟⎟⎟⎠


s–q

, s �= q,

	
s,s; = exp

⎛
⎜⎜⎜⎜⎜⎝

∫ b
a p(u)du

[
∫ y
x p(u)e

–g(u)
√
s( + g(u)

√
s)du + e–g(y)

√
s( + g(y)

√
s)

∫ b
y p(u)du

– e–g(x)
√
s( + g(x)

√
s)

∫ b
x p(u)du] + e–X̂

√
s( + X̂

√
s) – e–Ŷ

√
s( + Ŷ

√
s)

–s∫ b
a p(u)du

(
∫ y
x p(u)e

–g(u)
√
s du + e–g(y)

√
s ∫ b

y p(u)du – e–g(x)
√
s ∫ b

x p(u)du)

+ s(e–Ŷ
√
s – e–X̂

√
s)

⎞
⎟⎟⎟⎟⎟⎠ ,
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s,q; =

⎛
⎜⎜⎜⎝q

s
·

∫ y
x p(u)e

–g(u)
√
s du + e–g(x)

√
s ∫ x

a p(u)du
– e–g(y)

√
s ∫ y

a p(u)du + (e–Ỹ
√
s – e–X̃

√
s)

∫ b
a p(u)du∫ y

x p(u)e
–g(u)√q du + e–g(x)

√q ∫ x
a p(u)du

– e–g(y)
√q ∫ y

a p(u)du + (e–Ỹ
√q – e–X̃

√q)
∫ b
a p(u)du

⎞
⎟⎟⎟⎠


s–q

, s �= q,

	
s,s; = exp

⎛
⎜⎜⎜⎜⎜⎝

∫ b
a p(u)du

[
∫ y
x p(u)e

–g(u)
√
s( + g(u)

√
s)du + e–g(x)

√
s( + g(x)

√
s)

∫ x
a p(u)du

– e–g(y)
√
s( + g(y)

√
s)

∫ y
a p(u)du] + e–Ỹ

√
s( + Ỹ

√
s) – e–X̃

√
s( + X̃

√
s)

–s∫ b
a p(u)du

(
∫ y
x p(u)e

–g(u)
√
s du + e–g(x)

√
s ∫ x

a p(u)du – e–g(y)
√
s ∫ y

a p(u)du)

+ s(e–X̃
√
s – e–Ỹ

√
s)

⎞
⎟⎟⎟⎟⎟⎠ ,

where X̂, Ŷ , X̃ and Ỹ are the same as in ().

Remark .
(i) If �i (i = , ) are positive, then applying Theorem . to J = [minx∈[a,b] g(x),

maxx∈[a,b] g(x)] in Examples ., . and ., we have

Ms,q(x, y,p, g,�i,�) = logμs,q(x, y,p, g,�i,�), ()

Ms,q(x, y,p, g,�i,�) = –L(s,q) logμs,q(x, y,p, g,�i,�), ()

and

Ms,q(x, y,p, g,�i,�) = –(
√
s +

√
q) logμs,q(x, y,p, g,�i,�) ()

(i = , ) respectively, where L(s,q) = s–q
log s–logq , s �= q, L(s, s) = s, is known as the

logarithmic mean. By using the same arguing as in Example ., (), () and ()
satisfy minx∈[a,b] g(x)≤ Ms,q(x, y,p, g,�i,�) ≤ maxx∈[a,b] g(x) for � = �,�,�,
showing thatMs,q(x, y,p, g,�i,�) (i = , ) are means for � = �,�,�. Also, from
() it is clear that μs,q(x, y,p, g,�i,�) (i = , ) for � = �,� and � are
monotonous functions in parameters s and q.

(ii) If we make the substitutions p(u) =  and g(u) = u in our means μs,q(x, y,p, g,�i,�)
and μs,q;t(x, y,p, g,�i,�) (i = , ), then the results for the means μs,q(x, y,�i,�)
and μs,q;t(x, y,�i,�) (i = , ) given in [] are recaptured. In this way, our results for
means are the generalizations of the above mentioned means.
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1. Franjić, I, Khalid, S, Pečarić, J: On the refinements of the Jensen-Steffensen inequality. J. Inequal. Appl. 2011, 12 (2011)
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6. Jakšetić, J, Pečarić, J: Exponential convexity method. J. Convex Anal. (2013, in press)
7. Widder, DV: The Laplace Transform. Princeton University Press, Princeton (1941)
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