RESEARCH

Open Access

Hermite-Hadamard type and Fejér type inequalities for general weights (I)

Shiow-Ru Hwang¹, Kuei-Lin Tseng^{2*} and Kai-Chen Hsu²

*Correspondence: kltseng@mail.au.edu.tw; kltseng1@gmail.com ²Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei, 25103, Taiwan Full list of author information is available at the end of the article

Abstract

In this paper, we establish some weighted versions of the Hermite-Hadamard type and Fejér type inequalities and from which generalize Hermite-Hadamard inequality, Fejér inequality and several results in (Dragomir in J. Math. Anal. Appl. 167:49-56, 1992; Yang and Hong in Tamkang. J. Math. 28(1):33-37, 1997; Yang and Tseng in J. Math. Anal. Appl. 239:180-187, 1999; Yang and Tseng in Taiwan. J. Math. 7(3):433-440, 2003). **MSC:** Primary 26D15; secondary 26A51

Keywords: Hermite-Hadamard inequality; Fejér inequality; convex function

1 Introduction

Throughout this paper, let a < b in \mathbb{R} , c < d in \mathbb{R} , $f : [a, b] \to \mathbb{R}$ be convex, the weight function $p : [a, b] \to [0, \infty)$ be integrable and symmetric about the line $s = \frac{a+b}{2}$, the weight function $p_1 : [c, d] \to [0, \infty)$ be integrable and symmetric about the line $s = \frac{c+d}{2}$ and let the weight function $g : [c, d] \to [a, b]$ be continuous and symmetric about the point $(\frac{c+d}{2}, g(\frac{c+d}{2}))$, that is, $\frac{1}{2}[g(s) + g(c+d-s)] = g(\frac{c+d}{2})$ ($s \in [c, d]$). Define the following functions on [0, 1]:

$$H(t) = \frac{1}{b-a} \int_{a}^{b} f\left(ts + (1-t)\frac{a+b}{2}\right) ds;$$

$$H_{g}(t) = \frac{1}{d-c} \int_{c}^{d} f\left(tg(s) + (1-t)g\left(\frac{c+d}{2}\right)\right) ds;$$

$$WH(t) = \int_{a}^{b} f\left(ts + (1-t)\frac{a+b}{2}\right) p(s) ds;$$

$$WH_{g}(t) = \int_{c}^{d} f\left(tg(s) + (1-t)g\left(\frac{c+d}{2}\right)\right) p_{1}(s) ds;$$

$$F(t) = \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(ts + (1-t)u\right) ds du;$$

$$F_{g}(t) = \frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} f\left(tg(s) + (1-t)g(u)\right) ds du;$$

$$WF(t) = \int_{a}^{b} \int_{a}^{b} f\left(ts + (1-t)u\right) p(s)p(u) ds du;$$

$$WF_{g}(t) = \int_{c}^{d} \int_{c}^{d} f\left(tg(s) + (1-t)g(u)\right) p_{1}(s)p_{1}(u) ds du;$$

© 2013 Hwang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$\begin{split} P(t) &= \frac{1}{2(b-a)} \int_{a}^{b} \left[f\left(\left(\frac{1+t}{2}\right)a + \left(\frac{1-t}{2}\right)s\right) \right] \\ &+ f\left(\left(\frac{1+t}{2}\right)b + \left(\frac{1-t}{2}\right)s\right) \right] ds; \\ P_{g}(t) &= \frac{1}{2(d-c)} \int_{c}^{d} \left[f\left((1-t)g\left(\frac{s+c}{2}\right) + tg(c)\right) \right] \\ &+ f\left((1-t)g\left(\frac{s+d}{2}\right) + tg(d)\right) \right] ds; \\ WP(t) &= \frac{1}{2} \int_{a}^{b} \left[f\left(\left(\frac{1+t}{2}\right)a + \left(\frac{1-t}{2}\right)s\right)p\left(\frac{s+a}{2}\right) \right] \\ &+ f\left(\left(\frac{1+t}{2}\right)b + \left(\frac{1-t}{2}\right)s\right)p\left(\frac{s+b}{2}\right) \right] ds; \end{split}$$

and

$$WP_g(t) = \frac{1}{2} \int_c^d \left[f\left((1-t)g\left(\frac{s+c}{2}\right) + tg(c)\right) p_1\left(\frac{s+c}{2}\right) + f\left((1-t)g\left(\frac{s+d}{2}\right) + tg(d)\right) p_1\left(\frac{s+d}{2}\right) \right] ds.$$

Remark 1

- (1) Let c = a, d = b and the function g(s) = s on [a, b]. Then the functions $H_g(t) = H(t)$, $F_g(t) = F(t)$ and $P_g(t) = P(t)$ on [0, 1].
- (2) Let c = a, d = b and let the functions g(s) = s and $p_1(s) = p(s)$ on [a, b]. Then the functions $WH_g(t) = WH(t)$, $WF_g(t) = WF(t)$ and $WP_g(t) = WP(t)$ on [0, 1].

In 1893, Hadamard [1] established the following inequality. If the function *f* is defined as above, then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(s) \, ds \le \frac{f(a)+f(b)}{2} \tag{1.1}$$

is known as Hermite-Hadamard inequality.

See [2-8] and [9-16] for some results in which this famous integral inequality (1.1) is generalized, improved and extended.

Dragomir [2] established the following Hermite-Hadamard type inequalities related to the functions H, F, which refine the first inequality of (1.1).

Theorem A Let the functions f, H be defined as in the first page. Then the function H is convex, increasing on [0,1], and for all $t \in [0,1]$, we have

$$f\left(\frac{a+b}{2}\right) = H(0) \le H(t) \le H(1) = \frac{1}{b-a} \int_{a}^{b} f(s) \, ds.$$
(1.2)

Theorem B Let the functions f, F be defined as in the first page. Then:

(1) The function F is convex on [0,1], symmetric about $\frac{1}{2}$, F is decreasing on $[0,\frac{1}{2}]$ and

increasing on $[\frac{1}{2}, 1]$, and we have

$$\sup_{t \in [0,1]} F(t) = F(0) = F(1) = \frac{1}{b-a} \int_a^b f(s) \, ds$$

and

$$\inf_{t \in [0,1]} F(t) = F\left(\frac{1}{2}\right) = \frac{1}{(b-a)^2} \int_a^b \int_a^b f\left(\frac{s+u}{2}\right) ds \, du.$$

(2) We have

$$f\left(\frac{a+b}{2}\right) \le F\left(\frac{1}{2}\right); \qquad H(t) \le F(t), \quad t \in [0,1].$$

$$(1.3)$$

Yang and Hong [12] established the following Hermite-Hadamard type inequality related to the function P, which refines the second inequality of (1.1).

Theorem C Let the functions f, P be defined as in the first and second pages. Then the function P is convex, increasing on [0,1], and for all $t \in [0,1]$, we have

$$\frac{1}{b-a} \int_{a}^{b} f(s) \, ds = P(0) \le P(t) \le P(1) = \frac{f(a) + f(b)}{2}.$$
(1.4)

In 1906, Fejér [8] established the following weighted generalization of Hermite-Hadamard inequality (1.1).

Theorem D Let the functions f, p be defined as in the first page. Then

$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}p(s)\,ds \le \int_{a}^{b}f(s)p(s)\,ds \le \frac{f(a)+f(b)}{2}\int_{a}^{b}p(s)\,ds \tag{1.5}$$

is known as the Fejér inequality.

Yang and Tseng [13, 16] established the following Fejér type inequalities related to the functions *WH*, *WP*, *WF* and which generalize Theorems A-C and refine Fejér inequality (1.5).

Theorem E [13] Let the functions f, p, WH, WP be defined as in the first and second pages. Then the functions Hg, Pg are convex and increasing on [0,1], and for all $t \in [0,1]$, we have

$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}g(s)\,ds = WH(0) \le WH(t) \le WH(1)$$
$$= \int_{a}^{b}f(s)p(s)\,ds$$
$$= WP(0) \le WP(t) \le WP(1)$$
$$= \frac{f(a)+f(b)}{2}\int_{a}^{b}p(s)\,ds.$$
(1.6)

Theorem F [16] *Let the functions f*, *p*, *WH*, *WF be defined as in the first and second pages. Then we have the following results:*

- (1) The function WF is convex on [0,1] and symmetric about $\frac{1}{2}$.
- (2) The function WF is decreasing on $[0, \frac{1}{2}]$ and increasing on $[\frac{1}{2}, 1]$,

$$\sup_{t \in [0,1]} WF(t) = WF(0) = WF(1) = \int_{a}^{b} f(s)p(s) \, ds \tag{1.7}$$

and

$$\inf_{t \in [0,1]} WF(t) = WF\left(\frac{1}{2}\right) = \int_{a}^{b} \int_{a}^{b} f\left(\frac{s+u}{2}\right) p(s)p(u) \, ds \, du.$$
(1.8)

(3) We have:

$$f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} p(s) \, ds\right)^{2} \le WF\left(\frac{1}{2}\right) \tag{1.9}$$

and

$$WH(t) \int_{a}^{b} p(s) \, ds \le WF(t) \tag{1.10}$$

for all $t \in [0, 1]$.

In this paper, we establish some weighted versions of the Hermite-Hadamard type and Fejér type inequalities related to the functions H_g , F_g , P_g , WH_g , WF_g , WP_g , which generalize the inequality (1.1) and Theorems A-F.

2 Hermite-Hadamard type inequalities for general weights

In this section, we establish some Hermite-Hadamard type inequalities for general weights, which generalize the Hermite-Hadamard inequality (1.1) and Theorems A-C.

In order to prove the results in this paper, we need the following lemmas.

Lemma 1 (see [9]) *Let the function f be defined as in the first page and let* $a \le A \le C \le D \le B \le b$ *with* A + B = C + D. *Then*

 $f(C) + f(D) \le f(A) + f(B).$

The assumptions in Lemma 1 can be weakened as in the following lemma.

Lemma 2 Let the function f be defined as in the first page and let $A, B, C, D \in [a, b]$ with A + B = C + D and $|C - D| \le |A - B|$. Then

$$f(C) + f(D) \le f(A) + f(B).$$

Proof Without loss of generalization, we can assume that $a \le A \le B \le b$ and $a \le C \le D \le b$. For $|C - D| \le |A - B|$, we have $A - B \le C - D$ and $D - C \le B - A$. Hence, by the

above inequalities and A + B = C + D, we get $a \le A \le C \le D \le B \le b$. Thus, the proof is completed by Lemma 1.

Now, we are ready to state and prove our new results.

Theorem 1 Let the functions f, g be defined as in the first page. Then:

(1) We have

$$f\left(g\left(\frac{c+d}{2}\right)\right) \le \frac{1}{d-c} \int_{c}^{d} f\left(g(s)\right) ds.$$
(2.1)

(2) As the function g is monotonic on [c,d], we obtain

$$\frac{1}{d-c} \int_{c}^{d} f(g(s)) \, ds \le \frac{f(g(c)) + f(g(d))}{2}. \tag{2.2}$$

Proof

(1) Using simple techniques of integration, we have the identity

$$\frac{1}{d-c} \int_{c}^{d} f(g(s)) \, ds = \frac{1}{d-c} \int_{c}^{\frac{c+d}{2}} \left[f(g(s)) + g(c+d-s) \right] ds. \tag{2.3}$$

Next, using $g(s) + g(c + d - s) = 2g(\frac{c+d}{2})$ and

$$\left|g\left(\frac{c+d}{2}\right) - g\left(\frac{c+d}{2}\right)\right| \le \left|g(s) - g(c+d-s)\right|$$

in Lemma 2, we obtain

$$2f\left(g\left(\frac{c+d}{2}\right)\right) \le f\left(g(s)\right) + f\left(g(c+d-s)\right),\tag{2.4}$$

where $s \in [c, d]$. Integrating the above inequality over s on $[c, \frac{c+d}{2}]$, dividing both sides by d - c and using the above identity, we obtain the inequality (2.1).

(2) For the monotonicity of g, we have $|g(s) - g(c + d - s)| \le |g(c) - g(d)|$ for all $s \in [c, d]$. Using the above inequality and g(s) + g(c + d - s) = g(c) + g(d) in Lemma 2, we obtain

$$f(g(s)) + f(g(c+d-s)) \le f(g(c)) + f(g(d)),$$

$$(2.5)$$

where $s \in [c, d]$. Integrating the above inequality over *s* on $[c, \frac{c+d}{2}]$, dividing both sides by d - c and using the inequality (2.3), we obtain the inequality (2.2). This completes the proof.

Remark 2 In Theorem 1, let c = a, d = b and the function g(s) = s on [a, b]. Then Theorem 1 reduces to the Hermite-Hadamard inequality (1.1).

Theorem 2 Let the functions f, g, H_g be defined as in the first page. Then: (1) The function H_g is convex on [0,1]. (2) The function H_g is increasing on [0,1] and for all $t \in [0,1]$, we have

$$f\left(g\left(\frac{c+d}{2}\right)\right) = H_g(0) \le H_g(t) \le H_g(1) = \frac{1}{d-c} \int_c^d f\left(g(s)\right) ds.$$

$$(2.6)$$

Proof

(1) It is easily observed from the convexity of f that the function H_g is convex on [0,1].

(2) Using simple techniques of integration, we have the following identity:

$$\begin{split} H_g(t) &= \frac{1}{d-c} \int_c^{\frac{c+d}{2}} \left[f\left(tg(s) + (1-t)g\left(\frac{c+d}{2}\right) \right) \right. \\ &\left. + f\left(tg(c+d-s) + (1-t)g\left(\frac{c+d}{2}\right) \right) \right] ds \end{split}$$

for all $t \in [0,1]$. Let $t_1 < t_2$ in [0,1]. Since $g(s) + g(c + d - s) = 2g(\frac{c+d}{2})$ ($s \in [c,d]$), we obtain

$$\begin{bmatrix} t_1 g(s) + (1 - t_1)g\left(\frac{c+d}{2}\right) \end{bmatrix} + \begin{bmatrix} t_1 g(c+d-s) + (1 - t_1)g\left(\frac{c+d}{2}\right) \end{bmatrix}$$
$$= \begin{bmatrix} t_2 g(s) + (1 - t_2)g\left(\frac{c+d}{2}\right) \end{bmatrix} + \begin{bmatrix} t_2 g(c+d-s) + (1 - t_2)g\left(\frac{c+d}{2}\right) \end{bmatrix}$$

and

$$\begin{split} \left| \left[t_1 g(s) + (1 - t_1) g\left(\frac{c + d}{2}\right) \right] - \left[t_1 g(c + d - s) + (1 - t_1) g\left(\frac{c + d}{2}\right) \right] \right| \\ &= t_1 \left| g(s) - g(c + d - s) \right| \\ &\leq t_2 \left| g(s) - g(c + d - s) \right| \\ &= \left| \left[t_2 g(s) + (1 - t_2) g\left(\frac{c + d}{2}\right) \right] - \left[t_2 g(c + d - s) + (1 - t_2) g\left(\frac{c + d}{2}\right) \right] \right] \end{split}$$

for all $s \in [c, \frac{c+d}{2}]$. Therefore, by Lemma 2, the following inequality holds for all $s \in [c, \frac{c+d}{2}]$:

$$f\left(t_{1}g(s) + (1-t_{1})g\left(\frac{c+d}{2}\right)\right) + f\left(t_{1}g(c+d-s) + (1-t_{1})g\left(\frac{c+d}{2}\right)\right)$$
$$\leq f\left(t_{2}g(s) + (1-t_{2})g\left(\frac{c+d}{2}\right)\right) + f\left(t_{2}g(c+d-s) + (1-t_{2})g\left(\frac{c+d}{2}\right)\right), \quad (2.7)$$

where $A = t_2g(s) + (1 - t_2)g(\frac{c+d}{2})$, $B = t_2g(c + d - s) + (1 - t_2)g(\frac{c+d}{2})$, $C = t_1g(s) + (1 - t_1)g(\frac{c+d}{2})$ and $t_1g(c + d - s) + (1 - t_1)g(\frac{c+d}{2})$. Integrating the above inequality over *s* on $[c, \frac{c+d}{2}]$, dividing both sides by d - c and using the above identity, we have

$$H_g(t_1) \le H_g(t_2).$$

Thus, the function H_g is increasing on [0,1] and from which the inequality (2.6) holds. This completes the proof.

Remark 3

- (1) In Theorem 2, the inequality (2.6) refines the inequality (2.1).
- (2) In Theorem 2, let *c* = *a*, *d* = *b*and the function *g*(*s*) = *s* on [*a*, *b*]. Then the functions *H_g*(*t*) = *H*(*t*) (*t* ∈ [0, 1]) and Theorem 1 reduces to Theorem A.

Theorem 3 Let the functions f, g, P_g be defined as in the first and second pages. Then:

- (1) The function P_g is convex on [0, 1].
- (2) The function P_g is increasing on [0,1] and, for all $t \in [0,1]$, we have

$$\frac{1}{d-c} \int_{c}^{d} f(g(s)) \, ds = P_g(0) \le P_g(t) \le P_g(1) = \frac{f(g(c)) + f(g(d))}{2} \tag{2.8}$$

as the function g is monotonic on [c,d].

Proof

- (1) It is easily observed from the convexity of f that the function P_g is convex on [0,1].
- (2) Using simple techniques of integration, we have the following identity:

$$P_g(t) = \frac{1}{d-c} \int_c^{\frac{c+d}{2}} \left[f(tg(c) + (1-t)g(s)) + f(tg(d) + (1-t)g(c+d-s)) \right] ds$$

for all $t \in [0,1]$. Let $t_1 < t_2$ in [0,1]. Since $g(s) + g(c + d - s) = 2g(\frac{c+d}{2})$ ($s \in [c,d]$) and the monotonicity of g on [c,d], we obtain

$$\begin{aligned} \left| g(s) - g(c+d-s) \right| &\leq \left| g(c) - g(d) \right|, \\ \left[t_1 g(c) + (1-t_1)g(s) \right] + \left[t_1 g(d) + (1-t_1)g(c+d-s) \right] \\ &= \left[t_2 g(c) + (1-t_2)g(s) \right] + \left[t_2 g(d) + (1-t_2)g(c+d-s) \right] \end{aligned}$$

and

$$\begin{split} \left| \left[t_1 g(c) + (1 - t_1) g(s) \right] - \left[t_1 g(d) + (1 - t_1) g(c + d - s) \right] \right| \\ &= \left| t_1 \left[g(c) - g(d) \right] + (1 - t_1) \left[g(s) - g(c + d - s) \right] \right| \\ &= t_1 \left| g(c) - g(d) \right| + (1 - t_1) \left| g(s) - g(c + d - s) \right| \\ &\leq t_1 \left| g(c) - g(d) \right| + (1 - t_1) \left| g(s) - g(c + d - s) \right| \\ &= \left| \left[t_2 g(c) + (1 - t_2) g(s) \right] - \left[t_2 g(d) + (1 - t_2) g(c + d - s) \right] \right| \end{split}$$

for all $s \in [c, \frac{c+d}{2}]$. Therefore, by Lemma 2, the following inequality holds for all $s \in [c, \frac{c+d}{2}]$:

$$f(t_1g(c) + (1 - t_1)g(s)) + f(t_1g(d) + (1 - t_1)g(c + d - s))$$

$$\leq f(t_2g(c) + (1 - t_2)g(s)) + f(t_2g(d) + (1 - t_2)g(c + d - s))$$
(2.9)

where $A = t_2g(c) + (1 - t_2)g(s)$, $B = t_2g(d) + (1 - t_2)g(c + d - s)$, $C = t_1g(c) + (1 - t_1)g(s)$ and $t_1g(d) + (1 - t_1)g(c + d - s)$. Integrating the above inequality over *s* on $[c, \frac{c+d}{2}]$, dividing both

sides by d - c and using the above identity, we have

$$P_g(t_1) \le P_g(t_2).$$

Thus, the function P_g is increasing on [0,1] and from which the inequality (2.8) holds. This completes the proof.

Remark 4

- (1) In Theorem 3, the inequality (2.8) refines the inequality (2.2).
- (2) In Theorem 3, let c = a, d = b and the function g(s) = s on [a, b]. Then the functions $P_g(t) = P(t)$ ($t \in [0, 1]$) and Theorem 3 reduces to Theorem C.

Theorem 4 Let the functions f, g, H_g , F_g be defined as in the first page. Then we have the following results:

- (1) The function F_g is convex on [0,1] and symmetric about $\frac{1}{2}$.
- (2) The function F_g is decreasing on $[0, \frac{1}{2}]$ and increasing on $[\frac{1}{2}, 1]$,

$$\sup_{t\in[0,1]} F_g(t) = F_g(0) = F_g(1) = \frac{1}{d-c} \int_c^d f(g(s)) \, ds \tag{2.10}$$

and

$$\inf_{t \in [0,1]} F_g(t) = F_g\left(\frac{1}{2}\right)$$
$$= \frac{1}{(d-c)^2} \int_c^d \int_c^d f\left(\frac{g(s) + g(u)}{2}\right) ds \, du.$$
(2.11)

(3) We have:

$$H_g(t) \le F_g(t) \quad (t \in [0,1])$$
 (2.12)

and

$$f\left(g\left(\frac{c+d}{2}\right)\right) \le F_g\left(\frac{1}{2}\right). \tag{2.13}$$

Proof

(1) It is easily observed from the convexity of f that the function F_g is convex on [0,1]. By changing variables, we have

$$F_g(t) = F_g(1-t), \quad t \in [0,1]$$

from which we get that the function F_g is symmetric about $\frac{1}{2}$.

(2) Let $t_1 < t_2$ in $[0, \frac{1}{2}]$. Then $t_2 + (1 - t_2) = t_1 + (1 - t_1)$, $|t_2 - (1 - t_2)| \le |t_1 - (1 - t_1)|$ and by Lemma 2, we obtain

$$\frac{1}{2} \left[F_g(t_2) + F_g(1 - t_2) \right] \le \frac{1}{2} \left[F_g(t_1) + F_g(1 - t_1) \right].$$
(2.14)

Using the symmetry of F_g , we have

$$F_g(t_1) = \frac{1}{2} \Big[F_g(t_1) + F_g(1 - t_1) \Big], \tag{2.15}$$

$$F_g(t_2) = \frac{1}{2} \left[F_g(t_2) + F_g(1 - t_2) \right]$$
(2.16)

From (2.14)-(2.16), we obtain that the function F_g is decreasing on $[0, \frac{1}{2}]$. Since the function F_g is symmetric about $\frac{1}{2}$ and the function F_g is decreasing on $[0, \frac{1}{2}]$, we obtain that the function F_g is increasing on $[\frac{1}{2}, 1]$. Using the symmetry and monotonicity of F_g , we derive the inequalities (2.10) and (2.11).

(3) Using the substitution rules for integration, we have the identity

$$\begin{split} F_g(t) &= \frac{1}{(d-c)^2} \int_c^d \int_c^{\frac{c+d}{2}} \left[f\left(tg(s) + (1-t)g(u) \right) \right. \\ & \left. + f\left(tg(s) + (1-t)g(c+d-u) \right) \right] du \, ds \end{split}$$

for all $t \in [0,1]$. Let $t \in [0,1]$. Since $g(u) + g(c + d - u) = 2g(\frac{c+d}{2})$ ($u \in [c,d]$), we obtain

$$2\left[tg(s) + (1-t)g\left(\frac{c+d}{2}\right)\right]$$
$$= \left[tg(s) + (1-t)g(u)\right] + \left[tg(s) + (1-t)g(c+d-u)\right]$$

and

$$\left| \left[tg(s) + (1-t)g\left(\frac{c+d}{2}\right) \right] - \left[tg(s) + (1-t)g\left(\frac{c+d}{2}\right) \right] \right|$$

$$\leq \left| \left[tg(s) + (1-t)g(u) \right] - \left[tg(s) + (1-t)g(c+d-u) \right] \right|$$

for all $s \in [c, d]$ and $u \in [c, \frac{c+d}{2}]$. Therefore, by Lemma 2, the following inequality holds for all $s \in [c, d]$ and $u \in [c, \frac{c+d}{2}]$:

$$2f\left(tg(s) + (1-t)g\left(\frac{c+d}{2}\right)\right) \le f\left(tg(s) + (1-t)g(u)\right) + f\left(tg(s) + (1-t)g(c+d-u)\right),$$
(2.17)

where A = tg(s) + (1 - t)g(u), B = tg(s) + (1 - t)g(c + d - u) and $C = D = tg(s) + (1 - t)g(\frac{c+d}{2})$. Dividing the above inequality by $(d - c)^2$, integrating it over *s* on [c, d], over *u* on $[c, \frac{c+d}{2}]$ and using the above identity, we derive the inequality (2.12).

From the inequalities (2.6), (2.12) and the monotonicity of H_g , we derive the inequality (2.13).

This completes the proof.

Remark 5 In Theorem 4, let c = a, d = b and the function g(s) = s on [a, b]. Then the functions $F_g(t) = F(t)$ ($t \in [0, 1]$) and Theorem 4 reduces to Theorem B.

3 Fejér type inequalities for general weights

In this section, we establish some Fejér type inequalities for general weights which generalize Theorems D-F.

Theorem 5 Let the functions f, g, p_1 be defined as in the first page. Then:

(1) We have

$$f\left(g\left(\frac{c+d}{2}\right)\right)\int_{c}^{d}p_{1}(s)\,ds \leq \int_{c}^{d}f\left(g(s)\right)p_{1}(s)\,ds.$$
(3.1)

(2) As the function g is monotonic on [c,d], we obtain

$$\int_{c}^{d} f(g(s)) p_{1}(s) \, ds \leq \frac{f(g(c)) + f(g(d))}{2} \int_{c}^{d} p_{1}(s) \, ds. \tag{3.2}$$

Proof

(1) Using simple techniques of integration and the hypothesis of p_1 , we have the identities

$$\int_{c}^{d} f(g(s)) p_{1}(s) \, ds = \int_{c}^{\frac{c+d}{2}} \left[f(g(s)) + f(g(c+d-s)) \right] p_{1}(s) \, ds \tag{3.3}$$

and

$$\int_{c}^{\frac{c+d}{2}} p_{1}(s) \, ds = \frac{1}{2} \int_{c}^{d} p_{1}(s) \, ds. \tag{3.4}$$

Proceeding as in the proof of Theorem 1, we also obtain the inequality (2.4). Multiplying the inequality (2.4) by $p_1(s)$, integrating it over *s* on $[c, \frac{c+d}{2}]$ and using the above identities, we obtain the inequality (3.1).

(2) Proceeding as in the proof of Theorem 1, we also obtain the inequality (2.5). Multiplying the inequality (2.5) by $p_1(s)$, integrating it over s on $[c, \frac{c+d}{2}]$ and using the above identities, we obtain the inequality (3.2). This completes the proof.

Remark 6

- (1) Let c = a, d = b and let the functions g(s) = s and $p_1(s) = p(s)$ on [a, b]. Then Theorem 5 reduces to Fejér inequality (1.5).
- (2) Let the function $p_1(s) \equiv \frac{1}{d-c}$ on [c, d]. Then Theorem 5 reduces to Theorem 1.

Theorem 6 Let the functions f, g, p_1 , WH_g be defined as in the first page. Then:

- (1) The function WH_g is convex on [0,1].
- (2) The function WH_g is increasing on [0,1] and, for all $t \in [0,1]$, we have

$$f\left(g\left(\frac{c+d}{2}\right)\right)\int_{c}^{d}p_{1}(s)\,ds = WH_{g}(0)$$

$$\leq WH_{g}(t)$$

$$\leq WH_{g}(1) = \int_{c}^{d}f\left(g(s)\right)p_{1}(s)\,ds.$$
(3.5)

Proof

(1) It is easily observed from the convexity of f and the hypothesis of p_1 that the function WH_g is convex on [0, 1].

(2) Using simple techniques of integration and the hypothesis of p_1 , we have the following identity:

$$WH_{g}(t) = \int_{c}^{\frac{c+d}{2}} \left[f\left(tg(s) + (1-t)g\left(\frac{c+d}{2}\right) \right) + f\left(tg(c+d-s) + (1-t)g\left(\frac{c+d}{2}\right) \right) \right] p_{1}(s) \, ds$$

for all $t \in [0, 1]$.

Let $t_1 < t_2$ in [0, 1]. Proceeding as in the proof of Theorem 2, we also obtain the inequality (2.7). Multiplying the inequality (2.7) by $p_1(s)$, integrating it over s on $[c, \frac{c+d}{2}]$ and using the above identity, we obtain

$$WH_g(t_1) \leq WH_g(t_2)$$

Thus, the function WH_g is increasing on [0,1] and from which the inequality (3.5) holds. This completes the proof.

Remark 7

- (1) In Theorem 6, the inequality (3.5) refines the inequality (3.1).
- (2) Let the function $p_1(s) \equiv \frac{1}{d-c}$ on [c, d]. Then Theorem 6 reduces to Theorem 2.

Theorem 7 Let the functions f, g, p_1 , WP_g be defined as in the first and second pages. *Then*:

- (1) The function WP_g is convex on [0,1].
- (2) The function WP_g is increasing on [0,1] and, for all $t \in [0,1]$, we have

$$\int_{c}^{d} f(g(s))p_{1}(s) ds = WP_{g}(0)$$

$$\leq WP_{g}(t)$$

$$\leq WP_{g}(1) = \frac{f(g(c)) + f(g(d))}{2} \int_{c}^{d} p_{1}(s) ds \qquad (3.6)$$

as the function g is monotonic on [c,d].

Proof

(1) It is easily observed from the convexity of f and the hypothesis of p_1 that the function WP_g is convex on [0, 1].

(2) Using simple techniques of integration and the hypothesis of p_1 , we have the following identity:

$$\begin{split} WP_g(t) &= \int_c^{\frac{c+d}{2}} \big[f\big(tg(c) + (1-t)g(s) \big) \\ &+ f\big(tg(d) + (1-t)g(c+d-s) \big) \big] p_1(s) \, ds \end{split}$$

for all $t \in [0, 1]$.

Let $t_1 < t_2$ in [0, 1]. Proceeding as in the proof of Theorem 3, we also obtain the inequality (2.9). Multiplying the inequality (2.9) by $p_1(s)$, integrating it over s on $[c, \frac{c+d}{2}]$ and using the above identity, we obtain

$$WP_g(t_1) \leq WP_g(t_2).$$

Thus, the function WP_g is increasing on [0,1] and from which the inequality (3.6) holds. This completes the proof.

Remark 8

- (1) In Theorem 7, the inequality (3.6) refines the inequality (3.2).
- (2) Let the function $p_1(s) \equiv \frac{1}{d-c}$ on [c, d]. Then Theorem 7 reduces to Theorem 3.

Remark 9 Let c = a, d = b and let the functions g(s) = s and $p_1(s) = p(s)$ on [a, b]. Then Theorems 6 and 7 reduce to Theorem E.

Theorem 8 Let the functions f, g, p_1 , WH_g , WF_g be defined as in the first page. Then we have the following results:

- (1) The function WF_g is convex on [0,1] and symmetric about $\frac{1}{2}$.
- (2) The function WF_g is decreasing on $[0, \frac{1}{2}]$ and increasing on $[\frac{1}{2}, 1]$,

$$\sup_{t\in[0,1]} WF_g(t) = WF_g(0) = WF_g(1) = \int_c^d f(g(s))p_1(s)\,ds$$

and

$$\inf_{t \in [0,1]} WF_g(t) = WF_g\left(\frac{1}{2}\right) = \int_c^d \int_c^d f\left(\frac{g(s) + g(u)}{2}\right) p_1(s) p_1(u) \, ds \, du.$$

(3) We have

$$WH_g(t)\int_c^d p_1(s)\,ds \le WF_g(t) \quad \left(t \in [0,1]\right) \tag{3.7}$$

and

$$f\left(g\left(\frac{c+d}{2}\right)\right)\left(\int_{c}^{d} p_{1}(s) \, ds\right)^{2} \le WF_{g}\left(\frac{1}{2}\right). \tag{3.8}$$

Proof

(1)-(2) Proceeding as in the proof of Theorem 4, the parts (1) and (2) hold.

(3) Using the substitution rules for integration and the hypothesis of p_1 , we have the identity

$$WF_{g}(t) = \int_{c}^{d} \int_{c}^{\frac{c+d}{2}} \left[f(tg(s) + (1-t)g(u)) + f(tg(s) + (1-t)(c+d-u)) \right] p_{1}(u)p_{1}(s) \, du \, ds$$
(3.9)

for all $t \in [0, 1]$. Proceeding as in the proof of Theorem 4, we also obtain the inequality (2.17). Multiplying the inequality (2.17) by $p_1(u)p_1(s)$, integrating it over *s* on [c, d], over *u* on $[c, \frac{c+d}{2}]$ and using the identities (3.4) and (3.9), we obtain the inequality (3.7).

From the inequalities (3.5), (3.7) and the monotonicity of WH_g , we derive the inequality (3.8).

This completes the proof.

Remark 10

- (1) Theorem 8 refines the inequality (3.1).
- (2) Let the function $p_1(s) \equiv \frac{1}{d-c}$ on [c, d]. Then Theorem 8 reduces to Theorem 2.
- (3) Let c = a, d = b and the functions g(s) = s and p₁(s) = p(s) on [a, b]. Then Theorem 8 reduces to Theorem F.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors did not provide this information.

Author details

¹China University of Science and Technology, Nankang, Taipei, 11522, Taiwan. ²Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei, 25103, Taiwan.

Acknowledgements

Dedicated to Professor Hari M Srivastava. This research was partially supported by Grant NSC 101-2115-M-156-002.

Received: 23 December 2012 Accepted: 27 March 2013 Published: 15 April 2013

References

- Hadamard, J: Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171-215 (1893)
- 2. Dragomir, SS: Two mappings in connection to Hadamard's inequalities. J. Math. Anal. Appl. 167, 49-56 (1992)
- 3. Dragomir, SS: A refinement of Hadamard's inequality for isotonic linear functionals. Tamkang. J. Math. 24, 101-106 (1993)
- Dragomir, SS: On the Hadamard's inequality for convex on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775-788 (2001)
- Dragomir, SS: Further properties of some mapping associated with Hermite-Hadamard inequalities. Tamkang. J. Math. 34(1), 45-57 (2003)
- Dragomir, SS, Cho, Y-J, Kim, S-S: Inequalities of Hadamard's type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245, 489-501 (2000)
- Dragomir, SS, Milošević, DS, Sándor, J: On some refinements of Hadamard's inequalities and applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4, 3-10 (1993)
- 8. Fejér, L: Über die Fourierreihen, II. Math. Naturwiss Anz Ungar. Akad. Wiss. 24, 369-390 (1906) (In Hungarian)
- Hwang, D-Y, Tseng, K-L, Yang, G-S: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwan. J. Math. 11(1), 63-73 (2007)
- Tseng, K-L, Hwang, S-R, Dragomir, SS: On some new inequalities of Hermite-Hadamard-Fejér type involving convex functions. Demonstr. Math. XL(1), 51-64 (2007)
- 11. Tseng, K-L, Yang, G-S, Hsu, K-C: On some inequalities of Hadamard's type and applications. Taiwan. J. Math. 13(6B), 1929-1948 (2009)
- 12. Yang, G-S, Hong, M-C: A note on Hadamard's inequality. Tamkang. J. Math. 28(1), 33-37 (1997)
- Yang, G-S, Tseng, K-L: On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 239, 180-187 (1999)
- 14. Yang, G-S, Tseng, K-L: Inequalities of Hadamard's type for Lipschitzian mappings. J. Math. Anal. Appl. 260, 230-238 (2001)
- 15. Yang, G-S, Tseng, K-L: On certain multiple integral inequalities related to Hermite-Hadamard inequalities. Util. Math. 62, 131-142 (2002)
- Yang, G-S, Tseng, K-L: Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions. Taiwan. J. Math. 7(3), 433-440 (2003)

doi:10.1186/1029-242X-2013-170

Cite this article as: Hwang et al.: Hermite-Hadamard type and Fejér type inequalities for general weights (I). Journal of Inequalities and Applications 2013 2013:170.