Hermite-Hadamard type and Fejér type inequalities for general weights (I)

Shiow-Ru Hwang ${ }^{1}$, Kuei-Lin Tseng ${ }^{2 *}$ and Kai-Chen Hsu ${ }^{2}$

"Correspondence:
kltseng@mail.au.edu.tw; kltseng1@gmail.com
${ }^{2}$ Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei, 25103, Taiwan Full list of author information is available at the end of the article

Abstract

In this paper, we establish some weighted versions of the Hermite-Hadamard type and Fejér type inequalities and from which generalize Hermite-Hadamard inequality, Fejér inequality and several results in (Dragomir in J. Math. Anal. Appl. 167:49-56, 1992; Yang and Hong in Tamkang. J. Math. 28(1):33-37, 1997; Yang and Tseng in J. Math. Anal. Appl. 239:180-187, 1999; Yang and Tseng in Taiwan. J. Math. 7(3):433-440, 2003). MSC: Primary 26D15; secondary 26A51 Keywords: Hermite-Hadamard inequality; Fejér inequality; convex function

1 Introduction

Throughout this paper, let $a<b$ in $\mathbb{R}, c<d$ in $\mathbb{R}, f:[a, b] \rightarrow \mathbb{R}$ be convex, the weight function $p:[a, b] \rightarrow[0, \infty)$ be integrable and symmetric about the line $s=\frac{a+b}{2}$, the weight function $p_{1}:[c, d] \rightarrow[0, \infty)$ be integrable and symmetric about the line $s=\frac{c+d}{2}$ and let the weight function $g:[c, d] \rightarrow[a, b]$ be continuous and symmetric about the point $\left(\frac{c+d}{2}, g\left(\frac{c+d}{2}\right)\right)$, that is, $\frac{1}{2}[g(s)+g(c+d-s)]=g\left(\frac{c+d}{2}\right)(s \in[c, d])$. Define the following functions on $[0,1]$:

$$
\begin{aligned}
& H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t s+(1-t) \frac{a+b}{2}\right) d s \\
& H_{g}(t)=\frac{1}{d-c} \int_{c}^{d} f\left(\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right) d s ; \\
& W H(t)=\int_{a}^{b} f\left(t s+(1-t) \frac{a+b}{2}\right) p(s) d s \\
& W H_{g}(t)=\int_{c}^{d} f\left(\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right) p_{1}(s) d s ; \\
& F(t)=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(t s+(1-t) u) d s d u ; \\
& F_{g}(t)=\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} f(t g(s)+(1-t) g(u)) d s d u ; \\
& W F(t)=\int_{a}^{b} \int_{a}^{b} f(t s+(1-t) u) p(s) p(u) d s d u ; \\
& W F_{g}(t)=\int_{c}^{d} \int_{c}^{d} f(t g(s)+(1-t) g(u)) p_{1}(s) p_{1}(u) d s d u ;
\end{aligned}
$$

$$
\begin{aligned}
P(t)= & \frac{1}{2(b-a)} \int_{a}^{b}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) s\right)\right. \\
& \left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) s\right)\right] d s ; \\
P_{g}(t)= & \frac{1}{2(d-c)} \int_{c}^{d}\left[f\left((1-t) g\left(\frac{s+c}{2}\right)+\operatorname{tg}(c)\right)\right. \\
& \left.+f\left((1-t) g\left(\frac{s+d}{2}\right)+t g(d)\right)\right] d s ; \\
W P(t)= & \frac{1}{2} \int_{a}^{b}\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) s\right) p\left(\frac{s+a}{2}\right)\right. \\
& \left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) s\right) p\left(\frac{s+b}{2}\right)\right] d s
\end{aligned}
$$

and

$$
\begin{aligned}
W P_{g}(t)= & \frac{1}{2} \int_{c}^{d}\left[f\left((1-t) g\left(\frac{s+c}{2}\right)+\operatorname{tg}(c)\right) p_{1}\left(\frac{s+c}{2}\right)\right. \\
& \left.+f\left((1-t) g\left(\frac{s+d}{2}\right)+\operatorname{tg}(d)\right) p_{1}\left(\frac{s+d}{2}\right)\right] d s .
\end{aligned}
$$

Remark 1

(1) Let $c=a, d=b$ and the function $g(s)=s$ on $[a, b]$. Then the functions $H_{g}(t)=H(t)$, $F_{g}(t)=F(t)$ and $P_{g}(t)=P(t)$ on $[0,1]$.
(2) Let $c=a, d=b$ and let the functions $g(s)=s$ and $p_{1}(s)=p(s)$ on $[a, b]$. Then the functions $W H_{g}(t)=W H(t), W F_{g}(t)=W F(t)$ and $W P_{g}(t)=W P(t)$ on $[0,1]$.

In 1893, Hadamard [1] established the following inequality. If the function f is defined as above, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(s) d s \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known as Hermite-Hadamard inequality.
See [2-8] and [9-16] for some results in which this famous integral inequality (1.1) is generalized, improved and extended.

Dragomir [2] established the following Hermite-Hadamard type inequalities related to the functions H, F, which refine the first inequality of (1.1).

Theorem A Let the functions f, H be defined as in the first page. Then the function H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(s) d s \tag{1.2}
\end{equation*}
$$

Theorem B Let the functions f, F be defined as in the first page. Then:
(1) The function F is convex on $[0,1]$, symmetric about $\frac{1}{2}, F$ is decreasing on $\left[0, \frac{1}{2}\right]$ and
increasing on $\left[\frac{1}{2}, 1\right]$, and we have

$$
\sup _{t \in[0,1]} F(t)=F(0)=F(1)=\frac{1}{b-a} \int_{a}^{b} f(s) d s
$$

and

$$
\inf _{t \in[0,1]} F(t)=F\left(\frac{1}{2}\right)=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f\left(\frac{s+u}{2}\right) d s d u .
$$

(2) We have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq F\left(\frac{1}{2}\right) ; \quad H(t) \leq F(t), \quad t \in[0,1] . \tag{1.3}
\end{equation*}
$$

Yang and Hong [12] established the following Hermite-Hadamard type inequality related to the function P, which refines the second inequality of (1.1).

Theorem C Let the functions f, P be defined as in the first and second pages. Then the function P is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(s) d s=P(0) \leq P(t) \leq P(1)=\frac{f(a)+f(b)}{2} . \tag{1.4}
\end{equation*}
$$

In 1906, Fejér [8] established the following weighted generalization of Hermite-Hadamard inequality (1.1).

Theorem D Let the functions f, p be defined as in the first page. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(s) d s \leq \int_{a}^{b} f(s) p(s) d s \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} p(s) d s \tag{1.5}
\end{equation*}
$$

is known as the Fejér inequality.

Yang and Tseng $[13,16]$ established the following Fejér type inequalities related to the functions $W H, W P, W F$ and which generalize Theorems A-C and refine Fejér inequality (1.5).

Theorem E [13] Let the functionsf, p, WH, WP be defined as in the first and second pages. Then the functions Hg, Pg are convex and increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(s) d s & =W H(0) \leq W H(t) \leq W H(1) \\
& =\int_{a}^{b} f(s) p(s) d s \\
& =W P(0) \leq W P(t) \leq W P(1) \\
& =\frac{f(a)+f(b)}{2} \int_{a}^{b} p(s) d s . \tag{1.6}
\end{align*}
$$

Theorem F [16] Let the functionsf, p, WH, WF be defined as in the first and second pages. Then we have the following results:
(1) The function WF is convex on $[0,1]$ and symmetric about $\frac{1}{2}$.
(2) The function WF is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

$$
\begin{equation*}
\sup _{t \in[0,1]} W F(t)=W F(0)=W F(1)=\int_{a}^{b} f(s) p(s) d s \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{t \in[0,1]} W F(t)=W F\left(\frac{1}{2}\right)=\int_{a}^{b} \int_{a}^{b} f\left(\frac{s+u}{2}\right) p(s) p(u) d s d u . \tag{1.8}
\end{equation*}
$$

(3) We have:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b} p(s) d s\right)^{2} \leq W F\left(\frac{1}{2}\right) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
W H(t) \int_{a}^{b} p(s) d s \leq W F(t) \tag{1.10}
\end{equation*}
$$

for all $t \in[0,1]$.

In this paper, we establish some weighted versions of the Hermite-Hadamard type and Fejér type inequalities related to the functions $H_{g}, F_{g}, P_{g}, W H_{g}, W F_{g}, W P_{g}$, which generalize the inequality (1.1) and Theorems A-F.

2 Hermite-Hadamard type inequalities for general weights

In this section, we establish some Hermite-Hadamard type inequalities for general weights, which generalize the Hermite-Hadamard inequality (1.1) and Theorems A-C.
In order to prove the results in this paper, we need the following lemmas.

Lemma 1 (see [9]) Let the function f be defined as in the first page and let $a \leq A \leq C \leq$ $D \leq B \leq b$ with $A+B=C+D$. Then

$$
f(C)+f(D) \leq f(A)+f(B)
$$

The assumptions in Lemma 1 can be weakened as in the following lemma.

Lemma 2 Let the function f be defined as in the first page and let $A, B, C, D \in[a, b]$ with $A+B=C+D$ and $|C-D| \leq|A-B|$. Then

$$
f(C)+f(D) \leq f(A)+f(B) .
$$

Proof Without loss of generalization, we can assume that $a \leq A \leq B \leq b$ and $a \leq C \leq$ $D \leq b$. For $|C-D| \leq|A-B|$, we have $A-B \leq C-D$ and $D-C \leq B-A$. Hence, by the
above inequalities and $A+B=C+D$, we get $a \leq A \leq C \leq D \leq B \leq b$. Thus, the proof is completed by Lemma 1 .

Now, we are ready to state and prove our new results.

Theorem 1 Let the functions f, g be defined as in the first page. Then:
(1) We have

$$
\begin{equation*}
f\left(g\left(\frac{c+d}{2}\right)\right) \leq \frac{1}{d-c} \int_{c}^{d} f(g(s)) d s \tag{2.1}
\end{equation*}
$$

(2) As the function g is monotonic on $[c, d]$, we obtain

$$
\begin{equation*}
\frac{1}{d-c} \int_{c}^{d} f(g(s)) d s \leq \frac{f(g(c))+f(g(d))}{2} \tag{2.2}
\end{equation*}
$$

Proof

(1) Using simple techniques of integration, we have the identity

$$
\begin{equation*}
\frac{1}{d-c} \int_{c}^{d} f(g(s)) d s=\frac{1}{d-c} \int_{c}^{\frac{c+d}{2}}[f(g(s))+g(c+d-s)] d s \tag{2.3}
\end{equation*}
$$

Next, using $g(s)+g(c+d-s)=2 g\left(\frac{c+d}{2}\right)$ and

$$
\left|g\left(\frac{c+d}{2}\right)-g\left(\frac{c+d}{2}\right)\right| \leq|g(s)-g(c+d-s)|
$$

in Lemma 2, we obtain

$$
\begin{equation*}
2 f\left(g\left(\frac{c+d}{2}\right)\right) \leq f(g(s))+f(g(c+d-s)) \tag{2.4}
\end{equation*}
$$

where $s \in[c, d]$. Integrating the above inequality over s on $\left[c, \frac{c+d}{2}\right]$, dividing both sides by $d-c$ and using the above identity, we obtain the inequality (2.1).
(2) For the monotonicity of g, we have $|g(s)-g(c+d-s)| \leq|g(c)-g(d)|$ for all $s \in[c, d]$. Using the above inequality and $g(s)+g(c+d-s)=g(c)+g(d)$ in Lemma 2, we obtain

$$
\begin{equation*}
f(g(s))+f(g(c+d-s)) \leq f(g(c))+f(g(d)) \tag{2.5}
\end{equation*}
$$

where $s \in[c, d]$. Integrating the above inequality over s on $\left[c, \frac{c+d}{2}\right]$, dividing both sides by $d-c$ and using the inequality (2.3), we obtain the inequality (2.2). This completes the proof.

Remark 2 In Theorem 1, let $c=a, d=b$ and the function $g(s)=s$ on $[a, b]$. Then Theorem 1 reduces to the Hermite-Hadamard inequality (1.1).

Theorem 2 Let the functions f, g, H_{g} be defined as in the first page. Then:
(1) The function H_{g} is convex on $[0,1]$.
(2) The function H_{g} is increasing on $[0,1]$ and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(g\left(\frac{c+d}{2}\right)\right)=H_{g}(0) \leq H_{g}(t) \leq H_{g}(1)=\frac{1}{d-c} \int_{c}^{d} f(g(s)) d s \tag{2.6}
\end{equation*}
$$

Proof

(1) It is easily observed from the convexity of f that the function H_{g} is convex on $[0,1]$.
(2) Using simple techniques of integration, we have the following identity:

$$
\begin{aligned}
H_{g}(t)= & \frac{1}{d-c} \int_{c}^{\frac{c+d}{2}}\left[f\left(\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right)\right. \\
& \left.+f\left(\operatorname{tg}(c+d-s)+(1-t) g\left(\frac{c+d}{2}\right)\right)\right] d s
\end{aligned}
$$

for all $t \in[0,1]$. Let $t_{1}<t_{2}$ in $[0,1]$. Since $g(s)+g(c+d-s)=2 g\left(\frac{c+d}{2}\right)(s \in[c, d])$, we obtain

$$
\begin{aligned}
& {\left[t_{1} g(s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right]+\left[t_{1} g(c+d-s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right]} \\
& \quad=\left[t_{2} g(s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right]+\left[t_{2} g(c+d-s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left[t_{1} g(s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right]-\left[t_{1} g(c+d-s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right]\right| \\
& \quad=t_{1}|g(s)-g(c+d-s)| \\
& \quad \leq t_{2}|g(s)-g(c+d-s)| \\
& \quad=\left|\left[t_{2} g(s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right]-\left[t_{2} g(c+d-s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right]\right|
\end{aligned}
$$

for all $s \in\left[c, \frac{c+d}{2}\right]$. Therefore, by Lemma 2, the following inequality holds for all $s \in\left[c, \frac{c+d}{2}\right]$:

$$
\begin{align*}
& f\left(t_{1} g(s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right)+f\left(t_{1} g(c+d-s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)\right) \\
& \quad \leq f\left(t_{2} g(s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right)+f\left(t_{2} g(c+d-s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right)\right) \tag{2.7}
\end{align*}
$$

where $A=t_{2} g(s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right), B=t_{2} g(c+d-s)+\left(1-t_{2}\right) g\left(\frac{c+d}{2}\right), C=t_{1} g(s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)$ and $t_{1} g(c+d-s)+\left(1-t_{1}\right) g\left(\frac{c+d}{2}\right)$. Integrating the above inequality over s on $\left[c, \frac{c+d}{2}\right]$, dividing both sides by $d-c$ and using the above identity, we have

$$
H_{g}\left(t_{1}\right) \leq H_{g}\left(t_{2}\right)
$$

Thus, the function H_{g} is increasing on [0,1] and from which the inequality (2.6) holds. This completes the proof.

Remark 3

(1) In Theorem 2 , the inequality (2.6) refines the inequality (2.1).
(2) In Theorem 2, let $c=a, d=b$ and the function $g(s)=s$ on $[a, b]$. Then the functions $H_{g}(t)=H(t)(t \in[0,1])$ and Theorem 1 reduces to Theorem A.

Theorem 3 Let the functions f, g, P_{g} be defined as in the first and second pages. Then:
(1) The function P_{g} is convex on $[0,1]$.
(2) The function P_{g} is increasing on $[0,1]$ and, for all $t \in[0,1]$, we have

$$
\begin{equation*}
\frac{1}{d-c} \int_{c}^{d} f(g(s)) d s=P_{g}(0) \leq P_{g}(t) \leq P_{g}(1)=\frac{f(g(c))+f(g(d))}{2} \tag{2.8}
\end{equation*}
$$

as the function g is monotonic on $[c, d]$.

Proof

(1) It is easily observed from the convexity of f that the function P_{g} is convex on $[0,1]$.
(2) Using simple techniques of integration, we have the following identity:

$$
\begin{aligned}
P_{g}(t)= & \frac{1}{d-c} \int_{c}^{\frac{c+d}{2}}[f(\operatorname{tg}(c)+(1-t) g(s)) \\
& +f(t g(d)+(1-t) g(c+d-s))] d s
\end{aligned}
$$

for all $t \in[0,1]$. Let $t_{1}<t_{2}$ in $[0,1]$. Since $g(s)+g(c+d-s)=2 g\left(\frac{c+d}{2}\right)(s \in[c, d])$ and the monotonicity of g on $[c, d]$, we obtain

$$
\begin{aligned}
& |g(s)-g(c+d-s)| \leq|g(c)-g(d)| \\
& {\left[t_{1} g(c)+\left(1-t_{1}\right) g(s)\right]+\left[t_{1} g(d)+\left(1-t_{1}\right) g(c+d-s)\right]} \\
& \quad=\left[t_{2} g(c)+\left(1-t_{2}\right) g(s)\right]+\left[t_{2} g(d)+\left(1-t_{2}\right) g(c+d-s)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left[t_{1} g(c)+\left(1-t_{1}\right) g(s)\right]-\left[t_{1} g(d)+\left(1-t_{1}\right) g(c+d-s)\right]\right| \\
& \quad=\left|t_{1}[g(c)-g(d)]+\left(1-t_{1}\right)[g(s)-g(c+d-s)]\right| \\
& \quad=t_{1}|g(c)-g(d)|+\left(1-t_{1}\right)|g(s)-g(c+d-s)| \\
& \quad \leq t_{1}|g(c)-g(d)|+\left(1-t_{1}\right)|g(s)-g(c+d-s)| \\
& \quad=\left|\left[t_{2} g(c)+\left(1-t_{2}\right) g(s)\right]-\left[t_{2} g(d)+\left(1-t_{2}\right) g(c+d-s)\right]\right|
\end{aligned}
$$

for all $s \in\left[c, \frac{c+d}{2}\right]$. Therefore, by Lemma 2, the following inequality holds for all $s \in\left[c, \frac{c+d}{2}\right]$:

$$
\begin{align*}
& f\left(t_{1} g(c)+\left(1-t_{1}\right) g(s)\right)+f\left(t_{1} g(d)+\left(1-t_{1}\right) g(c+d-s)\right) \\
& \quad \leq f\left(t_{2} g(c)+\left(1-t_{2}\right) g(s)\right)+f\left(t_{2} g(d)+\left(1-t_{2}\right) g(c+d-s)\right) \tag{2.9}
\end{align*}
$$

where $A=t_{2} g(c)+\left(1-t_{2}\right) g(s), B=t_{2} g(d)+\left(1-t_{2}\right) g(c+d-s), C=t_{1} g(c)+\left(1-t_{1}\right) g(s)$ and $t_{1} g(d)+\left(1-t_{1}\right) g(c+d-s)$. Integrating the above inequality over s on $\left[c, \frac{c+d}{2}\right]$, dividing both
sides by $d-c$ and using the above identity, we have

$$
P_{g}\left(t_{1}\right) \leq P_{g}\left(t_{2}\right)
$$

Thus, the function P_{g} is increasing on $[0,1]$ and from which the inequality (2.8) holds. This completes the proof.

Remark 4

(1) In Theorem 3, the inequality (2.8) refines the inequality (2.2).
(2) In Theorem 3, let $c=a, d=b$ and the function $g(s)=s$ on $[a, b]$. Then the functions $P_{g}(t)=P(t)(t \in[0,1])$ and Theorem 3 reduces to Theorem C.

Theorem 4 Let the functions f, g, H_{g}, F_{g} be defined as in the first page. Then we have the following results:
(1) The function F_{g} is convex on $[0,1]$ and symmetric about $\frac{1}{2}$.
(2) The function F_{g} is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

$$
\begin{equation*}
\sup _{t \in[0,1]} F_{g}(t)=F_{g}(0)=F_{g}(1)=\frac{1}{d-c} \int_{c}^{d} f(g(s)) d s \tag{2.10}
\end{equation*}
$$

and

$$
\begin{align*}
\inf _{t \in[0,1]} F_{g}(t) & =F_{g}\left(\frac{1}{2}\right) \\
& =\frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{d} f\left(\frac{g(s)+g(u)}{2}\right) d s d u \tag{2.11}
\end{align*}
$$

(3) We have:

$$
\begin{equation*}
H_{g}(t) \leq F_{g}(t) \quad(t \in[0,1]) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(g\left(\frac{c+d}{2}\right)\right) \leq F_{g}\left(\frac{1}{2}\right) \tag{2.13}
\end{equation*}
$$

Proof

(1) It is easily observed from the convexity of f that the function F_{g} is convex on $[0,1]$.

By changing variables, we have

$$
F_{g}(t)=F_{g}(1-t), \quad t \in[0,1]
$$

from which we get that the function F_{g} is symmetric about $\frac{1}{2}$.
(2) Let $t_{1}<t_{2}$ in $\left[0, \frac{1}{2}\right]$. Then $t_{2}+\left(1-t_{2}\right)=t_{1}+\left(1-t_{1}\right),\left|t_{2}-\left(1-t_{2}\right)\right| \leq\left|t_{1}-\left(1-t_{1}\right)\right|$ and by Lemma 2, we obtain

$$
\begin{equation*}
\frac{1}{2}\left[F_{g}\left(t_{2}\right)+F_{g}\left(1-t_{2}\right)\right] \leq \frac{1}{2}\left[F_{g}\left(t_{1}\right)+F_{g}\left(1-t_{1}\right)\right] . \tag{2.14}
\end{equation*}
$$

Using the symmetry of F_{g}, we have

$$
\begin{align*}
& F_{g}\left(t_{1}\right)=\frac{1}{2}\left[F_{g}\left(t_{1}\right)+F_{g}\left(1-t_{1}\right)\right], \tag{2.15}\\
& F_{g}\left(t_{2}\right)=\frac{1}{2}\left[F_{g}\left(t_{2}\right)+F_{g}\left(1-t_{2}\right)\right] \tag{2.16}
\end{align*}
$$

From (2.14)-(2.16), we obtain that the function F_{g} is decreasing on [$0, \frac{1}{2}$]. Since the function F_{g} is symmetric about $\frac{1}{2}$ and the function F_{g} is decreasing on $\left[0, \frac{1}{2}\right]$, we obtain that the function F_{g} is increasing on $\left[\frac{1}{2}, 1\right]$. Using the symmetry and monotonicity of F_{g}, we derive the inequalities (2.10) and (2.11).
(3) Using the substitution rules for integration, we have the identity

$$
\begin{aligned}
F_{g}(t)= & \frac{1}{(d-c)^{2}} \int_{c}^{d} \int_{c}^{\frac{c+d}{2}}[f(\operatorname{tg}(s)+(1-t) g(u)) \\
& +f(\operatorname{tg}(s)+(1-t) g(c+d-u))] d u d s
\end{aligned}
$$

for all $t \in[0,1]$. Let $t \in[0,1]$. Since $g(u)+g(c+d-u)=2 g\left(\frac{c+d}{2}\right)(u \in[c, d])$, we obtain

$$
\begin{aligned}
& 2\left[\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right] \\
& \quad=[\operatorname{tg}(s)+(1-t) g(u)]+[\operatorname{tg}(s)+(1-t) g(c+d-u)]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left[\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right]-\left[\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right]\right| \\
& \quad \leq|[\operatorname{tg}(s)+(1-t) g(u)]-[\operatorname{tg}(s)+(1-t) g(c+d-u)]|
\end{aligned}
$$

for all $s \in[c, d]$ and $u \in\left[c, \frac{c+d}{2}\right]$. Therefore, by Lemma 2, the following inequality holds for all $s \in[c, d]$ and $u \in\left[c, \frac{c+d}{2}\right]:$

$$
\begin{align*}
& 2 f\left(\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right) \\
& \quad \leq f(\operatorname{tg}(s)+(1-t) g(u))+f(\operatorname{tg}(s)+(1-t) g(c+d-u)) \tag{2.17}
\end{align*}
$$

where $A=\operatorname{tg}(s)+(1-t) g(u), B=\operatorname{tg}(s)+(1-t) g(c+d-u)$ and $C=D=\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)$. Dividing the above inequality by $(d-c)^{2}$, integrating it over s on $[c, d]$, over u on $\left[c, \frac{c+d}{2}\right]$ and using the above identity, we derive the inequality (2.12).

From the inequalities (2.6), (2.12) and the monotonicity of H_{g}, we derive the inequality (2.13).

This completes the proof.

Remark 5 In Theorem 4, let $c=a, d=b$ and the function $g(s)=s$ on $[a, b]$. Then the functions $F_{g}(t)=F(t)(t \in[0,1])$ and Theorem 4 reduces to Theorem B.

3 Fejér type inequalities for general weights

In this section, we establish some Fejér type inequalities for general weights which generalize Theorems D-F.

Theorem 5 Let the functions f, g, p_{1} be defined as in the first page. Then:
(1) We have

$$
\begin{equation*}
f\left(g\left(\frac{c+d}{2}\right)\right) \int_{c}^{d} p_{1}(s) d s \leq \int_{c}^{d} f(g(s)) p_{1}(s) d s \tag{3.1}
\end{equation*}
$$

(2) As the functiong is monotonic on $[c, d]$, we obtain

$$
\begin{equation*}
\int_{c}^{d} f(g(s)) p_{1}(s) d s \leq \frac{f(g(c))+f(g(d))}{2} \int_{c}^{d} p_{1}(s) d s \tag{3.2}
\end{equation*}
$$

Proof
(1) Using simple techniques of integration and the hypothesis of p_{1}, we have the identities

$$
\begin{equation*}
\int_{c}^{d} f(g(s)) p_{1}(s) d s=\int_{c}^{\frac{c+d}{2}}[f(g(s))+f(g(c+d-s))] p_{1}(s) d s \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{c}^{\frac{c+d}{2}} p_{1}(s) d s=\frac{1}{2} \int_{c}^{d} p_{1}(s) d s . \tag{3.4}
\end{equation*}
$$

Proceeding as in the proof of Theorem 1, we also obtain the inequality (2.4). Multiplying the inequality (2.4) by $p_{1}(s)$, integrating it over s on $\left[c, \frac{c+d}{2}\right]$ and using the above identities, we obtain the inequality (3.1).
(2) Proceeding as in the proof of Theorem 1, we also obtain the inequality (2.5). Multiplying the inequality (2.5) by $p_{1}(s)$, integrating it over s on $\left[c, \frac{c+d}{2}\right]$ and using the above identities, we obtain the inequality (3.2). This completes the proof.

Remark 6

(1) Let $c=a, d=b$ and let the functions $g(s)=s$ and $p_{1}(s)=p(s)$ on $[a, b]$. Then Theorem 5 reduces to Fejér inequality (1.5).
(2) Let the function $p_{1}(s) \equiv \frac{1}{d-c}$ on $[c, d]$. Then Theorem 5 reduces to Theorem 1 .

Theorem 6 Let the functions $f, g, p_{1}, W H_{g}$ be defined as in the first page. Then:
(1) The function W_{g} is convex on $[0,1]$.
(2) The function $W H_{g}$ is increasing on $[0,1]$ and, for all $t \in[0,1]$, we have

$$
\begin{align*}
f\left(g\left(\frac{c+d}{2}\right)\right) \int_{c}^{d} p_{1}(s) d s & =W H_{g}(0) \\
& \leq W H_{g}(t) \\
& \leq W H_{g}(1)=\int_{c}^{d} f(g(s)) p_{1}(s) d s . \tag{3.5}
\end{align*}
$$

Proof

(1) It is easily observed from the convexity of f and the hypothesis of p_{1} that the function W_{g} is convex on $[0,1]$.
(2) Using simple techniques of integration and the hypothesis of p_{1}, we have the following identity:

$$
\begin{aligned}
W H_{g}(t)= & \int_{c}^{\frac{c+d}{2}}\left[f\left(\operatorname{tg}(s)+(1-t) g\left(\frac{c+d}{2}\right)\right)\right. \\
& \left.+f\left(\operatorname{tg}(c+d-s)+(1-t) g\left(\frac{c+d}{2}\right)\right)\right] p_{1}(s) d s
\end{aligned}
$$

for all $t \in[0,1]$.
Let $t_{1}<t_{2}$ in [0,1]. Proceeding as in the proof of Theorem 2, we also obtain the inequality (2.7). Multiplying the inequality (2.7) by $p_{1}(s)$, integrating it over s on $\left[c, \frac{c+d}{2}\right]$ and using the above identity, we obtain

$$
W H_{g}\left(t_{1}\right) \leq W H_{g}\left(t_{2}\right)
$$

Thus, the function $W H_{g}$ is increasing on $[0,1]$ and from which the inequality (3.5) holds. This completes the proof.

Remark 7

(1) In Theorem 6, the inequality (3.5) refines the inequality (3.1).
(2) Let the function $p_{1}(s) \equiv \frac{1}{d-c}$ on $[c, d]$. Then Theorem 6 reduces to Theorem 2.

Theorem 7 Let the functions $f, g, p_{1}, W P_{g}$ be defined as in the first and second pages. Then:
(1) The function $W P_{g}$ is convex on $[0,1]$.
(2) The function $W P_{g}$ is increasing on $[0,1]$ and, for all $t \in[0,1]$, we have

$$
\begin{align*}
\int_{c}^{d} f(g(s)) p_{1}(s) d s & =W P_{g}(0) \\
& \leq W P_{g}(t) \\
& \leq W P_{g}(1)=\frac{f(g(c))+f(g(d))}{2} \int_{c}^{d} p_{1}(s) d s \tag{3.6}
\end{align*}
$$

as the function g is monotonic on $[c, d]$.

Proof
(1) It is easily observed from the convexity of f and the hypothesis of p_{1} that the function $W P_{g}$ is convex on $[0,1]$.
(2) Using simple techniques of integration and the hypothesis of p_{1}, we have the following identity:

$$
\begin{aligned}
W P_{g}(t)= & \int_{c}^{\frac{c+d}{2}}[f(\operatorname{tg}(c)+(1-t) g(s)) \\
& +f(\operatorname{tg}(d)+(1-t) g(c+d-s))] p_{1}(s) d s
\end{aligned}
$$

for all $t \in[0,1]$.

Let $t_{1}<t_{2}$ in $[0,1]$. Proceeding as in the proof of Theorem 3, we also obtain the inequality (2.9). Multiplying the inequality (2.9) by $p_{1}(s)$, integrating it over s on $\left[c, \frac{c+d}{2}\right]$ and using the above identity, we obtain

$$
W P_{g}\left(t_{1}\right) \leq W P_{g}\left(t_{2}\right)
$$

Thus, the function $W P_{g}$ is increasing on $[0,1]$ and from which the inequality (3.6) holds. This completes the proof.

Remark 8

(1) In Theorem 7 , the inequality (3.6) refines the inequality (3.2).
(2) Let the function $p_{1}(s) \equiv \frac{1}{d-c}$ on $[c, d]$. Then Theorem 7 reduces to Theorem 3.

Remark 9 Let $c=a, d=b$ and let the functions $g(s)=s$ and $p_{1}(s)=p(s)$ on $[a, b]$. Then Theorems 6 and 7 reduce to Theorem E.

Theorem 8 Let the functions $f, g, p_{1}, W H_{g}, W F_{g}$ be defined as in the first page. Then we have the following results:
(1) The function $W F_{g}$ is convex on $[0,1]$ and symmetric about $\frac{1}{2}$.
(2) The function $W F_{g}$ is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$,

$$
\sup _{t \in[0,1]} W F_{g}(t)=W F_{g}(0)=W F_{g}(1)=\int_{c}^{d} f(g(s)) p_{1}(s) d s
$$

and

$$
\inf _{t \in[0,1]} W F_{g}(t)=W F_{g}\left(\frac{1}{2}\right)=\int_{c}^{d} \int_{c}^{d} f\left(\frac{g(s)+g(u)}{2}\right) p_{1}(s) p_{1}(u) d s d u
$$

(3) We have

$$
\begin{equation*}
W H_{g}(t) \int_{c}^{d} p_{1}(s) d s \leq W F_{g}(t) \quad(t \in[0,1]) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(g\left(\frac{c+d}{2}\right)\right)\left(\int_{c}^{d} p_{1}(s) d s\right)^{2} \leq W F_{g}\left(\frac{1}{2}\right) \tag{3.8}
\end{equation*}
$$

Proof

(1)-(2) Proceeding as in the proof of Theorem 4, the parts (1) and (2) hold.
(3) Using the substitution rules for integration and the hypothesis of p_{1}, we have the identity

$$
\begin{align*}
W F_{g}(t)= & \int_{c}^{d} \int_{c}^{\frac{c+d}{2}}[f(\operatorname{tg}(s)+(1-t) g(u)) \\
& +f(\operatorname{tg}(s)+(1-t)(c+d-u))] p_{1}(u) p_{1}(s) d u d s \tag{3.9}
\end{align*}
$$

for all $t \in[0,1]$. Proceeding as in the proof of Theorem 4, we also obtain the inequality (2.17). Multiplying the inequality (2.17) by $p_{1}(u) p_{1}(s)$, integrating it over s on $[c, d]$, over u on $\left[c, \frac{c+d}{2}\right]$ and using the identities (3.4) and (3.9), we obtain the inequality (3.7).
From the inequalities (3.5), (3.7) and the monotonicity of $W H_{g}$, we derive the inequality (3.8).

This completes the proof.

Remark 10

(1) Theorem 8 refines the inequality (3.1).
(2) Let the function $p_{1}(s) \equiv \frac{1}{d-c}$ on $[c, d]$. Then Theorem 8 reduces to Theorem 2.
(3) Let $c=a, d=b$ and the functions $g(s)=s$ and $p_{1}(s)=p(s)$ on $[a, b]$. Then Theorem 8 reduces to Theorem F.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors did not provide this information.

Author details

${ }^{1}$ China University of Science and Technology, Nankang, Taipei, 11522, Taiwan. ${ }^{2}$ Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei, 25103, Taiwan.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
This research was partially supported by Grant NSC 101-2115-M-156-002

Received: 23 December 2012 Accepted: 27 March 2013 Published: 15 April 2013

References

1. Hadamard, J: Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171-215 (1893)
2. Dragomir, SS: Two mappings in connection to Hadamard's inequalities. J. Math. Anal. Appl. 167, 49-56 (1992)
3. Dragomir, SS: A refinement of Hadamard's inequality for isotonic linear functionals. Tamkang. J. Math. 24, 101-106 (1993)
4. Dragomir, SS: On the Hadamard's inequality for convex on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775-788 (2001)
5. Dragomir, SS: Further properties of some mapping associated with Hermite-Hadamard inequalities. Tamkang. J. Math. 34(1), 45-57 (2003)
6. Dragomir, SS, Cho, Y-J, Kim, S-S: Inequalities of Hadamard's type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245, 489-501 (2000)
7. Dragomir, SS, Milošević, DS, Sándor, J: On some refinements of Hadamard's inequalities and applications. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4, 3-10 (1993)
8. Fejér, L: Über die Fourierreihen, II. Math. Naturwiss Anz Ungar. Akad. Wiss. 24, 369-390 (1906) (In Hungarian)
9. Hwang, D-Y, Tseng, K-L, Yang, G-S: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwan. J. Math. 11(1), 63-73 (2007)
10. Tseng, K-L, Hwang, S-R, Dragomir, SS: On some new inequalities of Hermite-Hadamard-Fejér type involving convex functions. Demonstr. Math. XL(1), 51-64 (2007)
11. Tseng, K-L, Yang, G-S, Hsu, K-C: On some inequalities of Hadamard's type and applications. Taiwan. J. Math. 13(6B), 1929-1948 (2009)
12. Yang, G-S, Hong, M-C: A note on Hadamard's inequality. Tamkang. J. Math. 28(1), 33-37 (1997)
13. Yang, G-S, Tseng, K-L: On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 239, 180-187 (1999)
14. Yang, G-S, Tseng, K-L: Inequalities of Hadamard's type for Lipschitzian mappings. J. Math. Anal. Appl. 260, 230-238 (2001)
15. Yang, G-S, Tseng, K-L: On certain multiple integral inequalities related to Hermite-Hadamard inequalities. Util. Math. 62, 131-142 (2002)
16. Yang, G-S, Tseng, K-L: Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions. Taiwan. J. Math. 7(3), 433-440 (2003)
