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Abstract
In this paper, we establish some weighted versions of the Hermite-Hadamard type
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1 Introduction
Throughout this paper, let a < b in R, c < d in R, f : [a,b]→R be convex, the weight func-
tion p : [a,b] → [,∞) be integrable and symmetric about the line s = a+b

 , the weight
function p : [c,d] → [,∞) be integrable and symmetric about the line s = c+d

 and
let the weight function g : [c,d] → [a,b] be continuous and symmetric about the point
( c+d , g( c+d )), that is, 

 [g(s) + g(c+d– s)] = g( c+d ) (s ∈ [c,d]). Define the following functions
on [, ]:

H(t) =


b – a

∫ b

a
f
(
ts + ( – t)

a + b


)
ds;

Hg(t) =


d – c

∫ d

c
f
(
tg(s) + ( – t)g

(
c + d


))
ds;

WH(t) =
∫ b

a
f
(
ts + ( – t)

a + b


)
p(s)ds;

WHg(t) =
∫ d

c
f
(
tg(s) + ( – t)g

(
c + d


))
p(s)ds;

F(t) =


(b – a)

∫ b

a

∫ b

a
f
(
ts + ( – t)u

)
dsdu;

Fg(t) =


(d – c)

∫ d

c

∫ d

c
f
(
tg(s) + ( – t)g(u)

)
dsdu;

WF(t) =
∫ b

a

∫ b

a
f
(
ts + ( – t)u

)
p(s)p(u)dsdu;

WFg(t) =
∫ d

c

∫ d

c
f
(
tg(s) + ( – t)g(u)

)
p(s)p(u)dsdu;
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P(t) =


(b – a)

∫ b

a

[
f
((

 + t


)
a +

(
 – t


)
s
)

+ f
((

 + t


)
b +

(
 – t


)
s
)]

ds;

Pg(t) =


(d – c)

∫ d

c

[
f
(
( – t)g

(
s + c


)
+ tg(c)

)

+ f
(
( – t)g

(
s + d


)
+ tg(d)

)]
ds;

WP(t) =



∫ b

a

[
f
((

 + t


)
a +

(
 – t


)
s
)
p
(
s + a


)

+ f
((

 + t


)
b +

(
 – t


)
s
)
p
(
s + b


)]
ds

and

WPg(t) =



∫ d

c

[
f
(
( – t)g

(
s + c


)
+ tg(c)

)
p

(
s + c


)

+ f
(
( – t)g

(
s + d


)
+ tg(d)

)
p

(
s + d


)]
ds.

Remark 
() Let c = a, d = b and the function g(s) = s on [a,b]. Then the functions Hg(t) =H(t),

Fg(t) = F(t) and Pg(t) = P(t) on [, ].
() Let c = a, d = b and let the functions g(s) = s and p(s) = p(s) on [a,b]. Then the

functionsWHg(t) =WH(t),WFg(t) =WF(t) andWPg(t) =WP(t) on [, ].

In , Hadamard [] established the following inequality.
If the function f is defined as above, then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (s)ds≤ f (a) + f (b)


(.)

is known as Hermite-Hadamard inequality.
See [–] and [–] for some results in which this famous integral inequality (.) is

generalized, improved and extended.
Dragomir [] established the following Hermite-Hadamard type inequalities related to

the functions H , F , which refine the first inequality of (.).

Theorem A Let the functions f , H be defined as in the first page. Then the function H is
convex, increasing on [, ], and for all t ∈ [, ], we have

f
(
a + b


)
=H() ≤ H(t)≤ H() =


b – a

∫ b

a
f (s)ds. (.)

Theorem B Let the functions f , F be defined as in the first page. Then:
() The function F is convex on [, ], symmetric about 

 , F is decreasing on [,  ] and
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increasing on [  , ], and we have

sup
t∈[,]

F(t) = F() = F() =


b – a

∫ b

a
f (s)ds

and

inf
t∈[,]

F(t) = F
(



)
=


(b – a)

∫ b

a

∫ b

a
f
(
s + u


)
dsdu.

() We have

f
(
a + b


)
≤ F

(



)
; H(t) ≤ F(t), t ∈ [, ]. (.)

Yang and Hong [] established the following Hermite-Hadamard type inequality re-
lated to the function P, which refines the second inequality of (.).

Theorem C Let the functions f , P be defined as in the first and second pages. Then the
function P is convex, increasing on [, ], and for all t ∈ [, ], we have


b – a

∫ b

a
f (s)ds = P() ≤ P(t) ≤ P() =

f (a) + f (b)


. (.)

In , Fejér [] established the following weighted generalization of Hermite-Hada-
mard inequality (.).

Theorem D Let the functions f , p be defined as in the first page. Then

f
(
a + b


)∫ b

a
p(s)ds≤

∫ b

a
f (s)p(s)ds≤ f (a) + f (b)



∫ b

a
p(s)ds (.)

is known as the Fejér inequality.

Yang and Tseng [, ] established the following Fejér type inequalities related to the
functions WH , WP, WF and which generalize Theorems A-C and refine Fejér inequality
(.).

TheoremE [] Let the functions f , p,WH ,WP be defined as in the first and second pages.
Then the functions Hg , Pg are convex and increasing on [, ], and for all t ∈ [, ], we have

f
(
a + b


)∫ b

a
g(s)ds =WH()≤ WH(t) ≤ WH()

=
∫ b

a
f (s)p(s)ds

=WP() ≤ WP(t) ≤ WP()

=
f (a) + f (b)



∫ b

a
p(s)ds. (.)
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TheoremF [] Let the functions f , p,WH ,WF be defined as in the first and second pages.
Then we have the following results:
() The functionWF is convex on [, ] and symmetric about 

 .
() The functionWF is decreasing on [,  ] and increasing on [  , ],

sup
t∈[,]

WF(t) =WF() =WF() =
∫ b

a
f (s)p(s)ds (.)

and

inf
t∈[,]

WF(t) =WF
(



)
=

∫ b

a

∫ b

a
f
(
s + u


)
p(s)p(u)dsdu. (.)

() We have:

f
(
a + b


)(∫ b

a
p(s)ds

)

≤ WF
(



)
(.)

and

WH(t)
∫ b

a
p(s)ds ≤ WF(t) (.)

for all t ∈ [, ].

In this paper, we establish some weighted versions of the Hermite-Hadamard type and
Fejér type inequalities related to the functions Hg , Fg , Pg , WHg , WFg , WPg , which gener-
alize the inequality (.) and Theorems A-F.

2 Hermite-Hadamard type inequalities for general weights
In this section, we establish some Hermite-Hadamard type inequalities for general
weights, which generalize the Hermite-Hadamard inequality (.) and Theorems A-C.
In order to prove the results in this paper, we need the following lemmas.

Lemma  (see []) Let the function f be defined as in the first page and let a ≤ A ≤ C ≤
D ≤ B≤ b with A + B = C +D. Then

f (C) + f (D)≤ f (A) + f (B).

The assumptions in Lemma  can be weakened as in the following lemma.

Lemma  Let the function f be defined as in the first page and let A,B,C,D ∈ [a,b] with
A + B = C +D and |C –D| ≤ |A – B|. Then

f (C) + f (D)≤ f (A) + f (B).

Proof Without loss of generalization, we can assume that a ≤ A ≤ B ≤ b and a ≤ C ≤
D ≤ b. For |C – D| ≤ |A – B|, we have A – B ≤ C – D and D – C ≤ B – A. Hence, by the

http://www.journalofinequalitiesandapplications.com/content/2013/1/170
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above inequalities and A + B = C + D, we get a ≤ A ≤ C ≤ D ≤ B ≤ b. Thus, the proof is
completed by Lemma . �

Now, we are ready to state and prove our new results.

Theorem  Let the functions f , g be defined as in the first page. Then:
() We have

f
(
g
(
c + d


))
≤ 

d – c

∫ d

c
f
(
g(s)

)
ds. (.)

() As the function g is monotonic on [c,d], we obtain


d – c

∫ d

c
f
(
g(s)

)
ds≤ f (g(c)) + f (g(d))


. (.)

Proof
() Using simple techniques of integration, we have the identity


d – c

∫ d

c
f
(
g(s)

)
ds =


d – c

∫ c+d


c

[
f
(
g(s)

)
+ g(c + d – s)

]
ds. (.)

Next, using g(s) + g(c + d – s) = g( c+d ) and

∣∣∣∣g
(
c + d


)
– g

(
c + d


)∣∣∣∣ ≤ ∣∣g(s) – g(c + d – s)
∣∣

in Lemma , we obtain

f
(
g
(
c + d


))
≤ f

(
g(s)

)
+ f

(
g(c + d – s)

)
, (.)

where s ∈ [c,d]. Integrating the above inequality over s on [c, c+d ], dividing both sides by
d – c and using the above identity, we obtain the inequality (.).
() For the monotonicity of g , we have |g(s) – g(c + d – s)| ≤ |g(c) – g(d)| for all s ∈ [c,d].

Using the above inequality and g(s) + g(c + d – s) = g(c) + g(d) in Lemma , we obtain

f
(
g(s)

)
+ f

(
g(c + d – s)

) ≤ f
(
g(c)

)
+ f

(
g(d)

)
, (.)

where s ∈ [c,d]. Integrating the above inequality over s on [c, c+d ], dividing both sides by
d – c and using the inequality (.), we obtain the inequality (.). This completes the
proof. �

Remark  In Theorem , let c = a, d = b and the function g(s) = s on [a,b]. Then Theo-
rem  reduces to the Hermite-Hadamard inequality (.).

Theorem  Let the functions f , g , Hg be defined as in the first page. Then:
() The function Hg is convex on [, ].

http://www.journalofinequalitiesandapplications.com/content/2013/1/170
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() The function Hg is increasing on [, ] and for all t ∈ [, ], we have

f
(
g
(
c + d


))
=Hg()≤ Hg(t) ≤ Hg() =


d – c

∫ d

c
f
(
g(s)

)
ds. (.)

Proof
() It is easily observed from the convexity of f that the function Hg is convex on [, ].
() Using simple techniques of integration, we have the following identity:

Hg(t) =


d – c

∫ c+d


c

[
f
(
tg(s) + ( – t)g

(
c + d


))

+ f
(
tg(c + d – s) + ( – t)g

(
c + d


))]
ds

for all t ∈ [, ]. Let t < t in [, ]. Since g(s) + g(c + d – s) = g( c+d ) (s ∈ [c,d]), we obtain

[
tg(s) + ( – t)g

(
c + d


)]
+

[
tg(c + d – s) + ( – t)g

(
c + d


)]

=
[
tg(s) + ( – t)g

(
c + d


)]
+

[
tg(c + d – s) + ( – t)g

(
c + d


)]

and

∣∣∣∣
[
tg(s) + ( – t)g

(
c + d


)]
–

[
tg(c + d – s) + ( – t)g

(
c + d


)]∣∣∣∣
= t

∣∣g(s) – g(c + d – s)
∣∣

≤ t
∣∣g(s) – g(c + d – s)

∣∣
=

∣∣∣∣
[
tg(s) + ( – t)g

(
c + d


)]
–

[
tg(c + d – s) + ( – t)g

(
c + d


)]∣∣∣∣

for all s ∈ [c, c+d ]. Therefore, by Lemma , the following inequality holds for all s ∈ [c, c+d ]:

f
(
tg(s) + ( – t)g

(
c + d


))
+ f

(
tg(c + d – s) + ( – t)g

(
c + d


))

≤ f
(
tg(s) + ( – t)g

(
c + d


))
+ f

(
tg(c + d – s) + ( – t)g

(
c + d


))
, (.)

where A = tg(s) + ( – t)g( c+d ), B = tg(c + d – s) + ( – t)g( c+d ), C = tg(s) + ( – t)g( c+d )
and tg(c+d– s) + (– t)g( c+d ). Integrating the above inequality over s on [c, c+d ], dividing
both sides by d – c and using the above identity, we have

Hg(t) ≤ Hg(t).

Thus, the function Hg is increasing on [, ] and from which the inequality (.) holds.
This completes the proof. �
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Remark 
() In Theorem , the inequality (.) refines the inequality (.).
() In Theorem , let c = a, d = band the function g(s) = s on [a,b]. Then the functions

Hg(t) =H(t) (t ∈ [, ]) and Theorem  reduces to Theorem A.

Theorem  Let the functions f , g , Pg be defined as in the first and second pages. Then:
() The function Pg is convex on [, ].
() The function Pg is increasing on [, ] and, for all t ∈ [, ], we have


d – c

∫ d

c
f
(
g(s)

)
ds = Pg() ≤ Pg(t)≤ Pg() =

f (g(c)) + f (g(d))


(.)

as the function g is monotonic on [c,d].

Proof
() It is easily observed from the convexity of f that the function Pg is convex on [, ].
() Using simple techniques of integration, we have the following identity:

Pg(t) =


d – c

∫ c+d


c

[
f
(
tg(c) + ( – t)g(s)

)

+ f
(
tg(d) + ( – t)g(c + d – s)

)]
ds

for all t ∈ [, ]. Let t < t in [, ]. Since g(s) + g(c + d – s) = g( c+d ) (s ∈ [c,d]) and the
monotonicity of g on [c,d], we obtain

∣∣g(s) – g(c + d – s)
∣∣ ≤ ∣∣g(c) – g(d)

∣∣,
[
tg(c) + ( – t)g(s)

]
+

[
tg(d) + ( – t)g(c + d – s)

]
=

[
tg(c) + ( – t)g(s)

]
+

[
tg(d) + ( – t)g(c + d – s)

]

and

∣∣[tg(c) + ( – t)g(s)
]
–

[
tg(d) + ( – t)g(c + d – s)

]∣∣
=

∣∣t[g(c) – g(d)
]
+ ( – t)

[
g(s) – g(c + d – s)

]∣∣
= t

∣∣g(c) – g(d)
∣∣ + ( – t)

∣∣g(s) – g(c + d – s)
∣∣

≤ t
∣∣g(c) – g(d)

∣∣ + ( – t)
∣∣g(s) – g(c + d – s)

∣∣
=

∣∣[tg(c) + ( – t)g(s)
]
–

[
tg(d) + ( – t)g(c + d – s)

]∣∣

for all s ∈ [c, c+d ]. Therefore, by Lemma , the following inequality holds for all s ∈ [c, c+d ]:

f
(
tg(c) + ( – t)g(s)

)
+ f

(
tg(d) + ( – t)g(c + d – s)

)
≤ f

(
tg(c) + ( – t)g(s)

)
+ f

(
tg(d) + ( – t)g(c + d – s)

)
(.)

where A = tg(c) + ( – t)g(s), B = tg(d) + ( – t)g(c + d – s), C = tg(c) + ( – t)g(s) and
tg(d) + ( – t)g(c+ d – s). Integrating the above inequality over s on [c, c+d ], dividing both

http://www.journalofinequalitiesandapplications.com/content/2013/1/170
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sides by d – c and using the above identity, we have

Pg(t) ≤ Pg(t).

Thus, the function Pg is increasing on [, ] and fromwhich the inequality (.) holds. This
completes the proof. �

Remark 
() In Theorem , the inequality (.) refines the inequality (.).
() In Theorem , let c = a, d = band the function g(s) = s on [a,b]. Then the functions

Pg(t) = P(t) (t ∈ [, ]) and Theorem  reduces to Theorem C.

Theorem  Let the functions f , g , Hg , Fg be defined as in the first page. Then we have the
following results:
() The function Fg is convex on [, ] and symmetric about 

 .
() The function Fg is decreasing on [,  ] and increasing on [  , ],

sup
t∈[,]

Fg(t) = Fg() = Fg() =


d – c

∫ d

c
f
(
g(s)

)
ds (.)

and

inf
t∈[,]

Fg(t) = Fg
(



)

=


(d – c)

∫ d

c

∫ d

c
f
(
g(s) + g(u)



)
dsdu. (.)

() We have:

Hg(t) ≤ Fg(t)
(
t ∈ [, ]

)
(.)

and

f
(
g
(
c + d


))
≤ Fg

(



)
. (.)

Proof
() It is easily observed from the convexity of f that the function Fg is convex on [, ].
By changing variables, we have

Fg(t) = Fg( – t), t ∈ [, ]

from which we get that the function Fg is symmetric about 
 .

() Let t < t in [,  ]. Then t + ( – t) = t + ( – t), |t – ( – t)| ≤ |t – ( – t)| and by
Lemma , we obtain



[
Fg(t) + Fg( – t)

] ≤ 

[
Fg(t) + Fg( – t)

]
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/170
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Using the symmetry of Fg , we have

Fg(t) =


[
Fg(t) + Fg( – t)

]
, (.)

Fg(t) =


[
Fg(t) + Fg( – t)

]
(.)

From (.)-(.), we obtain that the function Fg is decreasing on [,  ]. Since the function
Fg is symmetric about 

 and the function Fg is decreasing on [,  ], we obtain that the
function Fg is increasing on [  , ]. Using the symmetry and monotonicity of Fg , we derive
the inequalities (.) and (.).
() Using the substitution rules for integration, we have the identity

Fg(t) =


(d – c)

∫ d

c

∫ c+d


c

[
f
(
tg(s) + ( – t)g(u)

)

+ f
(
tg(s) + ( – t)g(c + d – u)

)]
duds

for all t ∈ [, ]. Let t ∈ [, ]. Since g(u) + g(c + d – u) = g( c+d ) (u ∈ [c,d]), we obtain


[
tg(s) + ( – t)g

(
c + d


)]

=
[
tg(s) + ( – t)g(u)

]
+

[
tg(s) + ( – t)g(c + d – u)

]

and

∣∣∣∣
[
tg(s) + ( – t)g

(
c + d


)]
–

[
tg(s) + ( – t)g

(
c + d


)]∣∣∣∣
≤ ∣∣[tg(s) + ( – t)g(u)

]
–

[
tg(s) + ( – t)g(c + d – u)

]∣∣

for all s ∈ [c,d] and u ∈ [c, c+d ]. Therefore, by Lemma , the following inequality holds for
all s ∈ [c,d] and u ∈ [c, c+d ]:

f
(
tg(s) + ( – t)g

(
c + d


))

≤ f
(
tg(s) + ( – t)g(u)

)
+ f

(
tg(s) + ( – t)g(c + d – u)

)
, (.)

where A = tg(s) + ( – t)g(u), B = tg(s) + ( – t)g(c + d – u) and C =D = tg(s) + ( – t)g( c+d ).
Dividing the above inequality by (d – c), integrating it over s on [c,d], over u on [c, c+d ]
and using the above identity, we derive the inequality (.).
From the inequalities (.), (.) and the monotonicity of Hg , we derive the inequality

(.).
This completes the proof. �

Remark  In Theorem , let c = a, d = b and the function g(s) = s on [a,b]. Then the
functions Fg(t) = F(t) (t ∈ [, ]) and Theorem  reduces to Theorem B.

http://www.journalofinequalitiesandapplications.com/content/2013/1/170
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3 Fejér type inequalities for general weights
In this section, we establish some Fejér type inequalities for general weights which gener-
alize Theorems D-F.

Theorem  Let the functions f , g , p be defined as in the first page. Then:
() We have

f
(
g
(
c + d


))∫ d

c
p(s)ds≤

∫ d

c
f
(
g(s)

)
p(s)ds. (.)

() As the function g is monotonic on [c,d], we obtain

∫ d

c
f
(
g(s)

)
p(s)ds≤ f (g(c)) + f (g(d))



∫ d

c
p(s)ds. (.)

Proof
()Using simple techniques of integration and the hypothesis of p, we have the identities

∫ d

c
f
(
g(s)

)
p(s)ds =

∫ c+d


c

[
f
(
g(s)

)
+ f

(
g(c + d – s)

)]
p(s)ds (.)

and

∫ c+d


c
p(s)ds =




∫ d

c
p(s)ds. (.)

Proceeding as in the proof of Theorem , we also obtain the inequality (.). Multiplying
the inequality (.) by p(s), integrating it over s on [c, c+d ] and using the above identities,
we obtain the inequality (.).
() Proceeding as in the proof of Theorem , we also obtain the inequality (.). Mul-

tiplying the inequality (.) by p(s), integrating it over s on [c, c+d ] and using the above
identities, we obtain the inequality (.). This completes the proof. �

Remark 
() Let c = a, d = b and let the functions g(s) = s and p(s) = p(s) on [a,b]. Then

Theorem  reduces to Fejér inequality (.).
() Let the function p(s)≡ 

d–c on [c,d]. Then Theorem  reduces to Theorem .

Theorem  Let the functions f , g , p,WHg be defined as in the first page. Then:
() The functionWHg is convex on [, ].
() The functionWHg is increasing on [, ] and, for all t ∈ [, ], we have

f
(
g
(
c + d


))∫ d

c
p(s)ds = WHg()

≤ WHg(t)

≤ WHg() =
∫ d

c
f
(
g(s)

)
p(s)ds. (.)
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Proof
() It is easily observed from the convexity of f and the hypothesis of p that the function

WHg is convex on [, ].
() Using simple techniques of integration and the hypothesis of p, we have the follow-

ing identity:

WHg(t) =
∫ c+d



c

[
f
(
tg(s) + ( – t)g

(
c + d


))

+ f
(
tg(c + d – s) + ( – t)g

(
c + d


))]
p(s)ds

for all t ∈ [, ].
Let t < t in [, ]. Proceeding as in the proof of Theorem, we also obtain the inequality

(.). Multiplying the inequality (.) by p(s), integrating it over s on [c, c+d ] and using the
above identity, we obtain

WHg(t) ≤ WHg(t).

Thus, the function WHg is increasing on [, ] and from which the inequality (.) holds.
This completes the proof. �

Remark 
() In Theorem , the inequality (.) refines the inequality (.).
() Let the function p(s)≡ 

d–c on [c,d]. Then Theorem  reduces to Theorem .

Theorem  Let the functions f , g , p, WPg be defined as in the first and second pages.
Then:
() The functionWPg is convex on [, ].
() The functionWPg is increasing on [, ] and, for all t ∈ [, ], we have

∫ d

c
f
(
g(s)

)
p(s)ds = WPg()

≤ WPg(t)

≤ WPg() =
f (g(c)) + f (g(d))



∫ d

c
p(s)ds (.)

as the function g is monotonic on [c,d].

Proof
() It is easily observed from the convexity of f and the hypothesis of p that the function

WPg is convex on [, ].
() Using simple techniques of integration and the hypothesis of p, we have the follow-

ing identity:

WPg(t) =
∫ c+d



c

[
f
(
tg(c) + ( – t)g(s)

)

+ f
(
tg(d) + ( – t)g(c + d – s)

)]
p(s)ds

for all t ∈ [, ].
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Let t < t in [, ]. Proceeding as in the proof of Theorem, we also obtain the inequality
(.). Multiplying the inequality (.) by p(s), integrating it over s on [c, c+d ] and using the
above identity, we obtain

WPg(t) ≤ WPg(t).

Thus, the function WPg is increasing on [, ] and from which the inequality (.) holds.
This completes the proof. �

Remark 
() In Theorem , the inequality (.) refines the inequality (.).
() Let the function p(s)≡ 

d–c on [c,d]. Then Theorem  reduces to Theorem .

Remark  Let c = a, d = b and let the functions g(s) = s and p(s) = p(s) on [a,b]. Then
Theorems  and  reduce to Theorem E.

Theorem  Let the functions f , g , p, WHg , WFg be defined as in the first page. Then we
have the following results:
() The functionWFg is convex on [, ] and symmetric about 

 .
() The functionWFg is decreasing on [,  ] and increasing on [  , ],

sup
t∈[,]

WFg(t) =WFg() =WFg() =
∫ d

c
f
(
g(s)

)
p(s)ds

and

inf
t∈[,]

WFg(t) =WFg
(



)
=

∫ d

c

∫ d

c
f
(
g(s) + g(u)



)
p(s)p(u)dsdu.

() We have

WHg(t)
∫ d

c
p(s)ds≤ WFg(t)

(
t ∈ [, ]

)
(.)

and

f
(
g
(
c + d


))(∫ d

c
p(s)ds

)

≤ WFg
(



)
. (.)

Proof
()-() Proceeding as in the proof of Theorem , the parts () and () hold.
() Using the substitution rules for integration and the hypothesis of p, we have the

identity

WFg(t) =
∫ d

c

∫ c+d


c

[
f
(
tg(s) + ( – t)g(u)

)

+ f
(
tg(s) + ( – t)(c + d – u)

)]
p(u)p(s)duds (.)
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for all t ∈ [, ]. Proceeding as in the proof of Theorem , we also obtain the inequality
(.). Multiplying the inequality (.) by p(u)p(s), integrating it over s on [c,d], over u
on [c, c+d ] and using the identities (.) and (.), we obtain the inequality (.).
From the inequalities (.), (.) and the monotonicity ofWHg , we derive the inequality

(.).
This completes the proof. �

Remark 
() Theorem  refines the inequality (.).
() Let the function p(s)≡ 

d–c on [c,d]. Then Theorem  reduces to Theorem .
() Let c = a, d = b and the functions g(s) = s and p(s) = p(s) on [a,b]. Then Theorem 

reduces to Theorem F.
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7. Dragomir, SS, Milošević, DS, Sándor, J: On some refinements of Hadamard’s inequalities and applications. Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4, 3-10 (1993)
8. Fejér, L: Über die Fourierreihen, II. Math. Naturwiss Anz Ungar. Akad. Wiss. 24, 369-390 (1906) (In Hungarian)
9. Hwang, D-Y, Tseng, K-L, Yang, G-S: Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle

from the plane. Taiwan. J. Math. 11(1), 63-73 (2007)
10. Tseng, K-L, Hwang, S-R, Dragomir, SS: On some new inequalities of Hermite-Hadamard-Fejér type involving convex

functions. Demonstr. Math. XL(1), 51-64 (2007)
11. Tseng, K-L, Yang, G-S, Hsu, K-C: On some inequalities of Hadamard’s type and applications. Taiwan. J. Math. 13(6B),

1929-1948 (2009)
12. Yang, G-S, Hong, M-C: A note on Hadamard’s inequality. Tamkang. J. Math. 28(1), 33-37 (1997)
13. Yang, G-S, Tseng, K-L: On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl.

239, 180-187 (1999)
14. Yang, G-S, Tseng, K-L: Inequalities of Hadamard’s type for Lipschitzian mappings. J. Math. Anal. Appl. 260, 230-238

(2001)
15. Yang, G-S, Tseng, K-L: On certain multiple integral inequalities related to Hermite-Hadamard inequalities. Util. Math.

62, 131-142 (2002)
16. Yang, G-S, Tseng, K-L: Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions.

Taiwan. J. Math. 7(3), 433-440 (2003)

doi:10.1186/1029-242X-2013-170
Cite this article as: Hwang et al.: Hermite-Hadamard type and Fejér type inequalities for general weights (I). Journal
of Inequalities and Applications 2013 2013:170.

http://www.journalofinequalitiesandapplications.com/content/2013/1/170

	Hermite-Hadamard type and Fejér type inequalities for general weights (I)
	Abstract
	MSC
	Keywords

	Introduction
	Hermite-Hadamard type inequalities for general weights
	Fejér type inequalities for general weights
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


