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1 Introduction
For a positive integer n,N denotes the set {, , . . . ,n}. The set of all n×n complexmatrices
is denoted by Cn×n, and R

n×n denotes the set of all n× n real matrices throughout.
Let A = (aij) ∈ R

n×n and B = (bij) ∈ R
n×n. We write A ≥ B (> B) if aij ≥ bij (> bij) for all

 ≤ i ≤ n,  ≤ j ≤ n. If A ≥  (> ), we say that A is a nonnegative (positive) matrix. The
spectral radius of A is denoted by ρ(A). Let A be an irreducible nonnegative matrix. It is
well known that there exists a positive vector u such that Au = ρ(A)u, u being called a
right Perron eigenvector of A. This guarantees that ρ(A) ∈ σ (A), where σ (A) denotes the
spectrum of A.
The set Zn ⊂R

n×n is defined by

Zn ≡ {
A = (aij) ∈R

n×n : aij ≤  if i �= j, i, j = , . . . ,n
}
.

The simple sign patten of the matrices in Zn has many striking consequences. Let A =
(aij) ∈ Zn and suppose A = αI – P with α ∈R and P ≥ . Then α – ρ(P) is an eigenvalue of
A, every eigenvalue ofA lies in the disc {z ∈C : |z–α| ≤ ρ(P)}, and hence every eigenvalue
λ of A satisfies Reλ ≥ α – ρ(P). In particular, a matrix A ∈ Zn is called an M-matrix if
α ≥ ρ(P). If α > ρ(P), we callA nonsingularM-matrix, and denote the class of nonsingular
M-matrices byMn.
Let A = (aij) ∈ Zn, we denote min{Re(λ) : λ ∈ σ (A)} by q(A). The following simple facts

are needed for our purpose in proving (see Problems  and  in Section . of []):
(i) q(A) ∈ σ (A); q(A) is called a minimum eigenvalue of A.
(ii) If A ∈Mn and ρ(A–) is the Perron eigenvalue of the nonnegative matrix A–, then

q(A) = 
ρ(A–) is a positive real eigenvalue of A.

Let A be an irreducible nonsingularM-matrix. It is well known that there exists a posi-
tive vector u such that Au = q(A)u, u being called a right Perron eigenvector of A.
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If A = (aij) ∈ Mn, we write CA = DA – A, where DA = diag(aii). Note that aii >  for all
i ∈ N if A ∈Mn. Thus we define the Jacobi iterative matrix of A by JA =D–

A CA. It is easy to
check that JA is nonnegative and ρ(JA) <  (see []).
The Hadamard product of A = (aij) ∈ Cn×n and B = (bij) ∈ Cn×n is defined by A ◦ B ≡

(aijbij) ∈C
n×n.

It has been noted [, ] that the Hadamard product B ◦ A– of an M-matrix B and the
inverse of anM-matrix A is again anM-matrix.
In , Horn et al. [, p. ] showed the classical result: ifA = (aij) ∈Mn, B = (bij) ∈Mn,

B– = (βij), then

q
(
A ◦ B–) ≥ q(A) min

≤i≤n
βii. (.)

Subsequently, Chen [] improved the bound in (.) and obtained the following result:

q
(
A ◦ B–) ≥ q(A)q(B) min

≤i≤n

{(
aii
q(A)

+
bii
q(B)

– 
)

βii

bii

}
. (.)

In , Huang [] obtained the following result:

q
(
A ◦ B–) ≥  – ρ(JA)ρ(JB)

 + ρ(JB)
min
≤i≤n

aii
bii

. (.)

This bound in (.) improved the bound in (.) in some cases. For example, if

B =

(
 
 

)
, A =

(
 –
 

)
,

then q(A ◦ B–) = –ρ(JA)ρ(JB)
+ρ(JB)

min≤i≤n
aii
bii

= 
 ≥ q(A)min≤i≤n βii = 

 . But
–ρ(JA)ρ(JB)
+ρ(JB)

×
min≤i≤n

aii
bii

≤ q(A)min≤i≤n βii in Example . in this paper.
In practice, the bound of q(A ◦ B–) can give a rough estimate before actually solving it

and can serve as a check of whether the solution technique for it actually resulted in valid
solution. Besides, a good bound of q(A ◦ B–) can also help us reduce the computational
burden. Therefore, it is necessary to study the bound. In this paper, we present some new
lower bounds of the minimum eigenvalue q(A ◦ B–) for the Hadamard product of M-
matrices, which improve (.), (.) and (.) and generalize the corresponding result of
Xiang [].

2 Main results
In this section, we state and prove our main results. Firstly, we give some lemmas.

Lemma . (See [, Theorem ]) Let A = (aij) ∈ C
n×n, with n ≥ . Then, if λ is an eigen-

value of A, there is a pair (r,q) of positive integers with r �= q (≤ r,q ≤ n) such that

|λ – arr| · |λ – aqq| ≤
∑
k �=r

|ark| ·
∑
l �=q

|aql|.
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Lemma . (See [, Lemma .]) (a) If A = (aij) is an n × n strictly diagonally dominant
matrix by row, that is, |aii| >∑

j �=i |aij| for any i ∈N , then A– = (βij) exists, and

|βji| ≤
∑

k �=j |ajk|
|ajj| |βii|, for all j �= i.

(b) If A = (aij) is an n × n strictly diagonally dominant matrix by column, that is, |aii| >∑
j �=i |aji| for any i ∈N , then A– = (βij) exists, and

|βij| ≤
∑

k �=j |akj|
|ajj| |βii|, for all j �= i.

Proof We give a simple proof of (a) which is different from that in []. Similarly, one
can prove (b). Firstly, we prove |βji| ≤ |βii| for all j �= i. Suppose not. Let |βji| ≥ |βii| for
some j and j �= i. We can then assume |βji| ≥ |βki| for all k ∈ N . Since AA– = I , we have∑n

k= ajkβki = . Thus

|ajjβji| ≤
∑
k �=j

|ajkβki| ≤
∑
k �=j

|ajk||βji| < |ajj||βji|,

which is a contradiction. Hence, |βji| ≤ |βii| holds for all pairs i, j. Thus

|ajjβji| ≤
∑
k �=j

|ajkβki| ≤
∑
k �=j

|ajk||βii|, for all j �= i,

that is,

|βji| ≤
∑

k �=j |ajk|
|ajj| |βii|, for all j �= i. �

Theorem . Let A = (aij) ∈Mn, B = (bij) ∈ Mn and B– = (βij). Then

q
(
A ◦ B–) ≥ min

i�=j



{
aiiβii + ajjβjj –

[
(aiiβii – ajjβjj)

+ 
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]] 

}
. (.)

Proof If both A and B are irreducible. Let v = (vi) and y = (yi) be the right Perron eigen-
vectors of BT and A, respectively, i.e., BTv = q(BT )v = q(B)v, Ay = q(A)y. Define C = BTV ,
where V = diag(v, v, . . . , vn). It is easy to check that C is diagonally dominant by row. It
follows from Lemma ., for all i �= j, we have

βij

vj
≤

∑
k �=j |vkbkj|
vjbjj

βii

vi
=
(bjj – q(B))vj

bjjvj
βii

vi
.

Thus

βij ≤ (bjj – q(B))vjβii

bjjvi
.
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Let sj =
(bjj–q(B))vj

bjjyj
, S = diag(s, s, . . . , sn). Then S >  and

S
(
A ◦ B–)S– =

⎛⎜⎜⎜⎜⎝
aβ saβ/s · · · sanβn/sn

saβ/s aβ · · · sanβn/sn
...

...
. . .

...
snanβn/s snanβn/s · · · annβnn

⎞⎟⎟⎟⎟⎠ .

Hence, σ (A ◦ B–) = σ (S(A ◦ B–)S–). Since q(A ◦ B–) is an eigenvalue of A ◦ B–, we have

q
(
A ◦ B–) ∈ σ

(
S
(
A ◦ B–)S–).

Thus, by Lemma ., there exists a pair (i, j) of positive integers with i �= j ( ≤ i, j ≤ n) such
that

∣∣q(A ◦ B–) – aiiβii
∣∣∣∣q(A ◦ B–) – ajjβjj

∣∣
≤

∑
k �=i

|aikβik|
sk

si
∑
l �=j

|ajlβjl|
sl

sj

≤ si
∑
k �=i

|aik|(bkk – q(B))vkβii

bkkvi
bkkyk

(bkk – q(B))vk
sj

∑
l �=j

|ajl|(bll – q(B))vlβjj

bllvj
bllyl

(bll – q(B))vl

= si
βii

vi

∑
k �=i

|aik|yksj βjj

vj

∑
l �=j

|ajl|yl

=
(bii – q(B))vi

biiyi
βii

vi

(
aii – q(A)

)
yi
(bjj – q(B))vj

bjjyj
βjj

vj

(
ajj – q(A)

)
yj

=
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]
.

From the above inequality and ≤ q(A ◦ B–) ≤ aiiβii, ∀i ∈N , we have

(
q
(
A ◦ B–) – aiiβii

)(
q
(
A ◦ B–) – ajjβjj

)
≤ βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]
. (.)

Thus, from inequality (.), we have

q
(
A ◦ B–) ≥ 



{
aiiβii + ajjβjj –

[
(aiiβii – ajjβjj)

+ 
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]] 

}

≥ min
i�=j




{
aiiβii + ajjβjj –

[
(aiiβii – ajjβjj)

+ 
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]] 

}
.
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Assume that one of A and B is reducible. It is well known that a matrix in Zn is a non-
singularM-matrix if and only if all its leading principal minors are positive (see condition
(E) of Theorem .. of []). If we denote by D = (dij) the n × n permutation matrix
with d = d = · · · = dn–n = dn = , the remaining dij zero, then both A – tD and B – tD
are irreducible nonsingularM-matrices for any chosen positive real number t sufficiently
small such that all the leading principal minors of both A – tD and B – tD are positive.
Now, we substitute A – tD and B – tD for A and B, respectively, in the previous case, and
then letting t → , the result follows by continuity. �

Using ideas of the proof of Theorem ., we next give a new proof of inequality (.) in
[]. Similar to the proof of Theorem ., by the theorem of Gerschgorin, there exist some
positive integers i ∈N such that

∣∣q(A ◦ B–) – aiiβii
∣∣ ≤

∑
k �=i

|aikβik|
sk

si

≤ si
∑
k �=i

|aik|(bkk – q(B))vkβii

bkkvi
bkkyk

(bkk – q(B))vk

= si
βii

vi

∑
k �=i

|aik|yk

=
(bii – q(B))vi

biiyi
βii

vi

(
aii – q(A)

)
yi

=
βii

bii

[
bii – q(B)

][
aii – q(A)

]
.

From the above inequality and ≤ q(A ◦ B–) ≤ aiiβii, ∀i ∈N , we have

aiiβii – q
(
A ◦ B–) ≤ βii

bii

[
bii – q(B)

][
aii – q(A)

]
. (.)

Thus, from inequality (.), we have

q
(
A ◦ B–) ≥ aiiβii –

βii

bii

[
bii – q(B)

][
aii – q(A)

]
= q(A)q(B)

{(
aii
q(A)

+
bii
q(B)

– 
)

βii

bii

}
≥ q(A)q(B) min

≤i≤n

{(
aii
q(A)

+
bii
q(B)

– 
)

βii

bii

}
.

Remark . We next give a simple comparison between the upper bound in (.) and the
upper bound in (.) and (.). Without loss of generality, for i �= j, assume that

aiiβii –
βii

bii

[
bii – q(B)

][
aii – q(A)

] ≤ ajjβjj –
βjj

bjj

[
bjj – q(B)

][
ajj – q(A)

]
. (.)

Thus, we can write (.) equivalently as

βjj

bjj

[
bjj – q(B)

][
ajj – q(A)

] ≤ ajjβjj – aiiβii +
βii

bii

[
bii – q(B)

][
aii – q(A)

]
. (.)
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From (.), we have

(aiiβii – ajjβjj) + 
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]
≤ (ajjβjj – aiiβii) + 

βii

bii

[
bii – q(B)

][
aii – q(A)

]
(ajjβjj – aiiβii)

+ 
[

βii

bii

[
bii – q(B)

][
aii – q(A)

]]

=
(
ajjβjj – aiiβii + 

βii

bii

[
bii – q(B)

][
aii – q(A)

])

.

Thus, from (.), (.) and the above inequality, we have

q
(
A ◦ B–) ≥ min

i�=j



{
aiiβii + ajjβjj –

[
(aiiβii – ajjβjj)

+ 
βiiβjj

biibjj

[
bii – q(B)

][
aii – q(A)

][
bjj – q(B)

][
ajj – q(A)

]] 

}

≥ min
i�=j




{
aiiβii + ajjβjj – ajjβjj + aiiβii – 

βii

bii

[
bii – q(B)

][
aii – q(A)

]}
≥ q(A)q(B) min

≤i≤n

{(
aii
q(A)

+
bii
q(B)

– 
)

βii

bii

}
.

Hence, the bound in (.) is sharper than the bound in (.). According to Remark . in
[], we know

q(A)q(B) min
≤i≤n

{(
aii
q(A)

+
bii
q(B)

– 
)

βii

bii

}
≥ q(A) min

≤i≤n
βii.

So, the bound in (.) is sharper than the bound in (.).

Theorem . Let A = (aij) ∈Mn, B = (bij) ∈Mn. Then

q
(
A ◦ B–) ≥ (

 – ρ(JA)ρ(JB)
)
min
≤i≤n

aii
bii

. (.)

Proof Suppose thatA andB are irreducible,DB is the diagonalmatrix ofB andCB =DB–B,
then DB is a diagonal matrix with positive diagonal entries, CB is an irreducible nonneg-
ative matrix and J = D–

B CT
B is again an irreducible nonnegative matrix. Since the Jacobi

iterative matrix of B is JB =D–
B CB, we have

ρ(JB) = ρ
(
D–

B CB
)
= ρ

((
D–

B CB
)T)

= ρ
(
CT
B D

–
B

)
= ρ

(
D–

B CT
B
)
= ρ(J). (.)

By the Perron-Frobenius theorem on irreducible nonnegative matrices, there is a positive
eigenvector x = (x,x, . . . ,xn)T such that D–

B CT
B x = ρ(J)x. That is,

∑
k �=i

|bki|xk
bii

= ρ(J)xi ∀i ∈ N . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/16
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Thus, we can write (.) equivalently as

∑
k �=i

|bki|xk
biixi

= ρ(J) ∀i ∈N .

Set X = diag(x,x, . . . ,xn) and B̃ = XB. It is easy to check that B̃ is a strictly diagonally
dominant matrix by column. Let B– = (βij). By Lemma ., for all i �= j ( ≤ i, j ≤ n), we
have

βijx–j ≤
∑

k �=j |bkj|xk
bjjxj

βiix–i = ρ(J)βiix–i .

Thus

βij ≤ ρ(J)βii
xj
xi

∀i ∈N . (.)

Combining (.) with (.), we get

βij ≤ ρ(JB)βii
xj
xi
. (.)

Since B–B = I , we obtain

βiibii =  +
∑
k �=i

βik|bki| ≥  ∀i ∈N .

Thus

βii ≥ 
bii

∀i ∈ N . (.)

Let JAy = ρ(JA)y for positive vectors y = (yi). Set S = diag( xy ,
x
y
, . . . , xnyn ), then S > . Hence,

σ (A ◦ B–) = σ (S(A ◦ B–)S–). Since q(A ◦ B–) is an eigenvalue of A ◦ B–, we have

q
(
A ◦ B–) ∈ σ

(
S
(
A ◦ B–)S–).

By the theorem of Gerschgorin and (.), there exist some positive integers i ∈ N such
that

∣∣q(A ◦ B–) – aiiβii
∣∣ ≤

∑
k �=i

|aikβik|xiykyixk

≤ xi
yi

∑
k �=i

|aik|ρ(JB)βii
xk
xi

yk
xk

= ρ(JB)
βii

yi

∑
k �=i

|aik|yk

= aiiβiiρ(JA)ρ(JB).

http://www.journalofinequalitiesandapplications.com/content/2013/1/16
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From the above inequality and ≤ q(A ◦ B–) ≤ aiiβii, ∀i ∈N , we have

aiiβii – q
(
A ◦ B–) ≤ aiiβiiρ(JA)ρ(JB). (.)

Thus, from inequality (.) and (.), we have

q
(
A ◦ B–) ≥ aiiβii – aiiβiiρ(JA)ρ(JB)

=
(
 – ρ(JA)ρ(JB)

)
aiiβii

≥ (
 – ρ(JA)ρ(JB)

)aii
bii

≥ (
 – ρ(JA)ρ(JB)

)
min
≤i≤n

aii
bii

.

Assume that one of A and B is reducible. It is well known that a matrix in Zn is a non-
singularM-matrix if and only if all its leading principal minors are positive (see condition
(E) of Theorem .. of []). If we denote by D = (dij) the n × n permutation matrix
with d = d = · · · = dn–n = dn = , the remaining dij zero, then both A – tD and B – tD
are irreducible nonsingularM-matrices for any chosen positive real number t sufficiently
small such that all the leading principal minors of both A – tD and B – tD are positive.
Now, we substitute A – tD and B – tD for A and B, respectively, in the previous case, and
then letting t → , the result follows by continuity. �

Remark . If B ∈ Mn is a diagonal matrix, the equality of (.) holds. Thus the bound
(.) is sharp. Since  + ρ(JB) ≥ , then

(
 – ρ(JA)ρ(JB)

)
min
≤i≤n

aii
bii

≥  – ρ(JA)ρ(JB)
 + ρ(JB)

min
≤i≤n

aii
bii

.

The bound in (.) is sharper than the bound in (.).

If B = A, according to Theorem ., we can deduce the following corollary.

Corollary . Let B ∈ Mn, then

q
(
B ◦ B–) ≥  – ρ(JB).

Remark . Corollary . is Theorem . of Xiang []. So, Theorem . generalizes The-
orem . in [].

If we apply Lemma . to J =D–
B CT

B and JB =D–
B CB, then we have

ρ(J) ≤ max
i�=j

∑
k �=i

|bki|
bii

·
∑
l �=j

|blj|
bjj

,

ρ(JB) ≤ max
i�=j

∑
k �=i

|bik|
bii

·
∑
l �=j

|bjl|
bjj

.
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Since ρ(JB) = ρ(J), then

ρ(JB) ≤ min

{
max
i�=j

∑
k �=i

|bik|
bii

·
∑
l �=j

|bjl|
bjj

,max
i�=j

∑
k �=i

|bki|
bii

·
∑
l �=j

|blj|
bjj

}
. (.)

From (.) we have the following corollary.

Corollary . Let B = (bij) ∈ Mn, then

q
(
B ◦ B–) ≥  –min

{
max
i�=j

∑
k �=i

|bik|
bii

·
∑
l �=j

|bjl|
bjj

,max
i�=j

∑
k �=i

|bki|
bii

·
∑
l �=j

|blj|
bjj

}
.

Example . Let A and B be the same as in Example . in []:

B =

⎛⎜⎜⎜⎝
 – – –
–  – –
 –  –
– – – 

⎞⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎝
 –/  

–/  –/ 
 –/  –/
  –/ 

⎞⎟⎟⎟⎠ .

It is easy to check that A,B ∈M. If we apply Theorem .. of [], we have

q
(
A ◦ B–) ≥ q(A) min

≤i≤n
βii = ..

If we apply Theorem  of [], we have

q
(
A ◦ B–) ≥  – ρ(JA)ρ(JB)

 + ρ(JB)
min
≤i≤n

aii
bii

= ..

If we apply Theorem . of [], we have

q
(
A ◦ B–) ≥ min

≤i≤n

{aii – si
∑

j �=i |aji|
bii

}
= ..

But if we apply Theorem ., we have

q
(
A ◦ B–) ≥ (

 – ρ(JA)ρ(JB)
)
min
≤i≤n

aii
bii

= ..

In fact, q(A◦B–) = .. Example . shows that the bound in (.) is better than these
corresponding bounds in [, , ].
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