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Abstract

In this paper, we introduce the concept of L, Blaschke-Minkowski homomorphisms
and show that those maps are represented by a spherical convolution operator. And
then we consider the Busemann-Petty type problem for L, Blaschke-Minkowski
homomorphisms.
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1 Introduction

The theory of real valued valuations is at the center of convex geometry. Blaschke started
a systematic investigation in the 1930s, and then Hadwiger [1] focused on classifying val-
uations on compact convex sets in R” and obtained the famous Hadwiger’s characteriza-
tion theorem. Schneider [2] obtained first results on convex body valued valuations with
Minkowski addition in 1970s. The survey [3] and the book [4] are an excellent source for
the classical theory of valuations. Some more recent results can see [1, 5-20].

An operator Z : K" — K" is called a Minkowski valuation if

Z(KUL)+Z(KNL)=ZK + ZL, (1.1)

whenever K,L,K UL € K", and here + is the Minkowski addition.
A Minkowski valuation Z is called SO(n) equivariant, if for all # € SO(n) and all K € K",

Z(¥K) = 9 ZK. (1.2)

A Minkowski valuation Z is called homogeneity of degree p, if for all K € K" and all
A>0,

Z(AK) = \PZK. (1.3)

A map & : K" — K" is called a Blaschke-Minkowski homomorphism if it is continu-
ous, SO(n) equivariant and satisfies ®(K#L) = ®K + ®L, where # denotes the Blaschke
addition, i.e., S(K#L,-) = S(K,-) + S(L, -).

Obviously, a Blaschke-Minkowski homomorphism is a continuous Minkowski valua-
tion which is SO(#) equivariant and (# —1)-homogeneous. Schuster introduced Blaschke-
Minkowski homomorphisms and studied the Busemann-Petty type problem for them.
© 2013 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2013/1/140
mailto:wangtou1010@163.com
http://creativecommons.org/licenses/by/2.0

Wang Journal of Inequalities and Applications 2013, 2013:140 Page 2 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/140

Theorem A [15] If ® : K" — K" be a Blaschke-Minkowski homomorphism, then there is
a weakly positive g € C(S"™1,¢), unique up to a linear function, such that

W(®K,-) = S(K,) x g.

Theorem B [16] Let ® : K" — K" be a Blaschke-Minkowski homomorphism. IfK € ®K"
and L € K", then

PKCOL = VEK)<VQ),
and V(K) = V(L) ifand only if K = L.

Recently, the investigations of convex body and star body valued valuations have re-
ceived great attention from a series of articles by Ludwig [10—13]; see also [8]. She started
systematic studies and established complete classifications of convex and star body val-
ued valuations with respect to L, Minkowski addition and L, radial which are compatible
with the action of the group GL(#n). Based on these results, in this article we study L,
Blaschke-Minkowski homomorphisms which are continuous, ( 1% —1)-homogeneous and

SO(n) equivariant.

Theorem 1.1 Let p>1and p # n. If ,: K} — K[ be an L, Blaschke-Minkowski homo-

morphism, then there is a nonnegative function g € C (§"1,e), such that
H(®,K, ) =S5y(K,-) *g. (1.4)

Theorem 1.2 Let 1 < p < n and p is not an even integer, and let O, : K — K7 be an L,
Blaschke-Minkowski homomorphism. If K € K and L € ®,K, then

P,KCD,L = V(EK)<V(L). (1.5)
Ifp > nand p is not an even integer, then

P,KCP,L = V(EK)=V(), (1.6)
and V(K) = V(L), ifand only if K = L.
2 Notation and background material
Let K denote the set of convex bodies containing the origin in their interiors, and let K}
denote origin-symmetric convex bodies. In this paper, we restrict the dimension of R” to
n > 3. A convex body K € K" is uniquely determined by its support function, /(K -). From
the definition of (K, ), it follows immediately that for A > 0 and ¥ € SO(n),

h(AK,u) = Ah(K,u) and  h(9K,u) = h(K,9u), (2.1)

where 9! is the inverse of .
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For K,L € Kf, p > 1, and ¢ > 0, the L, Minkowski addition K +, ¢ - L € K is defined by
(see [21])

WK +p &L,y = h(K, -V + eh(L, )P, (2.2)

where ‘-’ in ¢ - L denotes the Firey scalar multiplication, i.e., & - L = erlL.
If K, L € K, then for p > 1, the L, mixed volume, V},(K,L), of K and L is defined by (see
(21])
V(K +p¢&-L) - V(K)

Vo(K, L) = lim - .

Corresponding to each K € K, there is a positive Borel measure, S,(K, ), on $"~* such
that (see [21])

V,(K,L) = % fs (L u) dS, (K, u), 2.3)

for each L € Kfj. The measure S,(K;-) is just the L, surface area measure of K, which
is absolutely continuous with respect to classical surface area measure S(X,-), and has a
Radon-Nikodym derivative

dS,(K,-) ~

1-
TE " h(K, )P, (2.4)

A convexbody K € Kf is said to have a p-curvature function (see [21]) f, (K, -) : S — R,

if its L, surface area measure S,(K;,-) is absolutely continuous with respect to spherical

Lebesgue measure S and the Radon-Nikodym derivative

ds,(K,-)

o =£(K,-). (2.5)

From the formula (2.3), it follows immediately that for each K € K},
V,(K,K) = V(K).

The Minkowski inequality for the L, mixed volume states that (see [21]): For K, L € K,
if p > 1, then

P
n

V,(K,L) > V(K) % V(L)", (2.6)

if p > 1, equality holds if and only if K and L are dilates; if p = 1, equality holds if and only
if K and L are homothetic.

The L, Minkowski problem asks for necessary and sufficient conditions for a Borel mea-
sure y on §"7! to be the L, surface area measure of a convex body. Lutwak [22] gave a weak
solution to the L, Minkowski problem as follows.

Theorem C If i is an even position Borel measure on S"™, which is not concentrated on
any great subsphere, then for any p > 1 and p # n, there exists a unique origin-symmetric
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convex bodies K € KCl!, such that
Sp(K,-) = .
From (2.4), for A > 0, we have
Sy(AK,-) = WS, (K, ). 2.7)
Noting the fact S(¥ K, -) = 9S(K,-) for ¥ € SO(#n) and (2.1), one can obtain
S,(0K,-) = 9S,(K, ), (2.8)

where #S5,(K, -) is the image measure of S,(K, -) under the rotation ©. Obviously, $; (X -)
is just S(K, -).
The L, Blaschke addition K#, L of K, L € K is the convex body with

Sy(K#,L,") = Sy(K,-) + S,(L,). (2.9)

Some basic notions on spherical harmonics will be required. The article by Grinberg
and Zhang [23] and the article by Schuster [16] are excellent general references on spher-
ical harmonics. As usual, SO(n) and §"! will be equipped with the invariant probability
measures. Let C(SO(n)), C(S"1) be the spaces of continuous functions on SO(#) and S}
with uniform topology and M(SO(#)), M(S"!) their dual spaces of signed finite Borel
measures with weak* topology. The group SO(n) acts on these spaces by left translation,
ie., for f € C(S"1) and p € M(S"1), we have 9f(u) = f(91u), ¥ € SO(n), and ¥ is the
image measure of u under the rotation 9.

The sphere $"7! is identified with the homogeneous space SO(n)/ SO(n — 1), where
SO(# — 1) denotes the subgroup of rotations leaving the pole & of S"! fixed. The projec-
tion from SO(x) onto S"! is ¥ > ¥ := ¥e. Functions on S"! can be identified with right
SO(n — 1)-invariant functions on SO(n), by f(#) = f(D), for f € C(S"™). In fact, C(S"") is
isomorphic to the subspace of right SO(n — 1)-invariant functions in C(SO(n)).

The convolution u * f € C(S™) of a measure 1 € M(SO(#)) and a function f € C(S" )
is defined by

UMﬂwzﬁ)wwmmm (2.10)

O(n

The canonical pairing of f € C(S"!) and p € M(S") is defined by
W)= = [ 70 duta oo
s
A function f € C(S" ™) is called zonal, if 9f = f for every © € SO(# — 1). Zonal functions
depend only on the value u - &. The set of continuous zonal functions on $”~! will be de-
noted by C(5"71,2) and the definition of M (S"1,¢) is analogous. A map A : C[-1,1] —

C(S"1,e) is defined by

A(w)=fw-e), ueS" (2.12)
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The map A is also an isomorphism between functions on [-1,1] and zonal functions on
S"LIff e C(S"Y), u e M(S"L,2) and n € SO(n), then

(e = [ fomdutw, .1
If 1 € M(S"1,¢), for each f € C(5"1) and every € SO(n), then

(Of) % = 0 (f * w). (2.14)

We denote Hj by the finite dimensional vector space of spherical harmonics of dimen-
sion # and order k, and let N(#, k) be the dimension of H}. The space of all finite sums
of spherical harmonics of dimension # is denoted by H". The spaces H} are pairwise or-
thogonal with respect to the usual inner product on C(S"™). Clearly, HJ is invariant with
respect to rotations.

Let P} € C[-1,1] denote the Legendre polynomial of dimension # and order k. The zonal
function AP} is up to a multiplicative constant the unique zonal spherical harmonic in
H}. In each space H]! we choose an orthonormal basis Hyy, ..., Hink). The collection
{Hi1, ..., Hivgn ¢ k € N} forms a complete orthogonal system in £2(S”1). In particular,
for every f € L£2(S"1), the series

converges to f in the £*(S"!)-norm, where myf € 1} is the orthogonal projection of f on
the space H}. Using well-known properties of the Legendre polynomials, it is not hard to
show that

mif = N(m, k) (f % APY). (2.15)

This leads to the spherical expansion of a measure y € M(S"1),
[e¢]
W~ YTl (2.16)
k=0

where i € H, is defined by
gt = N(nm, k) (1 % APY). (2.17)

From Pj(¢) =1, N(n,0) =1 and P}(¢) = t, N(n,1) = n, we obtain, for u € M(S"!), the fol-
lowing special cases of (2.18):

Mo = ,u(S”'l) and (mp)(u) = n/ ) u-vdu(v). (2.18)

Let «, denote the volume of the Euclidean unit ball B. By (2.3) and (2.19), for every convex
body K € K, it follows that

kntoh(K, Y = V,(B,K) and m,S,(K,-) = nV,(K,B). (2.19)
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A measure p € M(S"!) is uniquely determined by its series expansion (2.19). Using the
fact that AP} is (essentially) the unique zonal function in H}, a simple calculation shows
that for u € M(S"1,€), formula (2.18) becomes

i = N(n, k)(u, APZ)APZ. (2.20)

A zonal measure pu € M(S"1,e) is defined by its so-called Legendre coefficients yy :=
(u, APY). Using mH = H for every H € H} and the fact that spherical convolution of zonal
measures is commutative, we have the Funk-Hecke theorem: If u € M(S§"1,¢) and H e
H, then H % = i H.

A map ®:D C M(§") — M(S") is called a multiplier transformation [16] if there
exist real numbers ¢, the multipliers of @, such that, for every k € N,

ﬂ/(q)/,L = CkTTi U, V/L eD. (2.21)

From the Funk-Hecke theorem and the fact that the spherical convolution of zonal
measures is commutative, it follows that, for u € M(S""1,e), the map @, : M(S") —
M(S"1), defined by ®, = v * u, is a multiplier transformation. The multipliers of this
convolution operator are just the Legendre coefficients of the measure .

3 L, Blaschke-Minkowski homomorphisms and convolutions
The L, Minkowski valuation was introduced by Ludwig [11]. A function W : Kj — K is
called an L, Minkowski valuation if

W(KUL)+, W(KNL)= WK +, WL, (3.1)
whenever K, L, K U L € Kf, and here ‘+,’ is L, Minkowski addition.

Definition 3.1 A map &, : K7 — K7 satisfying the following properties (a), (b) and (c) is
called an L, Blaschke-Minkowski homomorphism.

(a) P, is continuous with respect to Hausdorff metric.

(b) ®,(K#,L) = ®,K +, ®,L forall K,L € K.

(c) @, is SO(n) equivariant, i.e., ®,(?K) = ¥ @,K for all # € SO(n) and all K € K.

It is easy to verify that an L, Blaschke-Minkowski homomorphism is an L, Minkowski
valuation.

In order to prove our results, we need to quote some lemmas. We call a map @ :
M(S™1) — C(S"!) monotone, if non-negative measures are mapped to non-negative
functions.

Lemma 3.1 A map ® : M(S") — C(S"™) is a monotone, linear map that is intertwines
rotations if and only if there is a function f € C(S"},e), such that

Du=f*pu. (3.2)

Proof From the definition of spherical convolution and (2.15), it follows that mapping of
form (3.2) has the desired properties. This proves the sufficiency.
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Next, we prove the necessity.

Let ® be monotone, linear and intertwines rotations. Consider the map ¢ : M(5"!) —
R, t — ®u(e). By the properties of @, the functional ¢ is positive and linear on M (S"1),
thus, by the Riesz representation theorem, there is a function f € M, (S"!) such that

060 = [ fadut,

Since ¢ is SO(n — 1) invariant, the function f is zonal. Thus, we have for € SO(n)

Du(e) = (n'u)@ =gp(n'u) = /Sn_lf(nu) du(u).
Lemma 3.1 follows now from (2.14). O

Proof of Theorem 1.1 Suppose that a map @, : Kj — K satisfies 1(P,K, -} = S,(K,-) * g,
where g € C(S",@) is a nonnegative measure. The continuity of ®, follows from the fact
that the support function /(K -) is continuous with respect to Hausdorff metric. From
(2.9) and (2.1), for ¥ € SO(n), we obtain

W ®,9K, ) = S,(VK, ") x g = Sp(K,07") kg = h(P,K,07")" = h(0 DK, -)".
Taking K = L in (1.4), we have
h(D,L, Y =S,(L,-) * g. (3.3)
Combining with (2.2), (1.4) and (3.3), we obtain
W(D,K +, DyL, ) = h(D,K, ) + h(D,L, )
=S, (K, ) xg+S,(L,") *g
= (Sp(K, ) + Sp(L,-)) x g

=S,(K#,L,") xg
= h(®,(K#,L),-)’. (3.4)

Thus maps of the form of (1.4) are L, Blaschke-Minkowski homomorphisms (satisfy the
properties (a), (b) and (c) from Definition 3.1). Thus, we have to show that for every such
operator @, there is a function g € C(S"~},¢) such that (1.4) holds.

Since every positive continuous even measure on §”* can be the L, surface area measure
of some convex body, the set {S,(K, ) — S,(L,-), K, L € K?} coincides with M. (8" ). The
operator ® : M(S"!) — C(S"") is defined by

Oy = h(P Ky, ) — h(D,Ky, ), (3.5)

where M1 = Sp(1<1, ) - Sp([<2, )
The operator ® for s = Sp(L1,-) — Sp(Lo, -) immediately yields:

Bpiz = h(@pLy, ¥ = h(®yLa, ¥ (3.6)
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Combining with (3.5), (3.6), (2.2) and (3.4), we obtain

DPpu + @y = h(®pKL, ) = H(PpKs, ) + B(®pLa, Y — H(PpLa, Y
= h(q)pl(l tp CI)le, -)P - h((l)p1<2 tp (DpLz, _)p
= h(®p(Ki#y L1), )} = h(®y(Ka #y La), )’
= O(Sy(Ki#yLy,-) — Sp(Ka#y Lo, )
= q_)(sp(l(ly ) + Sp(Ll: ) - Sp(1<2: ) - Sp(LZr ))
= D1 + pa).
So, the operator @ is linear.
Noting that ®,, is an L, Minkowski homomorphism and S,(9 K, -) = 9S,(K, -), we obtain
that the operator ® is SO(1) equivariant.
Since the cone of the L, surface area measures of origin symmetric convex bodies is in-

variant under @, it is also monotone. Hence, by Lemma 3.1, there is a non-negative func-

tion g € C(5"°1,¢) such that ®u = 11 * g. The statement now follows from
BSy(K,-) = S,(K, ") x g = h(D,K, ).
Hence, it is to complete the proof. d

Lutwak, Yang and Zhang first introduced the notion of L ,-projection body (see [24]). Let

I1,K, p > 1 denote the compact convex symmetric set whose support function is given by

1
WK, 00 = ————S,(K,-) % [(0,)]", (3.7)
na)nc,,_z,p
where
Cﬂ,p = 760}“—‘” .
WrWyWp_1

Obviously, IT, : K7 — K is an L, Blaschke-Minkowski homomorphism.

Lemma 3.2 [23] If u,v € M(S") and f € C(S"Y), then

(*v,f)={(nf*v).

Theorem 3.3 If @, : K — K is an L, Blaschke-Minkowski homomorphism, then for
K,LeK?,

V, (K, ®,L) = V, (L, ®,K). (3.8)

Proof Let g € C(S",¢) be the generating function of ®,. Using (2.3), Theorem 1.1 and


http://www.journalofinequalitiesandapplications.com/content/2013/1/140

Wang Journal of Inequalities and Applications 2013, 2013:140
http://www.journalofinequalitiesandapplications.com/content/2013/1/140

Lemma 3.2, it follows that

nVy (K, ®pL) = (h(®,L, ), (K, -))
Sp(L,") g, Sp(K, )
Sp(L, ), Sp(K, ) x g)
Sp(L, ), h(D,K, )

e~ —— —— —

= nV,,(L, ®,K).

Using Theorem 1.1 and the fact that spherical convolution operators are multiplier trans-

formations, one obtains the following lemma.

Lemma 3.4 If ®, is an L, Blaschke-Minkowski homomorphism, which is generated by the

zonal function g, then for every origin symmetric convex body K € K[},
mh(®,K, Y = gmiSy(K,-),  keN,

where the numbers g are the Legendre coefficients of g, i.e., g = (g, AP}).

Proof By (2.18) and Theorem 1.1, we have

meh(®,K, Y = N(n, k) (Sp(K, -) % g % APY).

Since spherical convolution is associative and g is zonal, we obtain from (2.18):

mh(PLK, - = geN (1, k) (S, (K, ) % AP}) = gmieSp(K, -).

(3.10)

O

Definition 3.2 If ®, is an L, Blaschke-Minkowski homomorphism, generated by the

zonal function g, then we call the subset K(®,) of K7, defined by
Kl (®,) ={K € KI : mS,(K,-) = 0 if g = 0},

the injectivity set of ®,,.

It is easy to verify that for every L, Blaschke-Minkowski homomorphism, the set is a

nonempty rotation and dilatation invariant subset of which is closed under L, Blaschke

addition.

Definition 3.3 An origin-symmetric convex body K € K p-polynomial if h(K,-)* € H".

Clearly, the set of p-polynomial convex bodies is dense in K.

Let p > 1 and p # n where p is not an even integer. The size of range, ®,(K”), of the

L, Blaschke-Minkowski homomorphism &, will be critical. The set of origin-symmetric

convex bodies whose support functions are elements of the vector space
1
span{ (1(®,K, ) — h(®,L,-))? : K,L € K}

is a large subset of K/, provided the injectivity set K/(®P,) is not too small.

(3.11)
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Theorem 3.5 Let p > 1 and p # n where p is not an even integer. If ,: K] — K isan L,
Blaschke-Minkowski homomorphism such that K} € K7(®,), then for every p-polynomial
convex body K € K7, there exist origin-symmetry convex bodies Ky, K, € K such that

K+, ®,K; = ,K,. (3.12)

Proof Let K € K! be a p-polynomial convex body. From Definition 3.3, we have

WK, =Y mch(K, ). (3.13)
k=0

For K € K and the properties of the orthogonal projection of f on the space H}, we
have 7 h(K,-)? = 0 for all odd k € N. Let g € C(S""},¢) denote the generating function of
® and let g¢ denote the Legendre coefficients of g. From K € K% (®) and Definition 3.2,
it follows that gy # 0 for every even k € N. We define

=Y amh(K,Y, (3.14)
k=0

where ¢, = 0 for odd and ¢, = gi* if k is even. Since f is an even continuous function on

S"! and spherical convolution operators are multiplier transformations, we have
m m
fxg=Y ageuch(K, Y = Y weh(K, Y = h(K, ). (315)
k=0 k=0

Denote by f* and f~ the positive and negative parts of f and let K; and K; be the convex
bodies such that S,(Ki,-) = f~ and S,(K>, -) = f*. By Theorem 1.1 and (2.2), it follows that

K +, ®,K; = ,K>. 0

4 The Shephard-type problem

Let &, : K7 — K7 denote a nontrivial L, Blaschke-Minkowski homomorphism, i.e., ®,, is
continuous and SO(n) equivariant map satisfying ®,(K#,L) = ®,K +, ®,L and &, does
not map every origin-symmetric convex body to the origin. In this section, we study the
Shephard-type problem for L, Blaschke-Minkowski homomorphisms.

Problem 4.1 Letp>1,p #nand ®,: Kj — K/ be an L, Blaschke-Minkowski homomor-

phism. Is there the implication:
If 0 < p < n, then

P,KCP,L = V(EK)<VL)? (4.1)
If p > n, then

S,KCd,L = V(EK)>V(L)? (4.2)
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Proof of Theorem 1.2 For L € ®,K! and p is not an even integer, there exists an origin-
symmetric convex body Ly such that L = ®,L,. Using Theorem 3.3 and the fact that the
L, mixed volume V), is monotone with respect to set inclusion, it follows that

V(K L) = V, (K, @pLo) = Vyp(Lo, ,K) < Vyy(Lo, PpL) = V, (L, ®pLo) = V(L).
Applying the L, Minkowski inequality (2.6), we thus obtain that, if 1 < p < #, then
V(K) < V(L),
and if p > n, then
V(K) = V(L),
with equality if and only if K and L are dilates. O
An immediate consequence of Theorem 1.2 is the following.

Theorem 4.1 Let p > 1, p # n, where p is not an even integer and ®,: K — K is an L,
Blaschke-Minkowski homomorphism. IfK,L € ®,K”, then

®,K=0,L < K=L. (4.3)

Since the L, projection body operator I1,, is just an L, Blaschke-Minkowski homomor-
phism, the L, Aleksandrov’s projection theorem is a direct corollary of Theorem 4.1.

Corollary 4.2 [25] Let p > 1, p # n, where p is not an even integer, and K and L are both
L, projection bodies in R". Then

MK=T,L & K=L.

Our next result shows that if the injectivity set KC/(®,) does not exhaust all of K}, in
general the answer to Problem 4.1 is negative.

Theorem 4.3 Let 1< p < n where p is not an even integer. If KC}(®,,) does not coincide with
KC, then there exist origin-symmetric convex bodies K, L € K", such that

®,K C DL,
but
V(K) > V(L).
Proof Let g € C(S",¢) be the generating function of ®, and let g; denote its Legendre

coefficients. Since K(®,) # K and ®, is nontrivial, there exists, by Definition 3.2, an
integer k € N, such that g = 0 and k > 1. We can choose « > 0 such that the function
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Sfw)=1+aPl(u-e),uc §"71, is positive. According to Theorem C, there exists an origin-
symmetric convex body L € K with S,(L,-) = f.
Since Sy (L, -) = mi(1 + P} (u - €)) # 0, from Definition 3.2 we have that L ¢ K(®,).
From (2.20) and the properties of the orthogonal projection on the space H}, we have
that

nV,(L,B) = myS,(L,-) = 1. (4.4)
Using the fact that: For 1 < p < n where p is not an even integer, an origin-symmetric con-
vex body L € K7 (®,) is uniquely determined by its image ®,L, we obtain that ®,L = ®,K,

where K denotes the Euclidean ball centered at the origin with L, surface area S,(K) = 1.
Noting that L is just a perturb body of K, we use (4.4) and (2.6) to conclude

np_ L e
VIKY' = > V™. 0

Theorem 4.4 Supposel < p < n where p is not an even integer and K C IKC(®,). IfK € KV
is a p-polynomial convex body which has p-positive curvature function, then if K ¢ ®,K,
there exists an origin-symmetric convex body L € K}, such that

®,K C ®,L,
but
V(K)> V(L).

Proof Let g € C(S"7,€) be the generating function of ®,. Since K € K is p-polynomial, it
follows from the proof of Theorem 3.5 that there exists an even function f € H” such that

h(K, Y =fxg. (4.5)

The function must assume negative values, otherwise, by Theorem 1.1 we have K = ®,Kj,
where K is the convex body with S,(Ky,-) = f. Let F € C(S"™) be a non-constant even
function, such that: F(u) > 0if f(u) < 0, and F(u#) = 0 if f (1) > 0. By suitable approximation
of the function F with spherical harmonics, we can find a nonnegative even function G €
‘H™ and an even function H € ‘H" such that

(f,G)<0, and G=H=xg. (4.6)

Since K is a p-polynomial and has p-positive curvature, the L, surface area measure of K
has a positive density S, (K, -). Thus, we can choose & > 0 such that

Sp(K,-) +aH > 0.
By Theorem C, there exists an origin-symmetric convex body L such that

Sp(L,") = Sp(K, ") + aH. (4.7)
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From (4.6) and Theorem 1.1, we see that #(®,L, )? = h(®,K, -} + aG.
Since G > 0, it follows that

®,K C L. (4.8)

Applying with (2.3), (4.5), (4.7), (2.10) and (4.6), we obtain

n(Vy(K,L) - V(K)) = (i(K, -V, Sp(L,) = Sp(K,-))
= (h(K, ), o H)
=a(f xg,H)
=a(f,Hxg)
=a(f,G) <0. (4.9)

To complete the proof, we can use (2.6) to conclude

V(K) > V(L). O

In particular, we replace @, by I'l, to Theorem 1.2, we have the following corollary, which

was proved by Ryabogin and Zvavitch.

Corollary 4.5 [25] Let K and L be origin-symmetric convex bodies and 1 < p < n where p

is

not an even integer. If L belongs to the class of L, projection bodies, then

MKCT,L = V(K)<V(L).
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