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1 Introduction
Let {X,Xn}n∈N be a sequence of independent and identically distributed (i.i.d.) positive
random variables with a non-degenerate distribution function and EX = μ > . For each
n ≥ , the symbol Sn/Vn denotes self-normalized partial sums, where Sn =

∑n
i=Xi, V 

n =∑n
i=(Xi – μ). We say that the random variable X belongs to the domain of attraction of

the normal law if there exist constants an > , bn ∈R such that

Sn – bn
an

d–→N . ()

Here and in the sequel, N is a standard normal random variable, and d–→ denotes the
convergence in distribution.We say that {Xn}n∈N satisfies the central limit theorem (CLT).
It is known that () holds if and only if

lim
x→∞

xP(|X| > x)
EXI(|X| ≤ x)

= . ()

In contrast to the well-known classical central limit theorem, Gine et al. [] obtained the
following self-normalized version of the central limit theorem: (Sn – ESn)/Vn

d–→ N as
n→ ∞ if and only if () holds.
The limit theorem of products �n

j=Sj was initiated by Arnold and Villaseñor []. Their
result was generalized byWu [], Ye andWu [], and Rempala andWesolowski [] who
proved that if {Xn;n ≥ } is a sequence of i.i.d. positive and finite second moment random
variables with EX = μ, VarX = σ  >  and the coefficient of variation γ = σ /μ, then

(∏n
i= Si
n!μn

)/(γ
√
n)

d–→ e
√
N as n→ ∞. ()
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Recently Pang et al. [] obtained the following self-normalized products of sums for
i.i.d. sequences: Let {X,Xn}n∈N be a sequence of i.i.d. positive random variables with EX =
μ > , and assume that X is in the domain of attraction of the normal law. Then

(∏n
i= Si
n!μn

)μ/Vn d–→ e
√
N as n→ ∞. ()

Brosamler [] and Schatte [] obtained the following almost sure central limit theorem
(ASCLT): Let {Xn}n∈N be i.i.d. random variables with mean , variance σ  > , and partial
sums Sn. Then

lim
n→∞


Dn

n∑
k=

dkI
{

Sk
σ
√
k
< x

}
= �(x) a.s. for all x ∈R, ()

with dk = /k andDn =
∑n

k= dk ; here and in the sequel, I denotes an indicator function, and
�(x) is the standard normal distribution function. Some ASCLT results for partial sums
were obtained by Lacey and Philipp [], Ibragimov and Lifshits [], Miao [], Berkes
and Csáki [], Hörmann [], Wu [, ]. Gonchigdanzan and Rempala [] gave ASCLT
for products of partial sums. Huang and Pang [], Wu [], and Zhang and Yang []
obtained ASCLT results for self-normalized version.
Under mild moment conditions, ASCLT follows from the ordinary CLT, but in general,

the validity of ASCLT is a delicate question of a totally different character as CLT. The
difference between CLT and ASCLT lies in the weight in ASCLT.
The terminology of summation procedures (see, e.g., Chandrasekharan and

Minakshisundaram [], p.) shows that the larger the weight sequence {dk ;k ≥ } in
() is, the stronger the relation becomes. By this argument, one should also expect to get
stronger results if we use larger weights. It would be of considerable interest to determine
the optimal weights.
On the other hand, by Theorem  of Schatte [], () fails for weight dk = . The optimal

weight sequence remains unknown.
The purpose of this paper is to study and establish the ASCLT for self-normalized

products of partial sums of random variables in the domain of attraction of the nor-
mal law. We show that the ASCLT holds under a fairly general growth condition on
dk = k– exp((lnk)α),  ≤ α < /.
In the following, we assume that {X,Xn}n∈N is a sequence of i.i.d. positive random vari-

ables in the domain of attraction of the normal law with EX = μ > . Let bk,n =
∑n

j=k /j,
Sk =

∑k
i=Xi, V 

k =
∑k

i=(Xi – μ), Sk,k =
∑k

i= bi,k(Xi – μ) for  ≤ k ≤ n. an ∼ bn denotes
limn→∞ an/bn = . The symbol c stands for a generic positive constant which may differ
from one place to another.
Our theorem is formulated in a general setting.

Theorem. Let {X,Xn}n∈N be a sequence of i.i.d. positive random variables in the domain
of attraction of the normal law with mean μ > . Suppose  ≤ α < / and set

dk =
exp(lnα k)

k
, Dn =

n∑
k=

dk . ()
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Then

lim
n→∞


Dn

n∑
k=

dkI
((∏k

i= Si
k!μk

)μ/Vk

≤ x
)
= F(x) a.s. x ∈R. ()

Here and in the sequel, F is the distribution function of the random variable e
√
N .

By the terminology of summation procedures, we have the following corollary.

Corollary . Theorem . remains valid if we replace the weight sequence {dk}k∈N by
{d∗

k}k∈N such that  ≤ d∗
k ≤ dk ,

∑∞
k= d∗

k = ∞.

Remark . Our results give substantial improvements for weight sequence in Theo-
rem . obtained by Zhang and Yang [].

Remark . If X is in the domain of attraction of the normal law, then E|X|p < ∞ for
 < p < . On the contrary, if EX < ∞, then X is in the domain of attraction of the normal
law. Therefore, the class of random variables in Theorem . is of very broad range.

Remark . Essentially, the problem whether Theorem . holds for / ≤ α <  remains
open.

2 Proofs
Furthermore, the following three lemmas will be useful in the proof, and the first is due to
Csörgo et al. [].

Lemma . Let X be a random variable with EX = μ, and denote l(x) = E(X – μ)I{|X –
μ| ≤ x}. The following statements are equivalent.

(i) X is in the domain of attraction of the normal law.
(ii) xP(|X –μ| > x) = o(l(x)).
(iii) xE(|X –μ|I(|X –μ| > x)) = o(l(x)).
(iv) E(|X –μ|αI(|X –μ| ≤ x)) = o(xα–l(x)) for α > .
(v) l(x) is a slowly varying function at ∞.

Lemma . Let {ξ , ξn}n∈N be a sequence of uniformly bounded random variables. If there
exist constants c >  and δ >  such that

|Eξkξj| ≤ c
(
k
j

)δ

for  ≤ k < j, ()

then

lim
n→∞


Dn

n∑
k=

dkξk =  a.s., ()

where dk and Dn are defined by ().
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Proof Since

E

( n∑
k=

dkξk

)

≤
n∑
k=

d
kEξ 

k + 
∑

≤k<j≤n

dkdj|Eξkξj|

=
n∑
k=

d
kEξ 

k + 
∑

≤k<j≤n;j/k≥ln/δ Dn

dkdj|Eξkξj|

+ 
∑

≤k<j≤n;j/k<ln/δ Dn

dkdj|Eξkξj|

:= Tn + (Tn + Tn). ()

By the assumption of Lemma ., there exists a constant c >  such that |ξk| ≤ c for
any k. Noting that exp(lnα x) = exp(

∫ x


α(lnu)α–
u du), we have that exp(lnα x),α < , is a slowly

varying function at infinity. Hence,

Tn ≤ c
n∑
k=

exp( lnα k)
k

≤ c
∞∑
k=

exp( lnα k)
k

<∞.

By (),

Tn ≤ c
∑

≤k<j≤n;j/k≥ln/δ Dn

dkdj
(
k
j

)δ

≤ c
∑

≤k<j≤n;j/k≥ln/δ Dn

dkdj
lnDn

≤ cD
n

lnDn
. ()

On the other hand, if α = , we have dk = e/k, Dn ∼ e lnn, and hence, for sufficiently
large n,

Tn ≤ c
n∑
k=


k

k ln/δ Dn∑
j=k


j

≤ cDn ln lnDn ≤ D
n

lnDn
. ()

If  < α < /, then by y–α → , y → ∞, for arbitrary small ε > , there exists n such
that for y ≥ lnn, ( – α)y–α/α < ε. Therefore

 ≤
∫ lnn
 (exp(yα) + –α

α
y–α exp(yα)) dy∫ lnn

 exp(yα) dy

≤
∫ lnn
 exp(yα)( + –α

α
y–α) dy + ( + ε)

∫ lnn
lnn

exp(yα) dy∫ lnn
 exp(yα) dy

→  + ε.

This implies

∫ lnn


exp

(
yα

)
dy ∼

∫ lnn



(
exp

(
yα

)
+
 – α

α
y–α exp

(
yα

))
dy

from the arbitrariness of ε.
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Hence,

Dn ∼
∫ n



exp(lnα x)
x

dx =
∫ lnn


exp

(
yα

)
dy

∼
∫ lnn



(
exp

(
yα

)
+
 – α

α
y–α exp

(
yα

))
dy

=
∫ lnn




α

(
y–α exp

(
yα

))′ dy

=

α
ln–α n exp

(
lnα n

)
, n→ ∞. ()

This implies

lnDn ∼ lnα n, exp
(
lnα n

) ∼ αDn

(lnDn)
–α
α

, ln lnDn ∼ α ln lnn.

Thus combining |ξk| ≤ c for any k,

Tn ≤ c
n∑
k=

∑
≤k<j≤n;j/k<(lnDn)/δ

dkdj

≤ c
n∑
k=

dk
∑

k<j≤k(lnDn)/δ
exp

(
lnα n

)
j

≤ c exp
(
lnα n

)
ln lnDn

n∑
k=

dk

≤ c
D

n ln lnDn

(lnDn)(–α)/α .

Since α < / implies ( – α)/(α) >  and ε := /(α) –  > , thus for sufficiently large n,
we get

Tn ≤ c
D

n
(lnDn)/(α)

ln lnDn

(lnDn)(–α)/(α)
≤ D

n
(lnDn)/(α)

=
D

n
(lnDn)+ε

. ()

Let Tn := 
Dn

∑n
k= dkξk , ε :=min(, ε). Combining ()-() and (), for sufficiently large

n, we get

ET
n � c

(lnDn)+ε
.

By (), we have Dn+ ∼ Dn. Let  < η < ε
+ε

, nk = inf{n;Dn ≥ exp(k–η)}, then Dnk ≥
exp(k–η), Dnk– < exp(k–η). Therefore

 ≤ Dnk
exp(k–η)

∼ Dnk–

exp(k–η)
< ,

that is,

Dnk ∼ exp
(
k–η

)
.
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Since ( – η)( + ε) >  from the definition of η, thus for any ε > , we have

∞∑
k=

P
(|Tnk | > ε

) ≤ c
∞∑
k=

ET
nk ≤ c

∞∑
k=


k(–η)(+ε)

<∞.

By the Borel-Cantelli lemma,

Tnk →  a.s.

Now, for nk < n≤ nk+, by |ξk| ≤ c for any k,

|Tn| ≤ |Tnk | +
c

Dnk

nk+∑
i=nk+

di ≤ |Tnk | + c
(
Dnk+
Dnk

– 
)

→  a.s.

from Dnk+
Dnk

∼ exp((k+)–η)
exp(k–η) = exp(k–η(( + /k)–η – )) ∼ exp(( – η)k–η) → , i.e., () holds.

This completes the proof of Lemma .. �

Let l(x) = E(X –μ)I{|X –μ| ≤ x}, b = inf{x≥ ; l(x) > } and

ηj = inf

{
s; s ≥ b + ,

l(s)
s

≤ 
j

}
for j ≥ .

By the definition of ηj, we have jl(ηj) ≤ η
j and jl(ηj – ε) > (ηj – ε) for any ε > . It implies

that

nl(ηn) ∼ η
n as n→ ∞. ()

For every ≤ i ≤ k ≤ n, let

X̄ki = (Xi –μ)I
(|Xi –μ| ≤ ηk

)
, V̄ 

k =
k∑
i=

X̄
ki, S̄k,k =

k∑
i=

bi,kX̄ki.

Lemma . Suppose that the assumptions of Theorem . hold. Then

lim
n→∞


Dn

n∑
k=

dkI
{
S̄k,k –ES̄k,k√

kl(ηk)
≤ x

}
= �(x) a.s. for any x ∈R, ()

lim
n→∞


Dn

n∑
k=

dk

(
I

( k⋃
i=

(|Xi –μ| > ηk
))

–EI

( k⋃
i=

(|Xi –μ| > ηk
)))

=  a.s., ()

lim
n→∞


Dn

n∑
k=

dk
(
f
(

V̄ 
k

kl(ηk)

)
–Ef

(
V̄ 
k

kl(ηk)

))
=  a.s., ()

where dk and Dn are defined by () and f is a non-negative, bounded Lipschitz function.

Proof By the central limit theorem for i.i.d. random variables and Var S̄n,n ∼ nl(ηn) as
n→ ∞ from

∑n
k= bk,n ∼ n, it follows that

S̄n,n –ES̄n,n√
nl(ηn)

d–→N as n→ ∞,

http://www.journalofinequalitiesandapplications.com/content/2013/1/129
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where N denotes the standard normal random variable. This implies that for any g(x)
which is a non-negative, bounded Lipschitz function,

Eg
(
S̄n,n –ES̄n,n√

nl(ηn)

)
–→ Eg(N ) as n → ∞.

Hence, we obtain

lim
n→∞


Dn

n∑
k=

dkEg
(
S̄k,k –ES̄k,k√

kl(ηk)

)
= Eg(N )

from the Toeplitz lemma.
On the other hand, note that () is equivalent to

lim
n→∞


Dn

n∑
k=

dkg
(
S̄k,k –ES̄k,k√

kl(ηk)

)
= Eg(N ) a.s.

from Theorem . of Billingsley [] and Section  of Peligrad and Shao []. Hence, to
prove (), it suffices to prove

lim
n→∞


Dn

n∑
k=

dk
(
g
(
S̄k,k –ES̄k,k√

kl(ηk)

)
–Eg

(
S̄k,k –ES̄k,k√

kl(ηk)

))
=  a.s. ()

for any g(x) which is a non-negative, bounded Lipschitz function.
For any k ≥ , let

ξk = g
(
S̄k,k –ES̄k,k√

kl(ηk)

)
–Eg

(
S̄k,k –ES̄k,k√

kl(ηk)

)
.

For any  ≤ k < j, note that g( S̄k,k–ES̄k,k√
kl(ηk )

) and g( S̄j,j–ES̄j,j–
∑k

i= bi,j(X̄ji–EX̄ji)√
jl(ηj)

) are independent and

g(x) is a non-negative, bounded Lipschitz function. By the definition of ηj, we get

|Eξkξj| =
∣∣∣∣Cov

(
g
(
S̄k,k –ES̄k,k√

kl(ηk)

)
, g

(
S̄j,j –ES̄j,j√

jl(ηj)

))∣∣∣∣
=

∣∣∣∣Cov
(
g
(
S̄k,k –ES̄k,k√

kl(ηk)

)
, g

(
S̄j,j –ES̄j,j√

jl(ηj)

)

– g
(
S̄j,j –ES̄j,j –

∑k
i= bi,j(X̄ji –EX̄ji)√
jl(ηj)

))∣∣∣∣

≤ c
E|∑k

i= bi,j(X̄ji –EX̄ji)|√
jl(ηj)

≤ c

√
E(

∑k
i= bi,j(X̄ji –EX̄ji))√

jl(ηj)
≤ c

√∑k
i= bi,jEX̄

ji√
jl(ηj)

≤ c

√∑k
i=(bi,k + bk+,j)l(ηj)√

jl(ηj)
≤ c

√∑k
i= bi,k +

∑k
i= bk+,j√

j

≤ c

√
k + k ln(j/k)√

j
≤ c

(
k
j

)/

.
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By Lemma ., () holds.
Now we prove (). Let

Zk = I

( k⋃
i=

(|Xi –μ| > ηk
))

–EI

( k⋃
i=

(|Xi –μ| > ηk
))

for any k ≥ .

It is known that I(A ∪ B) – I(B) ≤ I(A) for any sets A and B. Then for  ≤ k < j, by
Lemma .(ii) and (), we get

P
(|X –μ| > ηj

)
= o()

l(ηj)
η
j

=
o()
j

. ()

Hence

|EZkZj| =
∣∣∣∣∣Cov

(
I

( k⋃
i=

(|Xi –μ| > ηk
))

, I

( j⋃
i=

(|Xi –μ| > ηj
)))∣∣∣∣∣

=

∣∣∣∣∣Cov
(
I

( k⋃
i=

(|Xi –μ| > ηk
))

, I

( j⋃
i=

(|Xi –μ| > ηj
))

– I

( j⋃
i=k+

(|Xi –μ| > ηj
)))∣∣∣∣∣

≤ E

∣∣∣∣∣I
( j⋃

i=

(|Xi –μ| > ηj
))

– I

( j⋃
i=k+

(|Xi –μ| > ηj
))∣∣∣∣∣

≤ EI

( k⋃
i=

(|Xi –μ| > ηj
)) ≤ kP

(|X –μ| > ηj
)

≤ k
j
.

By Lemma ., () holds.
Finally, we prove (). Let

ζk = f
(

V̄ 
k

kl(ηk)

)
–Ef

(
V̄ 
k

kl(ηk)

)
for any k ≥ .

For  ≤ k < j,

|Eζkζj| =
∣∣∣∣Cov

(
f
(

V̄ 
k

kl(ηk)

)
, f

( V̄ 
j

jl(ηj)

))∣∣∣∣
=

∣∣∣∣Cov
(
f
(

V̄ 
k

kl(ηk)

)
, f

( V̄ 
j

jl(ηj)

)
– f

( V̄ 
j –

∑k
i=(Xi –μ)I(|Xi –μ| ≤ ηj)

jl(ηj)

))∣∣∣∣
≤ c

E(
∑k

i=(Xi –μ)I(|Xi –μ| ≤ ηj))
jl(ηj)

= c
kE(X –μ)I(|X –μ| ≤ ηj)

jl(ηj)
= c

kl(ηj)
jl(ηj)

= c
k
j
.

By Lemma ., () holds. This completes the proof of Lemma .. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/129
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Proof of Theorem . Let Ui = Si/(iμ); then () is equivalent to

lim
n→∞


Dn

n∑
k=

dkI

(
μ√
Vk

k∑
i=

lnUi ≤ x

)
= �(x) a.s. x ∈ R. ()

Let q ∈ (/, ), then E|X| < ∞ and E|X|q < ∞ from Remark .. Using the Marcin-
kiewicz-Zygmund strong large number law, we have

Uk –  =
Sk –μk
kμ

→  a.s.

Sk –μk = o
(
k/q

)
a.s.

Hence let ak =
√
(± ε)kl(ηk) for any given  < ε < , by | ln(+x)–x| =O(x) for |x| < /,

∣∣∣∣∣ μ

ak

k∑
i=

lnUi –
μ

ak

k∑
i=

(Ui – )

∣∣∣∣∣ ≤ c
√

kl(ηk)

k∑
i=

(Ui – )

≤ c√
kl(ηk)

k∑
i=

i(/q–)

≤ c


k/–/q
√
l(ηk)

→  a.s. k → ∞,

from / – /q > , l(x) is a slowly varying function at ∞, and ηk ≤ k + .
Therefore, for any δ >  and almost every event ω, there exists k = k(ω, δ,x) such that

for k > k,

I

(
μ

ak

k∑
i=

(Ui – ) ≤ x – δ

)
≤ I

(
μ

ak

k∑
i=

lnUi ≤ x

)

≤ I

(
μ

ak

k∑
i=

(Ui – ) ≤ x + δ

)
. ()

Note that under the condition |Xj –μ| ≤ ηk ,  ≤ j ≤ k,

μ

k∑
i=

(Ui – ) =
k∑
i=

Si – iμ
i

=
k∑
i=


i

i∑
j=

(Xj –μ)

=
k∑
j=

k∑
i=j


i
X̄kj =

k∑
j=

bj,kX̄kj = S̄k,k . ()

Thus, by () and (), for any given  < ε < , δ > , we have for k > k,

I

(
μ√
Vk

k∑
i=

lnUi ≤ x

)
≤ I

(
S̄k,k√

( + ε)kl(ηk)
≤ x + δ

)
+ I

(
V̄ 
k > ( + ε)kl(ηk)

)

+ I

( k⋃
i=

(|Xi –μ| > ηk
))

for x ≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/129
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I

(
μ√
Vk

k∑
i=

lnUi ≤ x

)
≤ I

(
S̄k,k√

( – ε)kl(ηk)
≤ x + δ

)
+ I

(
V̄ 
k < ( – ε)kl(ηk)

)

+ I

( k⋃
i=

(|Xi –μ| > ηk
))

for x < ,

and

I

(
μ√
Vk

k∑
i=

lnUi ≤ x

)
≥ I

(
S̄k,k√

( – ε)kl(ηk)
≤ x – δ

)
– I

(
V̄ 
k < ( – ε)kl(ηk)

)

– I

( k⋃
i=

(|Xi –μ| > ηk
))

for x ≥ ,

I

(
μ√
Vk

k∑
i=

lnUi ≤ x

)
≥ I

(
S̄k,k√

( + ε)kl(ηk)
≤ x – δ

)
– I

(
V̄ 
k > ( + ε)kl(ηk)

)

– I

( k⋃
i=

(|Xi –μ| > ηk
))

for x < .

Hence, to prove (), it suffices to prove

lim
n→∞


Dn

n∑
k=

dkI
(

S̄k,k√
kl(ηk)

≤ √
± εx± δ

)
= �(

√
± εx± δ) a.s., ()

lim
n→∞


Dn

n∑
k=

dkI

( k⋃
i=

(|Xi –μ| > ηk
))

=  a.s., ()

lim
n→∞


Dn

n∑
k=

dkI
(
V̄ 
k > ( + ε)kl(ηk)

)
=  a.s., ()

lim
n→∞


Dn

n∑
k=

dkI
(
V̄ 
k < ( – ε)kl(ηk)

)
=  a.s. ()

for any  < ε <  and δ > .
Firstly, we prove (). Let  < β < /, and let h(·) be a real function such that for any

given x ∈R,

I(y≤ √
± εx± δ – β) ≤ h(y) ≤ I(y≤ √

± εx± δ + β). ()

By E(Xi –μ) = , Lemma .(iii) and (), we have

|ES̄k,k| =
∣∣∣∣∣E

k∑
i=

bi,k(Xi –μ)I
(|Xi –μ| ≤ ηk

)∣∣∣∣∣ ≤
k∑
i=

bi,kE|Xi –μ|I(|Xi –μ| > ηk
)

=
k∑
i=

k∑
j=i


j
E|X –μ|I(|X –μ| > ηk

)
=

k∑
j=

j∑
i=


j
o(l(ηk))

ηk

= o
(√

kl(ηk)
)
.
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This, combining with (), () and the arbitrariness of β in (), (), holds.
By (), () and the Toeplitz lemma,

 ≤ 
Dn

n∑
k=

dkI

( k⋃
i=

(|Xi –μ| > ηk
)) ∼ 

Dn

n∑
k=

dkEI

( k⋃
i=

(|Xi –μ| > ηk
))

≤ 
Dn

n∑
k=

dkkP
(|X –μ| > ηk

) →  a.s.

Hence, () holds.
Now we prove (). For any λ > , let f be a non-negative, bounded Lipschitz function

such that

I(x >  + λ) ≤ f (x) ≤ I(x >  + λ/).

From EV̄ 
k = kl(ηk), X̄ni is i.i.d., Lemma .(iv), and (),

P

(
V̄ 
k >

(
 +

λ



)
kl(ηk)

)
= P

(
V̄ 
k –EV̄ 

k > λkl(ηk)/
)

≤ c
E(V̄ 

k –EV̄ 
k )

kl(ηk)
≤ c

E(X –μ)I(|X –μ| ≤ ηk)
kl(ηk)

=
o()η

k
kl(ηk)

= o() → .

Therefore, from () and the Toeplitz lemma,

 ≤ 
Dn

n∑
k=

dkI
(
V̄ 
k > ( + λ)kl(ηk)

) ≤ 
Dn

n∑
k=

dkf
(

V̄ 
k

kl(ηk)

)

∼ 
Dn

n∑
k=

dkEf
(

V̄ 
k

kl(ηk)

)
≤ 

Dn

n∑
k=

dkEI
(
V̄ 
k > ( + λ/)kl(ηk)

)

=

Dn

n∑
k=

dkP
(
V̄ 
k > ( + λ/)kl(ηk)

)
→  a.s.

Hence, () holds. By similar methods used to prove (), we can prove (). This com-
pletes the proof of Theorem .. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
QW conceived of the study and drafted, complete the manuscript. PC participated in the discussion of the manuscript.
QW and PC read and approved the final manuscript.

Author details
1College of Science, Guilin University of Technology, Guilin, 541004, P.R. China. 2Department of Mathematics, Ji’nan
University, Guangzhou, 510630, P.R. China.

http://www.journalofinequalitiesandapplications.com/content/2013/1/129


Wu and Chen Journal of Inequalities and Applications 2013, 2013:129 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/129

Authors’ information
Qunying Wu, Professor, Doctor, working in the field of probability and statistics.

Acknowledgements
The authors are very grateful to the referees and the editors for their valuable comments and some helpful suggestions
that improved the clarity and readability of the paper. Supported by the National Natural Science Foundation of China
(11061012), and the support Program of the Guangxi China Science Foundation (2012GXNSFAA053010).

Received: 16 November 2012 Accepted: 5 March 2013 Published: 27 March 2013

References
1. Arnold, BC, Villaseñor, JA: The asymptotic distribution of sums of records. Extremes 1(3), 351-363 (1998)
2. Berkes, I, Csáki, E: A universal result in almost sure central limit theory. Stoch. Process. Appl. 94, 105-134 (2001)
3. Billingsley, P: Convergence of Probability Measures. Wiley, New York (1968)
4. Brosamler, GA: An almost everywhere central limit theorem. Math. Proc. Camb. Philos. Soc. 104, 561-574 (1988)
5. Chandrasekharan, K, Minakshisundaram, S: Typical Means. Oxford University Press, Oxford (1952)
6. Csörgo, M, Szyszkowicz, B, Wang, QY: Donsker’s theorem for self-normalized partial sums processes. Ann. Probab.

31(3), 1228-1240 (2003)
7. Gine, E, Götze, F, Mason, DM: When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25,

1514-1531 (1997)
8. Gonchigdanzan, K, Rempala, G: A note on the almost sure central limit theorem for the product of partial sums. Appl.

Math. Lett. 19, 191-196 (2006)
9. Hörmann, S: Critical behavior in almost sure central limit theory. J. Theor. Probab. 20, 613-636 (2007)
10. Huang, SH, Pang, TX: An almost sure central limit theorem for self-normalized partial sums. Comput. Math. Appl. 60,

2639-2644 (2010)
11. Ibragimov, IA, Lifshits, M: On the convergence of generalized moments in almost sure central limit theorem. Stat.

Probab. Lett. 40, 343-351 (1998)
12. Lacey, MT, Philipp, W: A note on the almost sure central limit theorem. Stat. Probab. Lett. 9, 201-205 (1990)
13. Miao, Y: Central limit theorem and almost sure central limit theorem for the product of some partial sums. Proc.

Indian Acad. Sci. Math. Sci. 118(2), 289-294 (2008)
14. Pang, TX, Lin, ZY, Hwang, KS: Asymptotics for self-normalized random products of sums of i.i.d. random variables.

J. Math. Anal. Appl. 334, 1246-1259 (2007)
15. Peligrad, M, Shao, QM: A note on the almost sure central limit theorem for weakly dependent random variables. Stat.

Probab. Lett. 22, 131-136 (1995)
16. Rempala, G, Wesolowski, J: Asymptotics for products of sums and U-statistics. Electron. Commun. Probab. 7, 47-54

(2002)
17. Schatte, P: On strong versions of the central limit theorem. Math. Nachr. 137, 249-256 (1988)
18. Wu, QY: Almost sure limit theorems for stable distribution. Stat. Probab. Lett. 81(6), 662-672 (2011)
19. Wu, QY: An almost sure central limit theorem for the weight function sequences of NA random variables. Proc. Indian

Acad. Sci. Math. Sci. 121(3), 369-377 (2011)
20. Wu, QY: Almost sure central limit theory for products of sums of partial sums. Appl. Math. J. Chin. Univ. Ser. B 27(2),

169-180 (2012)
21. Wu, QY: A note on the almost sure limit theorem for self-normalized partial sums of random variables in the domain

of attraction of the normal law. J. Inequal. Appl. 2012, 17 (2012). 10.1186/1029-242X-2012-17
22. Ye, DX, Wu, QY: Almost sure central limit theorem for product of partial sums of strongly mixing random variables. J.

Inequal. Appl. 2011, Article ID 576301 (2011)
23. Zhang, Y, Yang, XY: An almost sure central limit theorem for self-normalized products of sums of i.i.d. random

variables. J. Math. Anal. Appl. 376, 29-41 (2011)

doi:10.1186/1029-242X-2013-129
Cite this article as:Wu and Chen: An improved result in almost sure central limit theorem for self-normalized
products of partial sums. Journal of Inequalities and Applications 2013 2013:129.

http://www.journalofinequalitiesandapplications.com/content/2013/1/129
http://dx.doi.org/10.1186/1029-242X-2012-17

	An improved result in almost sure central limit theorem for self-normalized products of partial sums
	Abstract
	MSC
	Keywords

	Introduction
	Proofs
	Competing interests
	Authors' contributions
	Author details
	Authors' information
	Acknowledgements
	References


