Zhan Journal of Inequalities and Applications 2013,2013:125 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/125 a SpringerOpen Journal

RESEARCH Open Access

The global solution of a diffusion equation
with nonlinear gradient term

Huashui Zhan”

“Correspondence:
huashuizhan@163.com;
2012111007@xmut.edu.cn

School of Applied Mathematics,
Xiamen University of Technology,
Xiamen, 361024, PR. China

School of Sciences, Jimei University,
Xiamen, 361021, PR. China

@ Springer

Abstract

Consider the viscosity solution to the initial boundary value problem of the diffusion
eguation

U= div(]Vumf*zVum) —uhm vy

withp>1,m>0,p; <2,p>2py,itsinitial value u(x,0) = up(x) € Lq‘”%(Q), 3>g>1
and its boundary value u(x,t) =0, (x,t) € 9€2 x (0,00). If p> 1 + % by considering the
regularized problem and using Moser’s iteration technique, we get the locally
uniformly bounded property of the solution and the locally bounded property of the
LP-norm of the gradient. By the compactness theorem, the existence of the viscosity
solution of the equation is obtained provided that

mNg; piimp-1)+m-2)
Nm(p-1)-N+mgq mp-1)-1

f2<p<1+ % the existence of solution is obtained in a similar way, and the
extinction of the solution is proved in this case.
MSC: 35K55; 35K65; 35B40
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1 Introduction
The objective of the paper is to study the nonnegative weak solution of the following non-
linear parabolic equation:

Up = div(|Vum |p_2Vum) -y |Vum |p1 inS=Q x (0,00), (1.1)
u(x,0) = up(x), x€€, (1.2)
ulx,t)=0, (xt)€dQ x (0,00), (1.3)

where Q ¢ RY is a bounded opendomain,p>1,m>0,p; <2,p>2p;, N >1,0 <up(x) €
L9V (R2),3>¢g>1,and V is the spatial gradient operator.

The equation of the form (1.1) was suggested as a mathematical model for a variety of
problems in mechanics, physics and biology, which can be seen in [1-4] ezc. It has been
widely researched, whether it is linear (i.e., m =1, p = 2, p1 = 0, mqy = 1) or nonlinear,
fast diffusion (m(p — 1) < 1) or slow diffusion (m(p — 1) > 1). For example, the existence of
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a nonnegative solution of (1.1)-(1.3) without the damping term —u"% |V |1, defined in
some weak sense, is well established (see [5, 6]). For other examples, Bertsh et al. [7] and
Zhou et al. [8] discussed the existence and properties of viscosity solution for the equation

Uy = ulu — y|Vu|2, (1.4)

where y is a positive constant. Zhang et al. [9] discussed the existence and properties of

the viscosity solution for the equation
uy = A — ax)|u|TH Vul?, 1.5)

where a(x) is a known function.

The most important characteristic of equation (1.4) or (1.5) is in that, generally, the
uniqueness of the solutions is not true; one can refer to [8—12]. Thus, for the equation of
the type (1.1), we should mainly consider the existence of the viscosity solution (see Defi-
nition 1.2 below) and the related properties such as large time behaviors; one can refer to
[13-16] etc. for some progress on this problem.

Now, we quote the following definition.

Definition 1.1 A nonnegative function u(x, t) is called a weak solution of (1.1)-(1.3) if u

satisfies

()

u € L. (0,00, L%(R2)), (1.6)
u e L} (0,00,L%(R)),  u™ € LZ.(0,00; W, (R)); (1.7)

//[mpt - |Vu'” !p_2Vum Vo —u"n |Vu’” |p1g0] dxdt=0, VoeCyS); (L8)
s
(i)

}E%/S;W(x, t) - uo(x)| dx=0. 1.9)

We will get the solution of (1.1)-(1.3) by considering the regularized problem

p-2

. 2 1\ % n
ut=d1v(<]Vu’”| +%> Vu”‘)—u”"“‘Vu”" , (1.10)

with the initial value (1.2) and the homogeneous boundary value (1.3). The solutions of
the regularized equation (1.10) are denoted by u.

Definition 1.2 Ifu; is a solution of the initial boundary value problem of (1.10)-(1.2)-(1.3),
limy_, o0 Ur = u, a.e. in S, such that u is a weak solution of (1.1)-(1.3), then u is said to be a

viscosity solution.
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The main aim of the paper is to show how the damping term —u™7|Vy/"1]| affects the
equation, including how the damping term affects the existence of the solution and how
the damping term affects the properties such as the extinction of the solution. By consider-
ing the solution u; of the regularized problem (1.10) and using Moser’s iteration technique,
we get u;’s local bounded properties and the local bounded properties of the L”-norm of
the gradient Vuy. By the compactness theorem, we get the existence of the viscosity solu-
tion of the diffusion equation itself. Apart from the general process of the proof such as in
[3-5,7, 9] etc., in which the main difficulty is how to prove that

b2 r_
2

|Vu7<”| Vu — (%)x = |Vum |p_2Vum, weakly star in L} (O, 00; LPT (Q)),

in our paper, in addition to overcoming the above difficulty, we have to solve another dif-
ficulty lying in how to prove that

" |V "t — (v =~ |[Vu" "', weakly star in L2 (0, oo;LPil (Q)).

Also, we need to overcome the difficulty which comes from the damping term
—u™ 1| VuP1| when we prove the uniqueness of the viscosity solutions of (1.1)-(1.3).

In order to get the desired results, some important relationships among the exponents
P q1, 4, p, m, N are imposed. We also need the following lemmas.

Lemma 1.3 [17] (Gagliardo-Nirenberg) If1 <I<N,1+8 <q,1<r<gq < (1+B)NI/(N-I),
suppose that u**f € W'(Q), then

lully < B ul| 0 ||+ ||f’/l(l+ﬁ), (1.11)
where 0 = (B+1)r ' =g V)/(N =11+ (B + D)r ).
Lemma 1.4 [18] Let y(t) be a nonnegative function on (0, T1. If it satisfies

Y (£) + AW () < Bt *y(t) + Ct 5, 0<t<T, (1.12)
where A,0 >0,A0 >1,B,C >0, k <1, then

y(t) < AP (2n + 2BT1-k)5t—A +2C(A+ BTl-k)‘ltl-‘S, 0<t<T. (1.13)

We will prove the following theorems. As usual, the constants ¢ in what follows may be
different from one to another.

Theorem 1.5 If0 < uy(x) and

1
p>1+—, (1.14)
m
uo(x) € L7717 (), (1.15)
<2 2p1 < P, 3>¢g>1, (1.16)
N -1 -2
mNg,  pmp—1) +m )<1, L17)

Nm(p-1)-N +mq mp-1)-1
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then (1.1)-(1.3) has a weak viscosity solution which satisfies

W™ € L2 (0,005 L11 (2)) N LY, (0, 005 Wo () (1.18)
and
| @], <c(l+7) 1+, ¢>0, (1.19)

where . =N(pq+(p—1- %)N)‘l. Moreover, if p > 2, then

[Vu|, <c@+e")a+e, t>0, (1.20)
- -1 — pmQqi+1)-1)+mpy
where =1+ 505570 0 = S DD

The condition (1.17) is only used to prove (1.9); if p; = 0 = ¢, this is a natural condition.

We conjecture that this condition can be weakened.

Theorem 1.6 Let u be a weak solution of (1.1)-(1.3). Ifp > 1 + #, pL+q1>p—1,then
supp u(-,s) C supp u(-, t) (1.21)
foralls, t with0 <s<t.

Theorem 1.7 If2<p<1+%<p+q,
0<uoeLT™™i(Q), 3>g>1, (1.22)

then (1.1)-(1.3) has a weak solution which satisfies (1.18), and there exists a positive T > 0
such that

ulx,t) =0, VY(xt) e @xt)eQ x(T,00). (1.23)

If the damping term disappears in (1.1), say, if (1.1) without -9 | V1| by [19], then
we know that the extinction of the solution as Theorem 1.7 is true. For other related works
on equation (1.1), one can refer to the references [20-31] etc. We use some ideas in [19]
and [30].

2 The L™ estimate of the solution

Consider the regularized problem

p-2

1\ 7
Uy = div((’Vu’”’2 + %> Vu"‘) -y ‘Vum‘pl, (2.1)
u(x,0) = upr(x), x€, (2.2)

ulx,t)=0, x€9dR,t>0, (2.3)


http://www.journalofinequalitiesandapplications.com/content/2013/1/125

Zhan Journal of Inequalities and Applications 2013, 2013:125
http://www.journalofinequalitiesandapplications.com/content/2013/1/125

where 0 < ugi(x) is a suitably smooth function such that
uo(x) € LR, lim ol 1. = Noollr. 1
Clearly,
|_u””41 |Vum |P1 | = |uWIq1+p1(WI—1)|Vu|p1 |’
if let
b(x,t,z,p) = —m |zm‘ﬂ+"1(”’_1) |plPt |
Then, if |z| < M, since p; <2,
|b| < clpl?,

by Chapter 8 of [32], viewing (2.1) as a divergent form of a quasilinear parabolic equation,
we know that (2.1)-(2.3) has a unique nonnegative classical solution ;. In what follows,
in the proof of the related lemmas, we only denote u; as u for simplicity.

Lemma 2.1 Ifp>1+ #, u is the solution of (2.1)-(2.3), then u' € LY% (0, oo;Lq‘“% ()

loc
and

_ 1
””/2” ”q_h; <c(l+1) rlm, 1>0, (2.4)
where 3 > q > 1.
Proof Let A, = (q—2)n°"1, B, = (3 - ¢q)n* 7 and

£ sq1 ifszi,
n\S) =

Aus® +Bys if0<s<l

The condition 3 > g > 1 assures that f(#”) defined above is nonnegative. If we multiply
(2.1) by f,(#™) and integral on €2, then we have

p-2

[atwya((lvet3) " vur)as
[ (1w 1) v as

p
dx, (2.5)

Q
_ m|Per( . m — u / },
< Q|Vu |fn(u )dx /JV/O (fn(s)) ds
—/fn(u’”)umql|Vu”’|p1 dx <0. (2.6)
Q

From the above calculation, we have

p
dx <0.

/Qﬂ(u’”)utdx+/9’V/0um(ﬂ(s))}a ds

Page 5 of 20


http://www.journalofinequalitiesandapplications.com/content/2013/1/125

Zhan Journal of Inequalities and Applications 2013, 2013:125 Page 6 of 20
http://www.journalofinequalitiesandapplications.com/content/2013/1/125

By the Poincare inequality, we have

/ "oy as

Let # — o0 in (2.7). We can deduce that

(2.7)

/ﬁ Jurdx +c

i / WA gy c/ WMa -l g <0. (2.8)

By the Jessen inequality, from (2.8) we get

q—l+ ” m”q 1+7+p 1- % 0’

AP

q- 1+7

then
-
”um ”qﬂ_l <cl+z) o
We get the desired result. 0
Lemma2.2 [fp>1+ %, uy. is the solution of (2.1)-(2.3), then
lug|,, <et™ o0<t=<1, (2.9)

1
Wl <c+t) #m, t>1, (2.10)
k 1o

_ N
(p-1-L)N+q

where A =
Proof Multiply (2.1) by (-1 and integral on 2, then

p-2

1\ 2
/u’””‘l)utdx = / diV<<|Vu”’| + —) Vu”’)um(l‘l) dx
Q Q k

_/ una |Vum |Pl um(l—l) dx
Q

p=2
= _(1_1)/ (|WV"| + l) i |Va [P u@=2 gy
Q k
_/ umql|vum|171um(l—1) dx
Q

1 1%2 2 m(l-2
<-(- 1f<|Vum|+ ) |Vu”‘| w2 gy,

which deduces that

> ek
e o c<z_1+i) [ v pas <o
m Q
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SetL=I[-1+L.Then
d, L 2p b p
E”u [, +cL /|Vu | dx <0, (2.11)

where c is a constant independent of /.

Now, if we choose Ly =g —1- %,L =rL,.1—(p— 1— =),60,=rNQ1-L,,L, Dp+N(r-
D un=Ln+p-1-5)60"-Lyr>1+(p-1- a)q‘l, n=2,3,..., by Lemma 1.3, we
have

1-6,

1
m plLy+p-1-2) ||, ,m
L, =€ " ”“ Ly

vy Lntp=1-3)lp ||;’9n/(!7‘1‘%+L”), (2.12)

If we choose L = L, in (2.11), by (2.12) we have

1_
m|Pm T g <t <. (2.13)

+ Plon 2P || m ||Ln+ﬂn -

|

We will prove that there exist two bounded sequences {£,}, {*,} such that
|lu”|, <&t™, 0<t<l (2.14)

If n=1,by Lemma 2.1, 4; = 0, & = sup,- ||u’”(t)||q_1_i makes (2.14) sure. If (2.14) is true
for n — 1, then from (2.13),

_1-1_
Pl it <0 0 <t <1, (2.15)

+ C—p/aan -p ” m ”Ln+un £

iy
dt

We can choose

1 _ _ pn
Ay = <)L,,_1(,u,,, -p+1+ %) + 1)un1, &, :Sn_l(cp/g”Lﬁ IAV,) fn n=2,3,...,

by Lemma 1.4 and (2.15), (2.14) is true.
Moreover, by Lemma 1.4, as n — 00, A, = A =
bounded. Thus (2.9) is true.

1
To prove (2.10), we set T = log(1 +¢), t > 1, w(tr) = (1 + £) 7~ -7 u™(t). By (2.11), we have

N

DN It is easy to see that {£,} is

L+p—l—%

7 >log2. (2.16)

d
S Iw@ e vw 7 <

p- 1- 1 ‘

By Lemma 3.1 in [31], we can get (2.10); we omit details here. O

3 The L™ estimation of the gradient
Lemma 3.1 Ifp > max{2,1+ %}, uy is the solution of (2.1)-(2.3), then

[vigr|, <t ), 0<r<1, (3.1)

p(m( 2q1+1) 1)+mp]
|V || <c(l+t) We-DDer) | f>1. (3.2)

Page 7 of 20
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Proof 1f we multiply (3.1) by &} and integral on €, then

m/ P (TR
Q

p-2

:fdiv<(|Vu”’|2+l>2Vu”’)u;”dx—/u”"11|Vu’"|pluf”dx,
Q k Q
2 1 =
/div((’Vu’"’ +%) Vu"‘)u;”dx
Q

s 1 , 1\7T
:—/ |Vu’"|+— VumVuf”dx:——/ |Vum| + |Vu’”| dx
Q k 2 Ja

1(d [V 1T 1d 2
:__/ZE/ G+—> duhz—EEF(Wu )

‘ [ vy

By (3.3)-(3.5), we have

m— 1 d m m
‘/Qu Yu) dx + ZEF/((|VM'”|2)§C/Q| |2p1+ |Vu |2p1dx

If we multiply (3.1) by ™ and integral on €, then

p-2

and

-2
r(|vu ) §/<|w|2+;> T || dx
Q

= _ 1 /d u" dx — /u”"ﬂ|Vu”‘|plu”‘dx
m+1 Jgo dt Q
1 ml m-1
= m+1||” > Hz”” > ”f”z'
So,
1 d m 2 m+1 2 m|2
— =T ([Ve ) + m+ 1[5 | TR (Ve [)

m dt

<c [ Jur P [
Q

Setting 2y =2q; +1— %, for Va € [0,2y], if we notice that p > 2p;, we have

P=2n1

/|um|2a|vum|2p1 dx < ||um(t)||zo</|um|(f’y22p dx) ’ ||Vumnzp1.
Q Q s

< —/ "= 1(ut)2dx+c/|u"’|2ql+ |Vum|2p1 dx.

(3.3)

(3.4)

(3.5)

(3.6)

ml-l-l/ %um+ldx:/div<<|vum|2+%) i VMm)umdx_/ umql|vum|171umdx
Q Q o
N
:—/<|Vum|2+—> |Vum|2dx_/umq1|vum|191umdx
Q k o

(3.8)

Page 8 of 20
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If2y > (p—2p1)(N +1)/N, leta = 2y — (p - 2p1)1 + £))*. By Lemma 1.3,
r=2p1

(2y-a) 2
( /g jm) dx) N e 2 (3.9)

where 0 = (s1 = (1- 2%)(27/ —a) )N —pt+sY),ands= 2y —p+2p1 —a)N/(p-2p1)
when 2y > (p—2p1)(1 + g/N), s = g, when (p — 2p;)(1 + N1) <2y < (p-2p1)(1 + q/N). By
Lemma 2.1 and Lemma 2.2, from (3.8), we have

/ P4V dx < et | Vi | < et (V) o<1 (3.10)
Q

At the same time, if we choose g = 2 in Lemma 2.1, we have

_m_
“um ” 1= w1 dx e Sct—(p—l_%)—l
1+5; o

and

m+l

s

2

m+1
= / u"dx < ¢t -0 (3.11)
Q
By (3.7), we have
m+1
T (¢) + ct™TIT2(t) < ct ™ Ty(t), O0<t<Ll. (3.12)
If2y < (p-2p1)(N +1)/N and p — 2p; < 2a <2y, then

/ e [ Va [ dee < o Gu [0 |V | < e un ) < e[ 9w ),
Q

0<t<L (3.13)
If2y <(p-2p1)(N +1)/N and p — 2 > 2a > 0, then
fQ|u’”|za|Vu”’|2dx < o(L+ [Vu|?) < (1 + T (| ),
0<t<l. (3.14)

The inequalities (3.13) and (3.14) mean that the inequality (3.12) is still true when 2y <
(p —2p1)(N +1)/N. Using Lemma 1.4, we get

m—1
Ii(t) < ™ ’"(P*U*l), 0<t<l,

which means (3.1) is true. Now, we will prove (3.2). For ¢ > 1, by (2.10) we obtain

[ 9 s < e 01

<c(l+2) 20 v ||fj’1, (3.15)

Page 9 of 20
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p-2

2 v 2, 1\ 7 » 21\ 2=
r(vurf) - | (s +E) ds = c| va" ! = (| w2y

m+l

Ju

2
i = </ s dx) <c(l+ t)_(”_l_%)fl.
Q

By (3.7), using (3.15)-(3.17) yields

¥

Th(E) + @+ £ P T2(e) < o1 + >0 (T(0) 7,

and using the Young inequality gives

_ -mQ2yp+p1)
T4(E) + e + )P T2(8) < (1 + £) Te-D-Dio—rD

_ p(m2q1 +1)-1)+mpy
= c(l + L‘) mp-D-Dp-p1) |

which means (3.2) is true.

Lemma3.2 Ifp>1+ %, uy. is the solution of (2.1)-(2.3), then

! g — - _m-l
/ / W ) dacds < ot DT 4 o W0, 0<r < T
t Q

Proof From (2.9), (3.1) and (3.7), (3.10), we have

T T .
/ / " Nu) dxds < Ti(t) + c/ / |u"’|2q1+7 |Vu’"|2p1 dxds
¢ Ja ¢t Ja
T

< T +c / s D (5) ds

t

-1 —1
< ot W) 4 o Ot )

4 The proof of Theorem 1.5

Page 10 of 20

(3.16)

(3.17)

(3.18)

(3.19)

The proof of Theorem 1.5 From Lemma 2.1, Lemma 2.2, Lemma 3.1 and Lemma 3.2, using

the compactness theory (cf. [17]), there is a sequence (still denoted as{u}) of {ux} such

that when kK — oo, we have

ue — (¥)u, weakly star in LY (0, 00; L77V(Q)),
ur — u;, weakly in L* (o, oo;Lz(Q)),
V' = u”, weakly in L} (0,00;L7(R)),

a P
\Vu” Zvu;';i — (#)x;» weakly star in Lf%, (0, 00; L?1(R)),

W[V (x)v,  weakly in L2 (0, 005 L71 (),

(4.1)

(4.2)

(4.3)

(4.4)
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(0, T;LP1(Q)), v € L(0, 00;

where x = {x;:1 <i <N} and every y; is a function in L® .

loc

LPAI (£2)). (4.1) and (4.2) are clearly true. In what follows, we only need to prove that

X = [VaPPVumin L2,(0,00; LT (Q)) (4.5)
and

v =ymn |Vu'” |p1 inLpy. (O, oo;LPﬁl (Q)). (4.6)
It is easy to know that

/fq(lﬂpt —x-Vo—vp)dxdt=0, VYeeCi(S). (4.7)
So, if we can prove that

//S|Vum |P_2Vum -Vodxdt= //S x -Vodxdt, Yee CP(S), (4.8)

//S u, " |Vu,’<" |p1go dxdt = //5 vodxdt, Ve e CP(S), (4.9)

then (4.5),(4.6) and (1.8) are true.
First, for any € C°(S), 0 <y <1,v" € Lﬁ)C(O, T; Wé’p(Q)), we have

// W(|Vu,'<” !p_ZVukm - |Vv”’ |p_2VVm) . V(u,’:’ - v’") dxdt > 0. (4.10)
s

If we multiply by ;"¢ the two sides of (2.1), then we have
p-2

p=2
//¢<’Vukm’2+%> i ’Vuk”’yzdxdt
s

m+1/‘/5.1//tuk +1dxdt—/‘/5uk (|Vuk| + %> Vuy - Vi dxdt
- / / " |\ Vup Py dxdt. (4.11)
s

Noticing that when 1 < p < 2, we have

m|2 m|2 1% 1%
|Vu| Z(\V”k| +E) —(%> )

P p1
1\ = 1\ =
(lvaer 1) " (vl = (jvae )

and when p > 2, we get

[

p=2 p=2

<|VM1V<”|2+%> i |VMZW|ZZ\VMZ” P (\Vu;”|2+%) ’ !Vuﬂ §(|Vukm|p_l+1),
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By (4.10), (4.11), we have

p2
2

1 m+ m m2 1 m
m+1//51//tuk ldxdt—//;uk <|Vuk| +E> Vuy - Vi dxdt
p.

r2
m(q1+1) m|P1 l :
- uy |V [ dxdt + X mes 2
s

—//¢|Vukm|p_2Vu,’f’ Vv dx dt
s

- // Y|V PV () = V™) dxdt > 0. (4.12)
S

Since
N 5 vt
2 > p-2 p- 2 s\ ?
(|Vu,’<"| + %> Vuy' = |Vu,’<”| Vuy + 7/(; <|Vuk'” + %> dsVuy!
and

p-4
2

p;z///l |Vu"’|2+i dsVul' -Vyrul'dxdt=0
k—00 2/( SJo k k k k T

lim

if we let k — 00 in (4.12), we have

1
f/ wtum+1dxdt—f/vwdxdt
m+1JJs s

—f/t/fvé-vadxdt—/fw|va|”‘2va-V(um—VV”) dxdt > 0. (4.13)
N N

Now, we choose ¢ = Y™ in (4.7),

! /fwtum”dxdt—//m/fdxdt—//iﬁx-Vlﬁu”‘dyCdt://iﬁVE-Vumdxdt.
m+1JJs s s s

From this formula and (4.13), we have

/ fS ¥ (x - [V P Av) -V (u” = v™) dxdt > 0. (4.14)
Let v = 4" — g, A > 0, ¢ € C°(S). Then

/ /S V(i V(" = 20w — 1) Ve dindt 0.
Let 1 — 0. We obtain

/ [5 v (xi - |Vum|p_2u;'lf)g0xi dxdt >0, VgeCP(S). (4.15)

Moreover, if we choose L < 0, we are able to get

/ / v (xi— |Vum|p_2u;'f)g0xl. dxdt <0, VgeCP(S). (4.16)
S
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Now, if we choose ¥ such that supp¢ C supp ¢, and on supp¢, ¥ = 1, then from (4.15)-
(4.16), we can get (4.8). By (4.7) and (4.8), we have

//(wpt - |Vu’” |p_2VuW’ Vo - v<p) dxdt=0, YgeC(S),
s

which means (4.9) is true, and so (1.8) is true.
Secondly, we are to prove (1.9).
For small r > 0, denote 2, = {x € Q: dist(x,d2) <r}. For any n > 0, let

—_

ifs>n,

|

sgn, (s) = if [s| <,

-1 ifs<-n.

For any given small 7 > 0 and large enough k, /, we declare that
/ |k (%, 8) — wy(x, 1) | dx < / |ui(%,0) — (%, 0)| dx + ¢, (2), (4.17)
Qo Qr

where c,(¢) is independent of k, /, and lim;_, ¢ ¢,(¢) = 0. By (2.1) we have

t
f/ @ (ure — wy) dxde
0o Je
p-2 p-2
5 , 1\ 2
// Vgo[(’VuT{ +—> Vuk’”—<|Vuf"| +?> Vu;”]dxdt
Q

+// wl M|V |” - w) " | Vul | ) g drdt =0,
0 Jo,

Vo € L7(0, T; W,()). (4.18)

Suppose that & (x) € C3(2,) such that

and choose ¢ = & sgn, (" — u]") in (4.18), then

t
/0 & sgn, ( —uj )(ukt —uy)dxdr

)

p=2 p-

t e , 1\ Z
+/ / [(’V ) Vuy' — <x|Vu;"| + —) Vu;”]
o0 Ja, l

u)") dxdr
Vu) ]

t
+ / / (W |V P~ o Vi ) s, (! — ") drdt = 0. (4.19)
o Ja,

x VE&sgn, uy

'm
[S]

p

+/0t/[< (v * + >%w;”—<x|w;"|2+%)

xV(u —uj )Ssgn ( —u;”)dxdr

o
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If we notice that the third term on the left-hand side of (4.19) tends to zero when n — 0,
then we have

t
lim / & sgn, (ukm — u;”)(ukt —uy)dxdr
0o Jao,

n—0

+ lim /tf [(’Vu’”’2+l>
n—0 0o Jo, k k

x VEsgn, (u - u") dxdt

p=2 p=2
v

Vuy' — (‘Vuf”‘z + %>2Vu;"]

t
+ lim / / (™ |V "' = w) " |V [P)& sgn, (uf - u)") dxdr = 0. (4.20)
0 Jo,

n—0

At the same time,

t
limf / & sgn, (uf — uf")(ukt —uy)dxdr
0o Jao,

n—0
t
= / “g‘sgn(uz’ — u;”)(ukt —uy)dxdr
0o Jo,
t
:/ / & sgn(uy — up)(uge — wy) dx dv
0o Jo,

t
= lim/ / & sgn, (ux — w) (g — uye) dx d
0 Jo,

n—0

t Up—uj
= lim/ / E(f sgn, (s) ds) dxdt
=0 Jo Jo, 0 T
¢ up—u] t
= limf / 5/ sgnn(s)ds‘ dx
1=0Jo Ja, Jo 0

= | &lux—wldx— | &luox — uoil dx. (4.21)
Q Q

By (4.20) and (4.21), we have

&lug — uyldx
Qor
p-1 r-1
t w2 1) 2 w2 1Y) 2
< | l|uox — ol dx + ¢ |V tr +| |V *7 dxdt
Q 0 Ja,
t
+/0/Q|uZIqI|Vu,'(”|pl—ulmq1|Vuf"|pl|dxdr. (4.22)

By Lemma 2.2 and Lemma 3.1, if 0 < £ <1,

t t
/ / |l |V | - w " | V|| dadr < c/ / tdxdr,
0 Q2 0 Qr

where

‘- mNq, pimp-1)+m-2) .
Nm(p-1)-N +mq mp-1)-1 ’

which means (4.17) is true.

Page 14 of 20


http://www.journalofinequalitiesandapplications.com/content/2013/1/125

Zhan Journal of Inequalities and Applications 2013, 2013:125 Page 15 of 20
http://www.journalofinequalitiesandapplications.com/content/2013/1/125

Now, for any given small r, if k, [ are large enough, by (4.17), we have

/ |u(x,t)—uo(x)|dx§/ ‘u(x,t)—uk(x,t)|dx+/ |u0k(x)—u01(x)‘dx
Qo Q Q

2r

+ / ’ul(x, t)— uoz(x)| dx + / |u01(x) - uo(x)| dx.
Qo Qo
Letting ¢t — 0, we get (1.9). O

5 The uniqueness of the viscosity solution
As we have said in the introduction, the uniqueness of the solutions of (1.1)-(1.3) is not

true generally. But we are able to prove the uniqueness of the viscosity solution.

Theorem 5.1 Ifuy(x) € L°°(S2), in addition,|Vu| < ¢, 2 > p; > 1, then the viscosity solution
of (1.1)-(1.3) is unique.

Proof Let u, v be two viscosity solutions of (1.1)-(1.3). Then there are two sequences {u}
and {v;}, which are the solutions of (1.10)-(1.2)-(1.3), such that

lim g = u, limv;=v, a.e.inS. (5.1)

k—o00 l—o00

Clearly, since uo(x) € L*(£2),

luklloo < ¢ lvilleo <c. (5.2)
Let
w=ug—v, wy =uy — v/
Then
wy = (au(x, t)wlxl)x_ +bx, t,w,Vw), (x,£) € 2 x (0,00), (5.3)
w(x,0) = uor(x) —vor(x), x€, (5.4)
w(x, £) =0, (x,¢) €9 x (0,00), (5.5)
where

1
ay(x,t) = / |SVum +(1-s5)VV" |p_2 ds -8
0
! 4
+ f (p- 2)|sVu”’ +(1 —s)Vv”"'F (su;'l‘ +(1- s)vfc"’,) (su;'; +(1- s)v;’l’) ds,
0
and since p; > 1, using the convexity of the function s”1, by (5.2), we have

|b(x,t, w, Vw)| = w2 | V[P v | Vv P < e V(" =) [P < o Vit < |Vl
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By Chapter 8 of [32], we know that

i (x, £) = vilex, 1) | < clluor = voull-
Let k,/ — 0o, we know that the uniqueness of the viscosity solution (1.1)-(1.3) is true. [

Suppose that the viscosity solution of (1.1)-(1.3) is unique in what follows. Then, by con-
sidering the regularized problem (1.10) with (1.2)-(1.3), we easily get the following lemma.

Lemma 5.2 Let u be a weak solution of (1.1)-(1.3). If v satisfies

v > div(|Vv" |p_2VV”‘) v vyt in S = Q x (0,00), (5.6)

v(x,0) > up(x), x€, (5.7)

v(x,£) =0, (x,¢) €9 x(0,00), (5.8)
then

ulx, t) > vix,t), V(xt)eS. (5.9)

Now, we will prove Theorem 1.6. Let
V(x, £) = upr (%, t) = rug (x, r’”(p_l)_lt), re(0,1).
Then

ve(x, t) = diV(!Dv’” |p_2DVm) — pe-l-qi-p) |Dv’” |p1, (x, 1) € 2 x (0,00), (5.10)
v(x,0) = rur(x,0), xe€, (5.11)

vix,t) =0, (x,t)€d x (0,00). (5.12)
Noticing that we supposed

m+qa>p-1, O<r<l,
which implies that

pme-l-q1-p1) § 1,
and using the argument similar to that in the proof Lemma 3.5 of [5], we can prove

Uk > Uy

It follows that

wie(x, P OD1g) g (x, 8) - r—1

m(p-1)-1
(rm(p—l)—l _ 1)t — (1 _ rm(p—l)—l) t)'

; Uy (x, r
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Letting » — 1, we get

Uk

m. (5‘13)

Ukt = —

Hence, we have proved Theorem 1.6.

6 The proof of Theorem 1.7
Ifl<p<l+ %, from the process of the proof of Lemma 2.1, we also have (2.8), i.e.,

d
— u(q1+1dx+c/ km[q1+ +p1”’dx<0 (6.1)
dt A

But,since l<p<1+ %, the Jessen inequality is invalid now, and (2.4) may not be true.
However, in this case, (6.1) implies that

d
dt/ ul ™ gx < 0, 6.2)

which gives the information of u™ € L{¥ (0, 00; L1 7 (2)) provided that uy € LI ().

Lemma 6.1 Suppose thatp <1+ % and

1
qg+p>1+—. (6.3)
m
If uy is the solution of (2.1)-(2.3), then

||l <et™ 0<t=<1, (6.4)

|ug |, <c@+2) w1, (6.5)

whereL:Z—m(p—1)+i,@lzw—land0<9<l

m.

m(l-1)

Proof Similarly as in the proof of Lemma 2.2, we multiply (2.1) by & and integral on €2,

and then we get the following inequality (6.6), which is just the same as (2.11).
Lt v azr v P d
%”u ||L+c | u” | x <0. (6.6)

Let {L,}, {*.} be two sequences just the same as those in the proof of Lemma 2.2. Since
(6.3) impliesthat L, +p—1— % > 0and A, > 0, we can deduce the conclusions (6.4) similarly

as in Lemma 2.2. .

To prove (6.5), we alsoset T =log(1+¢), £ > 1, w(r) = (1 + t)P‘l‘% u™(t). By (6.6), we have

1
— w(@)|| + cL?* thpl’l “IP <0, ©>log2,
LT 1 L p

which implies

+1+

1
i

L@+ et B v 2 <0, c2log2 (67)
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1
By Gagliardo-Nirenberg Lemma 1.3, let 1 + 8 = @. Then

[vw's [ > (7 g wll) 2.

If we choose r = g = L, then from the above inequality, we have

N

_1-L Lip—1—
[ow T | = (65)

By (6.7), (6.8), we have

1

d L P .o _mLp-D-l o om (2_9)L+’”’1’W
- [w(@)|| + ¢ TL>P (L + &) PUme-D " Tnlo-D ||| 7 <0,
T >log?2. (6.9)
Now, we choose the constant [ =3 —m(p - 1), i.e.,
1 1
L=l-1+—=2-mp-1)+—,
m m
then
mL+p-1)-1 m
- (L+p-1) +1+ =0.
pA-m(p-1)) 1-m(p-1)
By (6.9), we have
d L p B L (2-6)[m(L+p-1)-1
)+ EL Pl <0, Tz log2. (6.10)

Let

_(2-0)m(L+p-1)-1]

0
! mLO

-1

Since 0 <6 <1, 6; >0, by Lemma 1.4, we have
L
[w@)], = ee 7,
which implies that
a1
”u’”(t) ||L <c(l+1t) o,

If2<p<1i+ %, which implies that m > 1, then we can get the conclusions of Lemma 3.1
in a similar way. As in the proof of Theorem 1.5, we get the existence of the solution for
the system (1.1)-(1.3) in this case. O

Proposition 6.2 Let u be a weak solution of (1.1)-(1.3). Ifp < 1+ i, then there exists a finite
time T such that

u(x,t)=0 (6.11)

Sorall (x,t) € Q x (T, 00).
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To prove this proposition, we use the idea of the proof of Theorem 1.1 in [19], in which

the extinction of the solution for the equation
U = div(|Vu”‘|p_2Vum)

was studied. In detail, we define an auxiliary function

1

v, 8) = (k(T = £)y""" 7 log(l + %1 + %2 + -+ + )",

N

where

ke {(p—l)(m+1—mp)N§ }W

(20)r (log(20))Hm
T max |u0 | 1+1/lm—p ,
klog2
I= sup |l ool lenl} +2.

(1,22, %N ) EQ

Then we have
% > div(|Vv" |p_2VVm) > div(|Vv" |p_2VV”’) —u" | Vu" [,

on account of the non-positivity of the damping term —u9! | V™ |1,

If we notice that
v(x,0) > ug(x), VxeQ, vix, t) >0, V(xt)€d x (0,00),
applying Lemma 6.1, by (6.12)-(6.13), we have
u(x, t) < v(x, t),
for all (x,¢) € S. By the definition of v(x, £), we have
ulx,t) <vix,t) =0, Vxt)eQx(T,o0).

The proof of the proposition is complete.

Theorem 1.7 is a direct corollary of the proposition.
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