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Abstract
Consider the viscosity solution to the initial boundary value problem of the diffusion
equation

ut = div(
∣∣∇um

∣∣p–2∇um) – uq1m
∣∣∇um

∣∣p1 ,
with p > 1,m > 0, p1 ≤ 2, p > 2p1, its initial value u(x, 0) = u0(x) ∈ Lq–1+

1
m (�), 3 > q > 1

and its boundary value u(x, t) = 0, (x, t) ∈ ∂� × (0,∞). If p > 1 + 1
m , by considering the

regularized problem and using Moser’s iteration technique, we get the locally
uniformly bounded property of the solution and the locally bounded property of the
Lp-norm of the gradient. By the compactness theorem, the existence of the viscosity
solution of the equation is obtained provided that

mNq1
Nm(p – 1) – N +mq

+
p1(m(p – 1) +m – 2)

m(p – 1) – 1
< 1.

If 2 < p < 1 + 1
m , the existence of solution is obtained in a similar way, and the

extinction of the solution is proved in this case.
MSC: 35K55; 35K65; 35B40
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1 Introduction
The objective of the paper is to study the nonnegative weak solution of the following non-
linear parabolic equation:

ut = div
(∣∣∇um

∣∣p–∇um
)
– umq

∣∣∇um
∣∣p in S = � × (,∞), (.)

u(x, ) = u(x), x ∈ �, (.)

u(x, t) = , (x, t) ∈ ∂� × (,∞), (.)

where � ⊂R
N is a bounded open domain, p > ,m > , p ≤ , p > p, N ≥ , ≤ u(x) ∈

Lq–+ 
m (�),  > q > , and ∇ is the spatial gradient operator.

The equation of the form (.) was suggested as a mathematical model for a variety of
problems in mechanics, physics and biology, which can be seen in [–] etc. It has been
widely researched, whether it is linear (i.e., m = , p = , p = , mq = ) or nonlinear,
fast diffusion (m(p – ) < ) or slow diffusion (m(p – ) > ). For example, the existence of
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a nonnegative solution of (.)-(.) without the damping term –umq |∇um|p , defined in
some weak sense, is well established (see [, ]). For other examples, Bertsh et al. [] and
Zhou et al. [] discussed the existence and properties of viscosity solution for the equation

ut = u�u – γ |∇u|, (.)

where γ is a positive constant. Zhang et al. [] discussed the existence and properties of
the viscosity solution for the equation

ut = �u – a(x)|u|q–|∇u|, (.)

where a(x) is a known function.
The most important characteristic of equation (.) or (.) is in that, generally, the

uniqueness of the solutions is not true; one can refer to [–]. Thus, for the equation of
the type (.), we should mainly consider the existence of the viscosity solution (see Defi-
nition . below) and the related properties such as large time behaviors; one can refer to
[–] etc. for some progress on this problem.
Now, we quote the following definition.

Definition . A nonnegative function u(x, t) is called a weak solution of (.)-(.) if u
satisfies

(i)

u ∈ L∞
loc

(
,∞;L∞(�)

)
, (.)

ut ∈ Lloc
(
,∞;L(�)

)
, um ∈ L∞

loc
(
,∞;W ,p

 (�)
)
; (.)

(ii)

∫∫
S

[
uϕt –

∣∣∇um
∣∣p–∇um · ∇ϕ – umq

∣∣∇um
∣∣pϕ]

dxdt = , ∀ϕ ∈ C
(S); (.)

(iii)

lim
t→

∫
�

∣∣u(x, t) – u(x)
∣∣dx = . (.)

We will get the solution of (.)-(.) by considering the regularized problem

ut = div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
– umq

∣∣∇um
∣∣p , (.)

with the initial value (.) and the homogeneous boundary value (.). The solutions of
the regularized equation (.) are denoted by uk .

Definition . If uk is a solution of the initial boundary value problem of (.)-(.)-(.),
limk→∞ uk = u, a.e. in S, such that u is a weak solution of (.)-(.), then u is said to be a
viscosity solution.

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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The main aim of the paper is to show how the damping term –umq |∇ump | affects the
equation, including how the damping term affects the existence of the solution and how
the damping term affects the properties such as the extinction of the solution. By consider-
ing the solution uk of the regularized problem (.) and usingMoser’s iteration technique,
we get uk ’s local bounded properties and the local bounded properties of the Lp-norm of
the gradient ∇uk . By the compactness theorem, we get the existence of the viscosity solu-
tion of the diffusion equation itself. Apart from the general process of the proof such as in
[–, , ] etc., in which the main difficulty is how to prove that

∣∣∇umk
∣∣ p– ∇umk ⇀ (∗)χ =

∣∣∇um
∣∣p–∇um, weakly star in L∞

loc
(
,∞;L

p
p– (�)

)
,

in our paper, in addition to overcoming the above difficulty, we have to solve another dif-
ficulty lying in how to prove that

–umq
k

∣∣∇umk
∣∣p ⇀ (∗)ν = –umq

∣∣∇um
∣∣p , weakly star in L∞

loc
(
,∞;L

p
p (�)

)
.

Also, we need to overcome the difficulty which comes from the damping term
–umq |∇ump | when we prove the uniqueness of the viscosity solutions of (.)-(.).
In order to get the desired results, some important relationships among the exponents

p, q, q, p,m, N are imposed. We also need the following lemmas.

Lemma. [] (Gagliardo-Nirenberg) If  ≤ l <N , +β ≤ q,  ≤ r ≤ q ≤ (+β)Nl/(N– l),
suppose that u+β ∈W ,l(�), then

‖u‖q ≤ c/(+β)‖u‖–θ
r

∥∥u+β
∥∥θ/(+β)
,l , (.)

where θ = (β + )(r– – q–)/(N– – l– + (β + )r–).

Lemma . [] Let y(t) be a nonnegative function on (,T]. If it satisfies

y′(t) +Atλθ–y+θ (t) ≤ Bt–ky(t) +Ct–δ ,  < t ≤ T , (.)

where A, θ > , λθ ≥ , B,C ≥ , k ≤ , then

y(t) ≤ A– 
θ
(
λ + BT –k) 

θ t–λ + C
(
λ + BT –k)–t–δ ,  < t ≤ T . (.)

We will prove the following theorems. As usual, the constants c in what follows may be
different from one to another.

Theorem . If  ≤ u(x) and

p >  +

m
, (.)

u(x) ∈ Lq–+

m (�), (.)

p ≤ , p < p,  > q > , (.)
mNq

Nm(p – ) –N +mq
+
p(m(p – ) +m – )

m(p – ) – 
< , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/125


Zhan Journal of Inequalities and Applications 2013, 2013:125 Page 4 of 20
http://www.journalofinequalitiesandapplications.com/content/2013/1/125

then (.)-(.) has a weak viscosity solution which satisfies

um ∈ L∞
loc

(
,∞;Lq+–


m (�)

) ∩ L∞
loc

(
,∞;W ,p

 (�)
)

(.)

and

∥∥um(t)∥∥∞ ≤ c
(
 + t–λ

)
( + t)–/(p––


m ), t > , (.)

where λ =N(pq + (p –  – 
m )N)–.Moreover, if p > , then

∥∥∇um
∥∥
p ≤ c

(
 + t–μ

)
( + t)–σ , t > , (.)

where μ =  + m–
m(p–)– , σ = p(m(q+)–)+mp

(m(p–)–)(p–p)
.

The condition (.) is only used to prove (.); if p =  = q, this is a natural condition.
We conjecture that this condition can be weakened.

Theorem . Let u be a weak solution of (.)-(.). If p >  + 
m , p + q > p – , then

suppu(·, s)⊂ suppu(·, t) (.)

for all s, t with  < s < t.

Theorem . If  < p <  + 
m < p + q,

 ≤ u ∈ Lq–+

m (�),  > q > , (.)

then (.)-(.) has a weak solution which satisfies (.), and there exists a positive T > 
such that

u(x, t)≡ , ∀(x, t) ∈ (x, t) ∈ � × (T ,∞). (.)

If the damping term disappears in (.), say, if (.) without –umq |∇ump | by [], then
we know that the extinction of the solution as Theorem . is true. For other related works
on equation (.), one can refer to the references [–] etc. We use some ideas in []
and [].

2 The L∞ estimate of the solution
Consider the regularized problem

ut = div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
– umq

∣∣∇um
∣∣p , (.)

u(x, ) = uk(x), x ∈ �, (.)

u(x, t) = , x ∈ ∂�, t ≥ , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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where  ≤ uk(x) is a suitably smooth function such that

u(x) ∈ L∞(�), lim
k→∞

‖uk‖q–+ 
m
= ‖u‖q–+ 

m
.

Clearly,

∣∣–umq
∣∣∇um

∣∣p ∣∣ =mp
∣∣umq+p(m–)|∇u|p ∣∣,

if let

b(x, t, z,p) = –mp
∣∣zmq+p(m–)|p|p ∣∣.

Then, if |z| ≤ M, since p ≤ ,

|b| ≤ c|p|,

by Chapter  of [], viewing (.) as a divergent form of a quasilinear parabolic equation,
we know that (.)-(.) has a unique nonnegative classical solution uk . In what follows,
in the proof of the related lemmas, we only denote uk as u for simplicity.

Lemma . If p >  + 
m , uk is the solution of (.)-(.), then umk ∈ L∞

loc(,∞;Lq–+ 
m (�))

and

∥∥umk ∥∥
q–+ 

m
≤ c( + t)

– 
p–– 

m , t ≥ , (.)

where  > q > .

Proof Let An = (q – )n–q, Bn = ( – q)n–q and

fn(s) =

⎧⎨
⎩
sq– if s ≥ 

n ,

Ans + Bns if  ≤ s < 
n .

The condition  > q >  assures that f (um) defined above is nonnegative. If we multiply
(.) by fn(um) and integral on �, then we have

∫
�

fn
(
um

)
div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
dx

= –
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣f ′
n
(
um

)
dx

≤ –
∫

�

∣∣∇um
∣∣pf ′

n
(
um

)
dx = –

∫
�

∣∣∣∣∇
∫ um



(
f ′
n(s)

) 
p ds

∣∣∣∣
p

dx, (.)

–
∫

�

fn
(
um

)
umq

∣∣∇um
∣∣p dx≤ . (.)

From the above calculation, we have

∫
�

fn
(
um

)
ut dx +

∫
�

∣∣∣∣∇
∫ um



(
f ′
n(s)

) 
p ds

∣∣∣∣
p

dx≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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By the Poincare inequality, we have

∫
�

fn
(
um

)
ut dx + c

∫
�

∣∣∣∣
∫ um



(
f ′
n(s)

) 
p ds

∣∣∣∣
p

dx≤ . (.)

Let n→ ∞ in (.). We can deduce that

d
dt

∫
�

um(q–)+ dx + c
∫

�

um[q–+ 
m+p–– 

m ] dx ≤ . (.)

By the Jessen inequality, from (.) we get

d
dt

∥∥um∥∥q–+ 
m

q–+ 
m
+ c

∥∥um∥∥q–+ 
m+p–– 

m
q–+ 

m
≤ ,

then

∥∥um∥∥
q+– 

m
≤ c( + t)

– 
p–– 

m .

We get the desired result. �

Lemma . If p >  + 
m , uk is the solution of (.)-(.), then

∥∥umk ∥∥∞ ≤ ct–λ,  < t ≤ , (.)

∥∥umk ∥∥∞ ≤ c( + t)
– 
p–– 

m , t ≥ , (.)

where λ = N
(p–– 

m )N+q
.

Proof Multiply (.) by um(l–) and integral on �, then

∫
�

um(l–)ut dx =
∫

�

div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
um(l–) dx

–
∫

�

umq
∣∣∇um

∣∣pum(l–) dx

= –(l – )
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣um(l–) dx

–
∫

�

umq
∣∣∇um

∣∣pum(l–) dx

≤ –(l – )
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣um(l–) dx,

which deduces that

d
dt

∥∥um∥∥l–+ 
m

l–+ 
m
+ c

(
l –  +


m

)–p ∫
�

∣∣∇um
p+l–+ 

m –– 
m

p
∣∣p dx ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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Set L = l –  + 
m . Then

d
dt

∥∥um∥∥L
L + cL–p

∫
�

∣∣∇um
L+p–– 

m
p

∣∣p dx≤ , (.)

where c is a constant independent of l.
Now, if we choose L = q –  – 

m , Ln = rLn– – (p –  – 
m ), θn = rN( – Ln–L–n )(p +N(r –

))–, μn = (Ln + p –  – 
m )θ

–
n – Ln, r >  + (p –  – 

m )q
–, n = , , . . . , by Lemma ., we

have

∥∥um∥∥
Ln

≤ cp/(Ln+p––

m )∥∥um∥∥–θn

Ln–

∥∥∇um(Ln+p–– 
m )/p∥∥pθn/(p–– 

m+Ln)
p . (.)

If we choose L = Ln in (.), by (.) we have

d
dt

∥∥um∥∥Ln
Ln

+ c–p/θnL–pn
∥∥um∥∥Ln+μn

Ln

∥∥um∥∥p–– 
m–μn

Ln–
≤ ,  < t ≤ . (.)

We will prove that there exist two bounded sequences {ξn}, {λn} such that

∥∥um∥∥
Ln

≤ ξnt–λn ,  < t ≤ . (.)

If n = , by Lemma ., λ = , ξ = supt≥ ‖um(t)‖q–– 
m
makes (.) sure. If (.) is true

for n – , then from (.),

d
dt

∥∥um∥∥Ln
Ln

+ c–p/θnL–pn
∥∥um∥∥Ln+μn

Ln
ξ
p–– 

m–μn
n– t–(p––


m–μn)λn– ≤ ,  < t ≤ . (.)

We can choose

λn =
(

λn–

(
μn – p +  +


m

)
+ 

)
μ–
n , ξn = ξn–

(
cp/θnLp–n λn

)/μn , n = , , . . . ,

by Lemma . and (.), (.) is true.
Moreover, by Lemma ., as n → ∞, λn → λ = N

(p–– 
m )N+q

. It is easy to see that {ξn} is
bounded. Thus (.) is true.

To prove (.), we set τ = log( + t), t ≥ , w(τ ) = ( + t)


p–– 
m um(t). By (.), we have

d
dτ

∥∥w(τ )∥∥L
L + cL–p

∥∥∇w
L+p–– 

m
p

∥∥p
p ≤ L

p –  – 
m

∥∥w(τ )∥∥L
L, τ ≥ log. (.)

By Lemma . in [], we can get (.); we omit details here. �

3 The L∞ estimation of the gradient
Lemma . If p >max{,  + 

m }, uk is the solution of (.)-(.), then

∥∥∇umk
∥∥
p ≤ ct–(+

m–
m(p–)– ),  < t ≤ , (.)

∥∥∇umk
∥∥
p ≤ c( + t)–

p(m(q+)–)+mp
(m(p–)–)(p–p) , t ≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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Proof If we multiply (.) by umt and integral on �, then

m
∫

�

um–(ut) dx

=
∫

�

div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
umt dx –

∫
�

umq
∣∣∇um

∣∣pumt dx, (.)

∫
�

div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
umt dx

= –
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∇um∇umt dx = –




∫
�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣
t dx

= –



∫
�

d
dt

∫ |∇um|



(
s +


k

) p–

dsdx = –



d
dt

�k
(∣∣∇um

∣∣), (.)
∣∣∣∣–

∫
�

umq
∣∣∇um

∣∣pumt dx
∣∣∣∣ ≤ m



∫
�

um–(ut) dx + c
∫

�

∣∣um∣∣q+m–
m

∣∣∇um
∣∣p dx. (.)

By (.)-(.), we have

∫
�

um–(ut) dx +

m

d
dt

�k
(∣∣∇um

∣∣) ≤ c
∫

�

∣∣um∣∣p+m–
m

∣∣∇um
∣∣p dx. (.)

If we multiply (.) by um and integral on �, then


m + 

∫
�

d
dt

um+ dx =
∫

�

div

((∣∣∇um
∣∣ + 

k

) p–
 ∇um

)
um dx –

∫
�

umq
∣∣∇um

∣∣pum dx

= –
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣ dx –
∫

�

umq
∣∣∇um

∣∣pum dx

and

�k
(∣∣∇um

∣∣) ≤
∫

�

(∣∣∇um
∣∣ + 

k

) p–
 ∣∣∇um

∣∣ dx

= –


m + 

∫
�

d
dt

um+ dx –
∫

�

umq
∣∣∇um

∣∣pum dx

≤ 
m + 

∥∥um+


∥∥


∥∥um–
 ut

∥∥
.

So,


m

d
dt

�k
(∣∣∇um

∣∣) + (m + )
∥∥um+


∥∥–
 �

k
(∣∣∇um

∣∣)

≤ c
∫

�

∣∣um∣∣q+m–
m

∣∣∇um
∣∣p dx. (.)

Setting γ = q +  – 
m , for ∀a ∈ [, γ ], if we notice that p > p, we have

∫
�

∣∣um∣∣a∣∣∇um
∣∣p dx≤ ∥∥um(t)∥∥a

∞

(∫
�

∣∣um∣∣ (γ–a)pp–p dx
) p–p

p ∥∥∇um
∥∥p
p . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/125
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If γ ≥ (p – p)(N + )/N , let a = (γ – (p – p)( + q
N ))

+. By Lemma .,

(∫
�

∣∣um∣∣ (γ–a)pp–p dx
) p–p

p
≤ c

∥∥um(t)∥∥(γ–a)(–θ )
s

∥∥∇um
∥∥p–p
p , (.)

where θ = (s– – ( – p
p )(γ – a)–)/(N– – p– + s–), and s = (γ – p+ p – a)N/(p– p)

when γ ≥ (p– p)( + q/N), s = q, when (p– p)( +N–) ≤ γ ≤ (p– p)( + q/N). By
Lemma . and Lemma ., from (.), we have

∫
�

∣∣um∣∣a∣∣∇um
∣∣p dx≤ ct–λa∥∥∇um

∥∥p
p ≤ ct–λa�k

(∣∣∇um
∣∣),  < t ≤ . (.)

At the same time, if we choose q =  in Lemma ., we have

∥∥um∥∥
+ 

m
=

(∫
�

um+ dx
) m

m+ ≤ ct–(p––
m

m+ )
–

and

∥∥um+


∥∥
 =

∫
�

um+ dx ≤ ct–
m+

m(p–)– . (.)

By (.), we have

�′
k(t) + ct

m+
m(p–)– �

k (t)≤ ct–λa�k(t),  < t ≤ . (.)

If γ < (p – p)(N + )/N and p – p ≤ a≤ γ , then

∫
�

∣∣um∣∣a∣∣∇um
∣∣p dx ≤ c

∥∥∇um
∥∥a(–θ )


∥∥∇um
∥∥aθ+p
p ≤ c

∥∥∇um
∥∥p
p ≤ c�k

(∣∣∇um
∣∣),

 < t ≤ . (.)

If γ < (p – p)(N + )/N and p –  ≥ a≥ , then

∫
�

∣∣um∣∣a∣∣∇um
∣∣ dx ≤ c

(
 +

∥∥∇um
∥∥p
p

) ≤ c
(
 + �k

(∣∣∇um
∣∣)),

 < t ≤ . (.)

The inequalities (.) and (.) mean that the inequality (.) is still true when γ <
(p – p)(N + )/N . Using Lemma ., we get

�k(t) ≤ ct–(+
m–

m(p–)– ),  < t ≤ ,

which means (.) is true. Now, we will prove (.). For t ≥ , by (.) we obtain

∫
�

∣∣um∣∣a∣∣∇um
∣∣p dx≤ c

∥∥∇um
∥∥
p

∥∥um(t)∥∥γ
γ p/p–p

≤ c( + t)–γ /(p––

m )∥∥∇um

∥∥p
p , (.)
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�k
(∣∣∇um

∣∣) =
∫ |∇um|



(
s +


k

) p–

ds≤ c

∥∥∇um
∥∥p
p = c

(∥∥∇um
∥∥p
p

) p
p , (.)

∥∥um+


∥∥
 =

(∫
�

um+ dx
)

≤ c( + t)–(p––

m )– . (.)

By (.), using (.)-(.) yields

�′
k(t) + c( + t)–(p––


m )–�

k (t) ≤ c( + t)γ /(p––

m )(�k(t)

) p
p ,

and using the Young inequality gives

�′
k(t) + c( + t)–(p––


m )–�

k (t) ≤ c( + t)
–m(γ p+p)

(m(p–)–)(p–p)

= c( + t)–
p(m(q+)–)+mp
(m(p–)–)(p–p) ,

which means (.) is true. �

Lemma . If p >  + 
m , uk is the solution of (.)-(.), then

∫ T

t

∫
�

um–
k (ukt) dxds≤ ct–(+

m–
m(p–)– ) + ct–(λγ+ m–

m(p–)– ),  < t ≤ T . (.)

Proof From (.), (.) and (.), (.), we have

∫ T

t

∫
�

um–(ut) dxds ≤ �k(t) + c
∫ T

t

∫
�

∣∣um∣∣q+m–
m

∣∣∇um
∣∣p dxds

≤ �k(t) + c
∫ T

t
s–

λ
 (q+

m–
m )�k(s)ds

≤ ct–(+
m–

m(p–)– ) + ct–(λγ+ m–
m(p–)– ). (.)

�

4 The proof of Theorem 1.5

The proof of Theorem . From Lemma ., Lemma ., Lemma . and Lemma ., using
the compactness theory (cf. []), there is a sequence (still denoted as{uk}) of {uk} such
that when k → ∞, we have

uk ⇀ (∗)u, weakly star in L∞
loc

(
,∞;Lm(q–)+(�)

)
, (.)

ukt ⇀ ut , weakly in L
(
,∞;L(�)

)
,

∇umk ⇀ um, weakly in Lploc
(
,∞;Lp(�)

)
,

(.)

∣∣∇umk
∣∣p–∇umkxi ⇀ (∗)χi, weakly star in L∞

loc
(
,∞;L

p
p– (�)

)
, (.)

umq
k

∣∣∇umk
∣∣p ⇀ (∗)ν, weakly in L∞

loc
(
,∞;L

p
p (�)

)
, (.)
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where χ = {χi :  ≤ i ≤ N} and every χi is a function in L∞
loc(,T ;L

p
p– (�)), ν ∈ L∞

loc(,∞;
L

p
p (�)). (.) and (.) are clearly true. In what follows, we only need to prove that

χ =
∣∣∇um

∣∣p–∇um in L∞
loc

(
,∞;L

p
p– (�)

)
(.)

and

ν = umq
∣∣∇um

∣∣p in L∞
loc

(
,∞;L

p
p (�)

)
. (.)

It is easy to know that

∫∫
S
(uϕt – χ · ∇ϕ – νϕ)dxdt = , ∀ϕ ∈ C∞

 (S). (.)

So, if we can prove that

∫∫
S

∣∣∇um
∣∣p–∇um · ∇ϕ dxdt =

∫∫
S
χ · ∇ϕ dxdt, ∀ϕ ∈ C∞

 (S), (.)
∫∫

S
umq
k

∣∣∇umk
∣∣pϕ dxdt =

∫∫
S
νϕ dxdt, ∀ϕ ∈ C∞

 (S), (.)

then (.),(.) and (.) are true.
First, for any ψ ∈ C∞

 (S),  ≤ ψ ≤ , vm ∈ Lploc(,T ;W
,p
 (�)), we have

∫∫
S
ψ

(∣∣∇umk
∣∣p–∇umk –

∣∣∇vm
∣∣p–∇vm

) · ∇(
umk – vm

)
dxdt ≥ . (.)

If we multiply by umk ψ the two sides of (.), then we have

∫∫
S
ψ

(∣∣∇umk
∣∣ + 

k

) p–
 ∣∣∇umk

∣∣ dxdt

=


m + 

∫∫
S
ψtum+

k dxdt –
∫∫

S
umk

(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk · ∇ψ dxdt

–
∫∫

S
um(q+)
k

∣∣∇umk
∣∣pψ dxdt. (.)

Noticing that when  < p < , we have

∣∣∇umk
∣∣ ≥

(∣∣∇umk
∣∣ + 

k

) p

–

(

k

) p

,

(∣∣∇umk
∣∣ + 

k

) p–
 ∣∣∇umk

∣∣ ≤
(∣∣∇umk

∣∣ + 
k

) p–

,

and when p≥ , we get

(∣∣∇umk
∣∣ + 

k

) p–
 ∣∣∇umk

∣∣ ≥ ∣∣∇umk
∣∣p,

(∣∣∇umk
∣∣ + 

k

) p–
 ∣∣∇umk

∣∣ ≤ (∣∣∇umk
∣∣p– + 

)
.
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By (.), (.), we have


m + 

∫∫
S
ψtum+

k dxdt –
∫∫

S
umk

(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk · ∇ψ dxdt

–
∫∫

S
um(q+)
k

∣∣∇umk
∣∣pψ dxdt +

(

k

) p–

mes�

–
∫∫

S
ψ

∣∣∇umk
∣∣p–∇umk · ∇vm dxdt

–
∫∫

S
ψ

∣∣∇vm
∣∣p–∇vm · ∇(

umk – vm
)
dxdt ≥ . (.)

Since

(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk =

∣∣∇umk
∣∣p–∇umk +

p – 
k

∫ 



(∣∣∇umk
∣∣ + s

k

) p–

ds∇umk

and

lim
k→∞

p – 
k

∫∫
S

∫ 



(∣∣∇umk
∣∣ + s

k

) p–

ds∇umk · ∇ψumk dxdt = ,

if we let k → ∞ in (.), we have


m + 

∫∫
S
ψtum+ dxdt –

∫∫
S
νψ dxdt

–
∫∫

S
ψ∇ξ · ∇vm dxdt –

∫∫
S
ψ

∣∣∇vm
∣∣p–∇vm · ∇(

um – vm
)
dxdt ≥ . (.)

Now, we choose ϕ = ψum in (.),


m + 

∫∫
S
ψtum+ dxdt–

∫∫
S
νψ dxdt–

∫∫
S
ψχ ·∇ψum dxdt =

∫∫
S
ψ∇ξ ·∇um dxdt.

From this formula and (.), we have
∫∫

S
ψ

(
χ –

∣∣∇vm
∣∣p–∇vm

) · ∇(
um – vm

)
dxdt ≥ . (.)

Let vm = um – λϕ, λ ≥ , ϕ ∈ C∞
 (S). Then

∫∫
S
ψ

(
χi –

∣∣∇(
um – λϕ

)∣∣p–(um – λϕ
)
xi

)
ϕxi dxdt ≥ .

Let λ → . We obtain
∫∫

S
ψ

(
χi –

∣∣∇um
∣∣p–umxi

)
ϕxi dxdt ≥ , ∀ϕ ∈ C∞

 (S). (.)

Moreover, if we choose λ ≤ , we are able to get

∫∫
S
ψ

(
χi –

∣∣∇um
∣∣p–umxi

)
ϕxi dxdt ≤ , ∀ϕ ∈ C∞

 (S). (.)
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Now, if we choose ψ such that suppϕ ⊂ suppψ , and on suppϕ, ψ = , then from (.)-
(.), we can get (.). By (.) and (.), we have

∫∫
S

(
uϕt –

∣∣∇um
∣∣p–∇um · ∇ϕ – νϕ

)
dxdt = , ∀ϕ ∈ C∞

 (S),

which means (.) is true, and so (.) is true.
Secondly, we are to prove (.).
For small r > , denote �r = {x ∈ � : dist(x, ∂�) ≤ r}. For any η > , let

sgnη(s) =

⎧⎪⎪⎨
⎪⎪⎩
 if s > η,
s
η

if |s| ≤ η,

– if s < –η.

For any given small r >  and large enough k, l, we declare that

∫
�r

∣∣uk(x, t) – ul(x, t)
∣∣dx ≤

∫
�r

∣∣uk(x, ) – ul(x, )
∣∣dx + cr(t), (.)

where cr(t) is independent of k, l, and limt→ cr(t) = . By (.) we have

∫ t



∫
�r

ϕ(ukt – ult)dxdτ

+
∫ t



∫
�r

∇ϕ

[(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk –

(∣∣∇uml
∣∣ + 

l

) p–
 ∇uml

]
dxdτ

+
∫ t



∫
�r

(
umq
k

∣∣∇umk
∣∣p – umq

l
∣∣∇uml

∣∣p)ϕ dxdτ = ,

∀ϕ ∈ Lp
(
,T ;W ,p

 (�)
)
. (.)

Suppose that ξ (x) ∈ C
(�r) such that

 ≤ ξ ≤ ; ξ |�r = ,

and choose ϕ = ξ sgnη(umk – uml ) in (.), then

∫ t



∫
�r

ξ sgnη

(
umk – uml

)
(ukt – ult)dxdτ

+
∫ t



∫
�r

[(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk –

(
x
∣∣∇uml

∣∣ + 
l

) p–
 ∇uml

]

× ∇ξ sgnη

(
umk – uml

)
dxdτ

+
∫ t



∫
�r

[(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk –

(
x
∣∣∇uml

∣∣ + 
l

) p–
 ∇uml

]

× ∇(
umk – uml

)
ξ sgn′

η

(
umk – uml

)
dxdτ

+
∫ t



∫
�r

(
umq
k

∣∣∇umk
∣∣p – umq

l
∣∣∇uml

∣∣p)ξ sgnη

(
umk – uml

)
dxdτ = . (.)
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If we notice that the third term on the left-hand side of (.) tends to zero when η → ,
then we have

lim
η→

∫ t



∫
�r

ξ sgnη

(
umk – uml

)
(ukt – ult)dxdτ

+ lim
η→

∫ t



∫
�r

[(∣∣∇umk
∣∣ + 

k

) p–
 ∇umk –

(∣∣∇uml
∣∣ + 

l

) p–
 ∇uml

]

× ∇ξ sgnη

(
umk – uml

)
dxdτ

+ lim
η→

∫ t



∫
�r

(
umq
k

∣∣∇umk
∣∣p – umq

l
∣∣∇uml

∣∣p)ξ sgnη

(
umk – uml

)
dxdτ = . (.)

At the same time,

lim
η→

∫ t



∫
�r

ξ sgnη

(
umk – uml

)
(ukt – ult)dxdτ

=
∫ t



∫
�r

ξsgn
(
umk – uml

)
(ukt – ult)dxdτ

=
∫ t



∫
�r

ξ sgn(uk – ul)(ukt – ult)dxdτ

= lim
η→

∫ t



∫
�r

ξ sgnη(uk – ul)(ukt – ult)dxdτ

= lim
η→

∫ t



∫
�r

ξ

(∫ uk–ul


sgnη(s)ds

)
τ

dxdτ

= lim
η→

∫ t



∫
�r

ξ

∫ uk–ul


sgnη(s)ds

∣∣∣t

dx

=
∫

�r

ξ |uk – ul|dx –
∫

�r

ξ |uk – ul|dx. (.)

By (.) and (.), we have
∫

�r

ξ |uk – ul|dx

≤
∫

�r

|uk – ul|dx + c
∫ t



∫
�r

[(∣∣∇umk
∣∣ + 

k

) p–

+

(∣∣∇uml
∣∣ + 

l

) p–


]
dxdτ

+
∫ t



∫
�r

∣∣umq
k

∣∣∇umk
∣∣p – umq

l
∣∣∇uml

∣∣p ∣∣dxdτ . (.)

By Lemma . and Lemma ., if  < t ≤ ,
∫ t



∫
�r

∣∣umq
k

∣∣∇umk
∣∣p – umq

k
∣∣∇umk

∣∣p ∣∣dxdτ ≤ c
∫ t



∫
�r

t–ε dxdτ ,

where

ε =
mNq

Nm(p – ) –N +mq
+
p(m(p – ) +m – )

m(p – ) – 
< ,

which means (.) is true.
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Now, for any given small r, if k, l are large enough, by (.), we have

∫
�r

∣∣u(x, t) – u(x)
∣∣dx ≤

∫
�r

∣∣u(x, t) – uk(x, t)
∣∣dx +

∫
�r

∣∣uk(x) – ul(x)
∣∣dx

+
∫

�r

∣∣ul(x, t) – ul(x)
∣∣dx +

∫
�r

∣∣ul(x) – u(x)
∣∣dx.

Letting t → , we get (.). �

5 The uniqueness of the viscosity solution
As we have said in the introduction, the uniqueness of the solutions of (.)-(.) is not
true generally. But we are able to prove the uniqueness of the viscosity solution.

Theorem . If u(x) ∈ L∞(�), in addition,|∇u| < c,  ≥ p ≥ , then the viscosity solution
of (.)-(.) is unique.

Proof Let u, v be two viscosity solutions of (.)-(.). Then there are two sequences {uk}
and {vl}, which are the solutions of (.)-(.)-(.), such that

lim
k→∞

uk = u, lim
l→∞

vl = v, a.e. in S. (.)

Clearly, since u(x) ∈ L∞(�),

‖uk‖∞ ≤ c, ‖vl‖∞ ≤ c. (.)

Let

w = uk – vl, w = umk – vml .

Then

wt =
(
ail(x, t)wxl

)
xi
+ b(x, t,w,∇w), (x, t) ∈ � × (,∞), (.)

w(x, ) = uk(x) – vl(x), x ∈ �, (.)

w(x, t) = , (x, t) ∈ ∂� × (,∞), (.)

where

ail(x, t) =
∫ 



∣∣s∇um + ( – s)∇vm
∣∣p– ds · δil

+
∫ 


(p – )

∣∣s∇um + ( – s)∇vm
∣∣p–(sumxi + ( – s)vmxi

)(
sumxl + ( – s)vmxl

)
ds,

and since p ≥ , using the convexity of the function sp , by (.), we have

∣∣b(x, t,w,∇w)
∣∣ = ∣∣umq

∣∣∇um
∣∣p –vmq

∣∣∇vm
∣∣p ∣∣ ≤ c

∣∣∇(
um –vm

)∣∣p ≤ c|∇w|p ≤ c|∇w|.
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By Chapter  of [], we know that

∥∥uk(x, t) – vl(x, t)
∥∥∞ ≤ c‖uk – vl‖.

Let k, l → ∞, we know that the uniqueness of the viscosity solution (.)-(.) is true. �

Suppose that the viscosity solution of (.)-(.) is unique in what follows. Then, by con-
sidering the regularized problem (.) with (.)-(.), we easily get the following lemma.

Lemma . Let u be a weak solution of (.)-(.). If v satisfies

vt ≥ div
(∣∣∇vm

∣∣p–∇vm
)
– vmq

∣∣∇vm
∣∣p in S = � × (,∞), (.)

v(x, )≥ u(x), x ∈ �, (.)

v(x, t) = , (x, t) ∈ ∂� × (,∞), (.)

then

u(x, t)≥ v(x, t), ∀(x, t) ∈ S. (.)

Now, we will prove Theorem .. Let

v(x, t) = ukr(x, t) = ruk
(
x, rm(p–)–t

)
, r ∈ (, ).

Then

vt(x, t) = div
(∣∣Dvm

∣∣p–Dvm
)
– rm(p––q–p)vmq

∣∣Dvm
∣∣p , (x, t) ∈ � × (,∞), (.)

v(x, ) = ruk(x, ), x ∈ �, (.)

v(x, t) = , (x, t) ∈ ∂� × (,∞). (.)

Noticing that we supposed

p + q > p – ,  < r < ,

which implies that

rm(p––q–p) > ,

and using the argument similar to that in the proof Lemma . of [], we can prove

uk ≥ ukr .

It follows that

uk(x, rm(p–)–t) – uk(x, t)
(rm(p–)– – )t

≥ r – 
( – rm(p–)–)t

uk
(
x, rm(p–)–t

)
.
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Letting r → , we get

ukt ≥ –
uk

(m(p – ) – )t
. (.)

Hence, we have proved Theorem ..

6 The proof of Theorem 1.7
If  < p <  + 

m , from the process of the proof of Lemma ., we also have (.), i.e.,

d
dt

∫
�

um(q–)+
k dx + c

∫
�

um[q–+ 
m+p–– 

m ]
k dx ≤ . (.)

But, since  < p <  + 
m , the Jessen inequality is invalid now, and (.) may not be true.

However, in this case, (.) implies that

d
dt

∫
�

um(q–)+
k dx≤ , (.)

which gives the information of um ∈ L∞
loc(,∞;Lq–+ 

m (�)) provided that u ∈ Lq–+ 
m (�).

Lemma . Suppose that p <  + 
m and

q + p >  +

m
. (.)

If uk is the solution of (.)-(.), then

∥∥umk ∥∥∞ ≤ ct–λ,  < t ≤ , (.)
∥∥umk ∥∥

L ≤ c( + t)–


Lθ , t ≥ , (.)

where L =  –m(p – ) + 
m , θ =

(–θ )[m(L+p–)–]
mLθ

–  and  < θ < .

Proof Similarly as in the proof of Lemma ., wemultiply (.) by um(l–) and integral on�,
and then we get the following inequality (.), which is just the same as (.).

d
dt

∥∥um∥∥L
L + cL–p

∫
�

∣∣∇um
L+p–– 

m
p

∣∣p dx≤ . (.)

Let {Ln}, {λn} be two sequences just the same as those in the proof of Lemma .. Since
(.) implies that Ln+p–– 

m >  and λn > ,we can deduce the conclusions (.) similarly
as in Lemma ..
To prove (.), we also set τ = log( + t), t ≥ , w(τ ) = ( + t)


p–– 

m um(t). By (.), we have

d
dτ

∥∥w(τ )∥∥L
L –

L
p –  – 

m

∥∥w(τ )∥∥L
L + cL–p

∥∥∇w
L+p–– 

m
p

∥∥p
p ≤ , τ ≥ log,

which implies

d
dτ

∥∥w(τ )∥∥L
L + cL–p( + t)–

m(L+p–)–
p(–m(p–)) ++

m
–m(p–)

∥∥∇w
L+p–– 

m
p

∥∥p
p ≤ , τ ≥ log. (.)
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By Gagliardo-Nirenberg Lemma ., let  + β = L+p–– 
m

p . Then

∥∥∇w+β
∥∥p
p ≥ (

c–


+β ‖w‖q‖w‖–θ
r

) (+β)p
θ .

If we choose r = q = L, then from the above inequality, we have

∥∥∇w
L+p–– 

m
p

∥∥p
p ≥ c

p
θ ‖w‖(–θ ) L+p––


m

θ
L . (.)

By (.), (.), we have

d
dτ

∥∥w(τ )∥∥L
L + c–

p
θ L–p( + t)–

m(L+p–)–
p(–m(p–)) ++

m
–m(p–) ‖w‖(–θ ) L+p––


m

θ
L ≤ ,

τ ≥ log. (.)

Now, we choose the constant l =  –m(p – ), i.e.,

L = l –  +

m

=  –m(p – ) +

m
,

then

–
m(L + p – ) – 
p( –m(p – ))

+  +
m

 –m(p – )
= .

By (.), we have

d
dτ

∥∥w(τ )∥∥L
L + c–

p
θ L–p‖w‖L

(–θ )[m(L+p–)–
mLθ

L ≤ , τ ≥ log. (.)

Let

θ =
( – θ )[m(L + p – ) – ]

mLθ
– .

Since  < θ < , θ > , by Lemma ., we have

∥∥w(τ )∥∥L ≤ cτ– 
Lθ ,

which implies that

∥∥um(t)∥∥L ≤ c( + t)–


Lθ .

If  < p≤  + 
m , which implies thatm > , then we can get the conclusions of Lemma .

in a similar way. As in the proof of Theorem ., we get the existence of the solution for
the system (.)-(.) in this case. �

Proposition . Let u be a weak solution of (.)-(.). If p < + 
m , then there exists a finite

time T such that

u(x, t)≡  (.)

for all (x, t) ∈ � × (T ,∞).
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To prove this proposition, we use the idea of the proof of Theorem . in [], in which
the extinction of the solution for the equation

ut = div
(∣∣∇um

∣∣p–∇um
)

was studied. In detail, we define an auxiliary function

v(x, t) =
(
k(T – t)


+/m–p
+ log(l + x + x + · · · + xN )

) 
m , (.)

where

k =
{
(p – )(m +  –mp)N

p


(l)p(log(l))/m

} 
+/m–p

,

T =
(
max |u|
k log

) 
+/m–p

,

l = sup
(x,x,...,xN )∈�

{|x|, |x|, . . . , |xN |} + .

Then we have

∂v
∂t

≥ div
(∣∣∇vm

∣∣p–∇vm
) ≥ div

(∣∣∇vm
∣∣p–∇vm

)
– umq

∣∣∇um
∣∣p ,

on account of the non-positivity of the damping term –umq |∇um|p .
If we notice that

v(x, )≥ u(x), ∀x ∈ �, v(x, t)≥ , ∀(x, t) ∈ ∂� × (,∞), (.)

applying Lemma ., by (.)-(.), we have

u(x, t)≤ v(x, t),

for all (x, t) ∈ S. By the definition of v(x, t), we have

u(x, t)≤ v(x, t) = , ∀(x, t) ∈ � × (T ,∞).

The proof of the proposition is complete.
Theorem . is a direct corollary of the proposition.
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