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Abstract

The aim of this article is to obtain criteria of boundedness and compactness for a wide
class of matrix operators from one weighted lp,v space of sequences to another
weighted lq,u space, in the case 1 < p ≤ q <∞. We introduce a general class of
matrices. Then we establish necessary and sufficient conditions for the boundedness

and compactness of the operators (A+f )i :=
i∑

j=1
ai,jfj , i ≥ 1 and (A−f )j :=

∞∑
i=j

ai,jfi , j ≥ 1

corresponding to matrices in such classes by using the method of localization. Our
classes are more general than those for which corresponding Hardy inequalities are
known in the literature.
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1 Introduction
We consider the problem of boundedness from the weighted lp,v space into the

weighted lq,u space of the matrix operators

(A+f )i :=
i∑

j=1

ai,jfj, i ≥ 1, (1)

(A−f )j :=
∞∑
i=j

ai,jfi, j ≥ 1, (2)

which is equivalent to the validity of the following Hardy-type inequality∥∥A±f
∥∥
q,u ≤ C

∥∥f∥∥p,v, ∀f ∈ lp,v, (3)

where C is a positive finite constant independent of f and (ai,j) is a non-negative tri-

angular matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

Here and further 1 < p, q <∞, 1
p +

1
p′ = 1 and u = {ui}∞i=1, v = {vi}∞i=1 are positive

sequences of real numbers. lp,v is the space of sequences f = {fi}∞i=1 of real numbers

such that
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||f ||p,v :=
( ∞∑
i=1

|vifi|p
) 1

p
< ∞, 1 < p < ∞.

For ai,j = 1, i ≥ j ≥ 1, the operators (1), (2) coincide with the discrete Hardy opera-

tors of the forms (A+
0f )i :=

i∑
j=1

fj, (A
−
0 f )j :=

∞∑
i=j

fi , respectively. References about generali-

zations of the original forms of the discrete and continuous Hardy inequalities can be

found in different books, see e.g., [1-3].

In [4,5], necessary and sufficient conditions for the validity of (3) have been obtained

for 1 < p, q <∞ under the assumption that there exists d ≥ 1 such that the inequalities

1
d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), i ≥ k ≥ j ≥ 1 (4)

hold.

A sequence {ai}∞i=1 is called almost non-decreasing (non-increasing), if there exists

c >0 such that cai ≥ ak (ak ≤ caj) for all i ≥ k ≥ j ≥ 1.

In [6], estimate (3) has been studied under the assumption that there exist d ≥ 1 and

a sequence of positive numbers {ωk}∞k=1 , and a non-negative matrix (bi,j), where bi,j is

almost non-decreasing in i and almost non-increasing in j, such that the inequalities

1
d
(bi,kωj + ak,j) ≤ ai,j ≤ d(bi,kωj + ak,j) (5)

hold for all i ≥ k ≥ j ≥ 1.

In [7,8], inequality (3) has been considered under the assumption that there exist d ≥ 1,

a sequence of positive numbers {ωk}∞k=1 , and a non-negative matrix (bi,j), whose entries bi,j
are almost non-decreasing in i and almost non-increasing in j such that the inequalities

1
d
(ai,k + bk,jωi) ≤ ai,j ≤ d(ai,k + bk,jωi) (6)

hold for all i ≥ k ≥ j ≥ 1.

Conditions (5) and (6) include conditions (4), and complement each other.

In this article, we introduce a general class of matrices. We establish necessary and

sufficient conditions for the boundedness and compactness of the operators (1) and

(2), where the corresponding matrices belong to such classes. Such classes of matrices

are wider than those which have been previously studied in the theory of discrete

Hardy-type inequalities.

The content of the article is as follows. In Section 2, we introduce our classes of

matrices and their properties. Moreover, in this section we give some auxiliary state-

ments. Section 3 contains the main results. In Section 4, we prove the theorems, which

give criteria of boundedness of the operators defined by (1) and (2). In Section 5, we

obtain compactness criteria for the operators defined by (1) and (2). Then based on

these statements, we prove our main theorems in Section 6. Moreover, in this section

we show that one can imply our main results in order to obtain necessary and suffi-

cient conditions for boundedness and compactness of the composition of operators.

Notation: If M and K are real valued functionals of sequences, then we understand

that the symbol M ≪ K means that there exists c >0 such that M ≤ cK, where c is a
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constant which may depend only on parameters such as p, q, rn and hn. If M ≪ K ≪
M, then we write M ≈ K.

2 Preliminaries and notation

For n ≥ 1, we introduce the classes O+
n and O−

n of matrices (ai,j). We assume that

ai,j ≡ a(n)i,j if (ai,j) ∈ O+
n or (ai,j) ∈ O−

n .

We define the classes O+
n , n ≥ 0 by induction. Let (ai,j) be a matrix which is non-

negative and non-decreasing in the first index for all i ≥ j ≥ 1. By definition matrices

of the type a(0)i,j = αj , ∀i. ≥ j ≥ 1 belong to the class O+
0 . Let the classes O+

γ , g = 0, 1,...,

n - 1, n ≥ 1 be defined. By definition, the matrix (ai,j) ≡ (a(n)i,j ) belongs to the class O+
n

if and only if there exist matrices (a(γ )i,j ) ∈ O+
γ , g = 0, 1,..., n - 1 and a number rn >0

such that

a(n)i,j ≤ rn
n∑

γ=0

bn,γi,k a(γ )k,j (7)

for all i ≥ k ≥ j ≥ 1, where bn,ni,k ≡ 1and

bn,γi,k = inf
1≤j≤k

a(n)i,j

a(γ )k,j

, γ = 0, 1, . . . ,n − 1. (8)

From (8) it follows that entries of the matrices (bn,γi,k ) do not decrease in the first

index and do not increase in the second index. And (8) provides the validity of the fol-

lowing inequality

a(n)i,j ≥ bn,γi,k a(γ )k,j (9)

i ≥ k ≥ j ≥ 1, γ = 0, 1, . . . ,n,n = 0, 1, . . .

Then for (a(n)i,j ) ∈ O+
n we have

a(n)i,j ≈
n∑

γ=0

bn,γi,k a(γ )k,j , n ≥ 0 (10)

for all i ≥ k ≥ j ≥ 1.

REMARK 1. It is easy to show that if for the matrix (a(n)i,j ), n ≥ 0 there exist matrices

(a(γ )i,j ) ∈ O+
γ , g = 0, 1,..., n - 1, and matrices (b̃n,γi,k ) , g = 0, 1,..., n such that the equiva-

lence (10) is valid for all i ≥ k ≥ j ≥ 1, then (a(n)i,j ) ∈ O+
n and b̃n,γi,k ≈ bn,γi,k . Hence we may

assume that the matrices (bn,γi,k ) are arbitrary non-negative matrices which satisfy (10).

For the proof of our main results we also need the following inequality. Let n ≥ l ≥ g.
Then we have
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bn,γi,k ≥ bn,li,s · bl,γs,k ∀i ≥ s ≥ k ≥ 1. (11)

Indeed, using (9), for i ≥ s ≥ k ≥ 1, n ≥ l ≥ g we obtain

bn,γi,k = inf
1≤j≤k

a(n)i,j

a(γ )k,j

≥ bn,li,s · inf
1≤j≤k

a(l)s,j

a(γ )k,j

= bn,li,s · bl,γs,k .

As above, we introduce the classes O−
m , m ≥ 0. Let (ai,j) be a matrix which is non-

negative and non-increasing in the second index for all i ≥ j ≥ 1. By definition a matrix

(ai,j) = (a(0)i,j ) belongs to the class O−
0 if and only if it has the form a(0)i,j = βi for all i ≥

j ≥ 1. Let the classes O−
γ , g = 0, 1,..., m - 1, m ≥ 1 be defined. A matrix (ai,j) = (a(m)

i,j )

belongs to the class O−
m if and only if there exist matrices (a(γ )i,j ) ∈ O−

γ , g = 0, 1,..., m -

1 and a number hm >0 such that

a(m)
i,j ≤ hm

m∑
γ=0

a(γ )i,k dγ ,m
k,j , (12)

for all i ≥ k ≥ j ≥ 1, where dm,m
k,j ≡ 1 and

dγ ,m
k,j = inf

k≤i≤∞

a(m)
i,j

a(γ )i,k

, γ = 0, 1, . . . ,m − 1. (13)

From the definition of the matrix (dγ ,m
k,j ) , g = 0, 1,..., m - 1, m = 0, 1,..., it is obvious

that the entries of the matrix (dγ ,m
k,j ) do not decrease in the first index and do not

increase in the second index and for m ≥ l ≥ g, k ≥ s ≥ j satisfy the following inequality

dγ ,m
k,j ≥ dγ ,l

k,s · dl,ms,j . (14)

From (13) it follows that for all i ≥ k ≥ j ≥ 1

a(m)
i,j ≥ a(γ )i,k dγ ,m

k,j , γ = 0, 1, . . . ,m − 1. (15)

As in (10) every class O−
m , m ≥ 0 of matrices (a(m)

i,j ) is characterized by the following

relation

a(m)
i,j ≈

m∑
γ=0

a(γ )i,k dγ ,m
k,j , (16)

for all i ≥ k ≥ j, where dγ ,m
k,j , g = 0, 1,..., m are defined by the formula (13).

REMARK 2. As mentioned before we may assume that the matrices (dγ ,m
k,j ) , g = 0,

1,..., m, m ≥ 0 are arbitrary non-negative matrices which satisfy (16).

REMARK 3. By the definitions of the classes O±
n , n ≥ 0 we have

O±
0 ⊂ O±

1 ⊂ · · · ⊂ O±
n ⊂ · · ·
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In particular, the matrices of the classes O+
1 and O−

1 are characterized by the follow-

ing relations, respectively,

a(1)i,j ≈ b1,0i,k a
(0)
k,j + a(1)k,j ∀i ≥ k ≥ j ≥ 1,

a(1)i,j ≈ a(1)i,k + a(0)i,k d
0,1
k,j ∀i ≥ k ≥ j ≥ 1.

It is easy to see that the class O+
1 include the matrices, whose entries satisfy condi-

tions (4) and (5). Also it should be noted that the matrices with conditions (4) and (6)

belong to the class O−
1 . This implies that the classes O+

n , n ≥ 1 and O−
m , m ≥ 1 are

wider than the classes of matrices which have been used in this connection before.

The matrices of the classes O+
2 and O−

2 are described by the following relations,

respectively,

a(2)i,j ≈ b2,0i,k a
(0)
k,j + b2,1i,k a

(1)
k,j + a(2)k,j ∀i ≥ k ≥ j ≥ 1,

a(2)i,j ≈ a(2)i,k + a(1)i,k d
1,2
k,j + a(0)i,k d

0,2
k,j ∀i ≥ k ≥ j ≥ 1.

Next, we show properties of the classes of matrices O+
n and O−

n , n ≥ 0.

We set

wi,k =
i∑
j=k

ai,jσj,k.

Then we have the following

Lemma 2.1. Let (ai,j) ∈ O+
n , (σj,k) ∈ O+

m . Then (wi,k) ∈ O+
m+n+1 .

PROOF OF LEMMA 2.1. Since (ai,j) ∈ O+
n , there exist matrices (a(γ )i,j ) ∈ O+

γ , g = 0,

1,..., n-1, and matrices (δn,γi,l ) such that

ai,j ≡ a(n)i,j ≈
n∑

γ=0

δ
n,γ
i,l a(γ )l,k , n = 0, 1, . . . , δ

n,n
i,l ≡ 1

for all i ≥ l ≥ k ≥ 1.

Since (σj,k) ∈ O+
m , there exist matrices (σ (μ)

j,k ) ∈ O+
μ , μ = 0, 1,..., m - 1, and matrices

(em,μ
k,l ) such that

σj,k ≡ σ
(m)
j,k ≈

m∑
μ=0

em,μ
j,l σ

(μ)
l,k , m = 0, 1, ..., em,m

j,l ≡ 1

for all j ≥ l ≥ k ≥ 1.

We set

wi,k ≡ wn,m
i,k =

i∑
j=k

a(n)i,j σ
(m)
j,k .

First, we consider the case when m ≥ 0, n = 0. In this case a(0)i,j = αj , ∀i ≥ j ≥ 1. For

∀i ≥ l ≥ k we obtain
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wo,m
i,k =

i∑
j=k

αjσ
(m)
j,k ≈

l∑
j=k

αjσ
(m)
j,k +

i∑
j=l

αjσ
(m)
j,k ≈ wo,m

l,k +
m∑

μ=0

σ
(μ)
l,k

i∑
j=l

αje
m,μ
j,l = wo,m

l,k +
m∑

μ=0

ẽm+1,μ
i,l σ

(μ)
l,k ,

where ẽm+1,μ
i,l =

i∑
j=l

αje
m,μ
j,l , μ = 0, 1,..., m. Suppose that ẽm+1,m+1

i,l ≡ 1 . Since

(
σ
(μ)
l,k

)
∈ O+

μ , μ = 0, 1,..., m, by definition we easily see that wo,m
i,k ∈ O+

m+1 . By induc-

tion, we assume that for n = 0, 1,..., r - 1, r ≥ 1 (wn,m
i,k ) belongs to the class O+

n+m+1 .

For i ≥ l ≥ k we have

wr,m
i,k =

i∑
j=k

a(r)i,j σ
(m)
j,k ≈

l∑
j=k

a(r)i,j σ
(m)
j,k +

i∑
j=l

a(r)i,j σ
(m)
j,k

≈
l∑
j=k

⎛
⎝ r∑

γ=0

δ
r,γ
i,l a

(γ )
l,j

⎞
⎠ σ

(m)
j,k +

i∑
j=l

a(r)i,j

⎛
⎝ m∑

μ=0

em,μ
j,l σ

(μ)
l,k

⎞
⎠

=
r∑

γ=0

δ
r,γ
i,l

l∑
j=k

a(γ )l,j σ
(m)
j,k +

m∑
μ=0

σ
(μ)
l,k

i∑
j=l

a(r)i,j e
m,μ
j,l

=
l∑
j=k

a(r)l,j σ
(m)
j,k +

r−1∑
γ=0

δ
r,γ
i,l

l∑
j=k

a(γ )l,j σ
(m)
j,k +

m∑
μ=0

σ
(μ)
l,k

i∑
j=l

a(r)i,j e
m,μ
j,l

= wr,m
l,k +

r−1∑
γ=0

δ
r,γ
i,l σ̃

(γ+m+1)
l,k +

m∑
μ=0

ẽm+1,μ
i,l σ

(μ)
l,k ,

where σ̃
(γ+m+1)
l,k ≡

l∑
j=k

a(γ )l,j σ
(m)
j,k , g = 0,..., r - 1 and ẽm+1,μ

i,l ≡
i∑
j=l

a(r)i,j e
m,μ
j,l μ = 0,..., m. We

denote g + m + 1 by μ. Then we have

wr,m
i,k ≈ wr,m

l,k +
r+m∑

μ=m+1

δ
r,μ−m−1
i,l σ̃

(μ)
l,k +

m∑
μ=0

ẽm+1,μ
i,l σ

(μ)
l,k

= wr,m
l,k +

r+m∑
μ=0

δ̃
r+m,μ
i,l σ̃

(μ)
l,k ,

where

δ̃
r+m,μ
i,l =

{
ẽm+1,μ
i,l , 0 ≤ μ ≤ m,

δ
r,μ−m−1
i,l , m + 1 ≤ μ ≤ r +m,

and

σ̃
(μ)
l,k =

⎧⎨
⎩

σ
(μ)
l,k , 0 ≤ μ ≤ m,

σ̃
(μ)
l,k , m + 1 ≤ μ ≤ r +m.

Since σ̃
(μ)
l,k ∈ O+

μ
, μ = 0, 1,..., r + m we obtain that wr,m

i,k ∈ O+
r+m+1 . The proof is

complete.
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Now we set

ϕk,j =
k∑
i=j

σk,iai,j.

Then we have the following lemma.

Lemma 2.2. Let (ai,j) ∈ O−
n , (σk,i) ∈ O−

m . Then (ϕk,j) ∈ O−
m+n+1 .

Lemma 2.2 can be proved in the same way as Lemma 2.1.

For the proof of our main theorem we will need the following well-known result for

the discrete weighted Hardy inequality (see [1,9]) and the criteria of precompactness of

sets in lp(see [10, p. 32]).

Theorem A. Let 1 <p ≤ q < ∞. Then the inequality

⎛
⎝ ∞∑

j=1

⎛
⎝ ∞∑

i=j

ωifi

⎞
⎠

q

uqj

⎞
⎠

1
q

≤ C

( ∞∑
i=1

|vifi|p
) 1

p

, 0 ≤ f ∈ lp,v (17)

holds if and only if

H := sup
n≥1

⎛
⎝ n∑

j=1

uqj

⎞
⎠

1
q ( ∞∑

i=n

ω
p′
i v

−p′
i

) 1
p′

< ∞.

Moreover, H ≈ C, where C is the best constant in (17).

Theorem B. Let T be a set in lp, 1 ≤ p <∞. The set T is compact if and only if T is

bounded and for all ε >0 there exists N = N(ε) such that for all x = {xi}∞i=1 ∈ T the

inequality

∞∑
i=N

|xi|p < ε

holds.

3 Main results
We define

(B+
p,q)k =

⎛
⎜⎝ k∑

j=1

v−p′
j

( ∞∑
i=k

aqi,ju
q
i

) p′
q

⎞
⎟⎠

1
p′

,

(B−
p,q)k =

⎛
⎜⎜⎝

∞∑
i=k

uqi

⎛
⎝ k∑

j=1

ap
′
i,jv

−p′
j

⎞
⎠

q
p′

⎞
⎟⎟⎠

1
q

,

(A+
p,q)k =

⎛
⎜⎝ k∑

j=1

uqj

( ∞∑
i=k

ap
′
i,jv

−p′
i

) q
p′

⎞
⎟⎠

1
q

,

(A−
p,q)k =

⎛
⎜⎜⎝

∞∑
i=k

v−p′
i

⎛
⎝ k∑

j=1

aqi,ju
q
j

⎞
⎠

p′
q

⎞
⎟⎟⎠

1
p′

.
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We set B+ = sup
k≥1

(B+
p,q)k,B− = sup

k≥1
(B−

p,q)k,A+ = sup
k≥1

(A+
p,q)k and A− = sup

k≥1
(A−

p,q)k.

Theorem 3.1. Suppose that 1 <p ≤ q < ∞. Let the matrix (ai,j) in (1) belong to the

class O+
m ∪ O−

m , m ≥ 0. Let A+ be the operator defined in (1). Then the following state-

ments hold:

(i) A+ is bounded from lp,v into lq,u if and only if one of the conditions B+ < ∞ and

B− < ∞ holds. Moreover B+ ≈ B− ≈ C, where C is the best constant in (3).

(ii) A+ is compact from lp,v into lq,u if and only if one of the conditions

lim
k→∞

(B+
p,q)k = 0 and lim

k→∞
(B−

p,q)k = 0 holds.

Theorem 3.2. Suppose that 1 < p ≤ q <∞. Let the matrix (ai,j) in (2) belong to the

class O+
m ∪ O−

m,m ≥ 0. Let A- be the operator defined in (2). Then the following state-

ments hold:

(j) A- is bounded from lp,v into lq,u if and only if one of the conditions A+ < ∞ and

A− < ∞ holds. Moreover A+ ≈ A− ≈ C, where C is the best constant in (3).

(jj) A- is compact from lp,v into lq,u if and only if one of the conditions

lim
k→∞

(A+
p,q)k = 0 and lim

k→∞
(A−

p,q)k = 0 holds.

Before proving our main theorems we establish the boundedness and compactness of

the operators (A+f )i :=
i∑

j=1
ai,jfj, i ≥ 1and (A−f )j :=

∞∑
i=j

ai,jfi, j ≥ 1 from the weighted

lp,v space into the weighted lq,u space in particular cases.

4 Boundedness of the matrix operators
Theorem 4.1. Let 1 < p ≤ q <∞. Let the matrix (ai,j) in (1) belong to the class

O+
n , n ≥ 0. Then the estimate (3) for the operator defined by (1) holds if and only if

one of the conditions B+ < ∞ and B− < ∞ holds. Moreover B+ ≈ B− ≈ C, where C

is the best constant in (3).

Theorem 4.2. Let 1 < p ≤ q <∞. Let the matrix (ai,j) in (2) belong to the class

O−
m ,m ≥ 0. Then the estimate (3) for the operator defined by (2) holds if and only if

one of the conditions A+ < ∞ and A− < ∞ holds. Moreover A+ ≈ A− ≈ C, where C

is the best constant in (3).

Here we present only the proof of Theorem 4.2, since the proof of Theorem 4.1 is

very similar.

For the proof of Theorem 4.2 we need the following.

Lemma 4.1. Let the matrix of (2) belongs to the class O−
m , m ≥ 0. Then we have the

following equivalence

(A+
p,q)k ≈ (Am)k ≡ max

0≤γ≤m
(Aγ ,m)k ≈ (A−

p,q)k, (18)

where

(Aγ ,m)k =

⎛
⎝ k∑

j=1

(dγ ,m
k,j )

q
uqj

⎞
⎠

1
q ( ∞∑

i=k

(
a(γ )i,k

)p′

v−p′
i

) 1
p′

.
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By (18) it follows that

A+ ≈ Am = sup
k≥1

(Am)k ≈ A−, ∀m ≥ 0. (19)

Indeed, this equivalence easily follows from (16).

PROOF OF THEOREM 4.2. Necessity. Suppose that the matrix of the operator (2)

belongs to the class O−
m ,m ≥ 0and (3) holds.

For k > 1 we assume that g = {gi}∞i=1 : gi =

{
ui, 1 ≤ i ≤ k

0, i > k.

It is known that inequality (3) holds if and only if the following dual inequality

||A∗g||p′ ,v−1 ≤ C||g||q′ ,u−1 , g ∈ lq′ ,u−1 (20)

holds for the conjugate operator A*, which coincides with operator defined by (1).

Moreover, the best constants in (3) and (20) coincide (see e.g., [3]).

Hence applying g = {gi}∞i=1 in (20) and using (15) we obtain

Ck
1
q′ ≥ ||A∗g||p′ ,v−1 ≥

⎛
⎜⎝ ∞∑

i=k

⎛
⎝ k∑

j=1

a(m)
i,j uj

⎞
⎠

p′

v−p′
i

⎞
⎟⎠

1
p′

�
( ∞∑

i=k

(
a(γ )i,k

)p′

v−p′
i

) 1
p′

⎛
⎝ k∑

j=1

dγ ,m
k,j uj

⎞
⎠ , γ = 0, 1, . . . , m.

Therefore {a(γ )i,k }∞i=1 ∈ lp′,v−1 .

Now for 1≤ r < M <∞, we assume that f = {fs}∞s=1,where

fs =

{
(a(γ )s,r )

p′−1
v−p′
s , r ≤ s ≤ M

0, s < r or s > M.

Applying f to inequality (3) and using (15) we find that

C

(
M∑
s=r

(
a(γ )s,r

)p′

v−p′
s

) 1
p

≥ ||A−f ||q,u =
⎛
⎝ ∞∑

j=1

⎛
⎝ ∞∑

s=j

a(m)
s,j fs

⎞
⎠

q

uqj

⎞
⎠

1
q

�
⎛
⎝ r∑

j=1

(dγ ,m
r,j )

q
uqj

⎞
⎠
1
q

(
M∑
s=r

(a(γ )s,r )
p′
v−p′
s

)
,

which implies

C �
⎛
⎝ r∑

j=1

(dγ ,m
r,j )

q
uqj

⎞
⎠

1
q (

M∑
s=r

(a(γ )s,r )
p′
v−p′
s

) 1
p′

. (21)

Since inequality (21) holds for all g = 0,1,..., m and r ≥ 1 is arbitrary, passing to the

limit as M ® ∞ we have
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sup
k≥1

(Am)k � C. (22)

By using Lemma 4.1 we obtain

A+ ≈ A− � C. (23)

The proof of the necessity is complete.

Sufficiency. Let the matrix (ai,j) of the operator (2) belong to the class O−
m ,m ≥ 0.

Let 0 ≤ f ∈ lp,v and at least one of the conditions A+ < ∞and A− < ∞hold. Assume

that m = 0. By the definition of O−
0 ,the matrix of the operator (2) has the form

a(0)i,j = βi ∀i ≥ j ≥ 1. Then the estimate (3) coincides with the estimate (17) and the

operator (2) is the matrix operator A−
0 . Hence from Theorem A it follows that

||A−
0 f ||q,u � A0||f ||p,v, ∀f ∈ lp,v.

Based on Lemma 4.1 it follows that the inequality (3) holds for m = 0 and for the

best constant in (3) the following estimate is valid

C � A+ ≈ A−. (24)

Now we assume that the inequality (3) holds for m = 0,1,..., n - 1, n ≥ 1 and for the

best constant in (3) the estimate (24) is valid. We consider the inequality

||A−
mf ||q,u � Am||f ||p,v, ∀f ∈ lp,v, (25)

where A−
m is given by (2) with the matrix (a(m)

i,j ) ∈ O−
m .

Now our aim is to show that the inequality (25) holds for m = n with the estimate

(24).

Let h ≡ hn,where hn is the constant in (12) with m = n. For all j ≥ 1we define the

following set:

Tj = {k ∈ Z : (h + 1)−k ≤ (A−
n f )j},

where ℤ is the set of integers. We assume that kj = inf Tj , if Tj ≠ ∅ and kj = ∞, if Tj

= ∅. In order to avoid trivial cases we directly suppose that (A−
n f )1 �= 0. Since a(n)i,j is

non-increasing in j, we have kj ≤ kj+1. If kj <∞, then

(h + 1)−kj ≤ (A−
n f )j < (h + 1)−(kj−1), j ≥ 1. (26)

Let m1 = 0, k1 = km1+1and M1 = {j Î N: kj = k1 = km1+1} , where N is the set of nat-

ural numbers. Suppose that m2 is such that sup M1 = m2. Obviously m2 > m1 and if

the set M1 is bounded from above, then m2 <∞ and m2 = max M1. We now define the

numbers 0 = m1 < m2 < · · · < ms <∞, s ≥ 1 by induction. To define ms+1 we assume

that ms+1 = sup Ms, where Ms = {j ∊ N: kj = kms+1}.
Let N0 = {s ∊ N: ms <∞}. Further, we assume that kms+1= ns+1, s ∊ N0. From the defi-

nition of ms and from (26) it follows that, for s ∊ N0,

(h + 1)−ns+1 ≤ (A−
n f )j < (h + 1)−ns+1+1, ms + 1 ≤ j ≤ ms+1 (27)

Oinarov and Taspaganbetova Journal of Inequalities and Applications 2012, 2012:53
http://www.journalofinequalitiesandapplications.com/content/2012/1/53

Page 10 of 18



and

N =
⋃
s∈N0

[ms + 1,ms+1], where [ms + 1,ms+1] ∩ [ml + 1,ml+1] = ∅, s �= l.

Therefore for 0 ≤ f ∊ lp,v the left-hand side of (3) has the following form

||A−
n f ||qq,u =

∑
s∈N0

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j . (28)

We assume that
ms+1∑

j=ms+1
= 0, ifms = ∞.

There are two possible cases: N0 = N and N0 ≠ N.

1. If N0 = N, then we estimate (28) in the following way.

Clearly inequalities ns+1 < ns+2 < ns+3 imply that -ns+3 + 1 ≤ -ns+1 - 1 for all s ∊ N.

Hence, (27), (16) imply that

(h + 1)−ns+1−1 = (h + 1)−ns+1 − h(h + 1)−ns+1−1

≤ (h + 1)−ns+1 − h(h + 1)−ns+3+1 < (A−
n f )ms+1 − h(A−

n f )ms+3

=
∞∑

i=ms+1

a(n)i,ms+1
fi − h

∞∑
i=ms+3

a(n)i,ms+3
fi

≤
ms+3∑
i=ms+1

a(n)i,ms+1
fi +

∞∑
i=ms+3

[a(n)i,ms+1
− ha(n)i,ms+3

]fi

≤
ms+3∑
i=ms+1

a(n)i,ms+1
fi +

∞∑
i=ms+3

[h
n∑

γ=0

a(γ )i,ms+3
dγ ,n
ms+3,ms+1

− ha(n)i,ms+3
]fi

=
ms+3∑
i=ms+1

a(n)i,ms+1
fi + h

∞∑
i=ms+3

n−1∑
γ=0

a(γ )i,ms+3
dγ ,n
ms+3,ms+1

fi.

(29)

Now, by using (27) and (29), we can estimate (28) in the following way.

∑
s∈N

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j <

∑
s∈N

ms+1∑
j=ms+1

(h + 1)(−ns+1+1)quqj

= (h + 1)2q
∑
s∈N

(h + 1)(−ns+1−1)q
ms+1∑

j=ms+1

uqj

�
∑
s∈N

⎛
⎝ ms+3∑

i=ms+1

a(n)i,ms+1
fi + h

n−1∑
γ=0

∞∑
i=ms+3

a(γ )i,ms+3
dγ ,n
ms+3,ms+1

fi

⎞
⎠

q
ms+1∑

j=ms+1

uqj

�
∑
s∈N

⎛
⎝ ms+3∑

i=ms+1

a(n)i,ms+1
fi

⎞
⎠

q
ms+1∑

j=ms+1

uqj

+
n−1∑
γ=0

∑
s∈N

(dγ ,n
ms+3,ms+1

)q

⎛
⎝ ∞∑

i=ms+3

a(γ )i,ms+3
fi

⎞
⎠

q
ms+1∑

j=ms+1

uqj := In +
n−1∑
γ=0

Iγ ,

(30)

where

In =
∑
s∈N

⎛
⎝ ms+3∑

i=ms+1

a(n)i,ms+1
fi

⎞
⎠

q
ms+1∑

j=ms+1

uqj
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and

Iγ =
∑
s∈N

(dγ ,n
ms+3,ms+1

)q

⎛
⎝ ∞∑

i=ms+3

a(γ )i,ms+3
fi

⎞
⎠

q
ms+1∑

j=ms+1

uqj , 0 ≤ γ ≤ n − 1.

To estimate In we apply Hölder’s and Jensen’s inequalities and find that

In ≤
∑
s∈N

⎛
⎝ ms+3∑

i=ms+1

(a(n)i,ms+1
)
p′
v−p′
i

⎞
⎠

q
p′ ms+1∑

j=ms+1

uqj

⎛
⎝ ms+3∑

i=ms+1

|fivi|p
⎞
⎠

q
p

≤

⎡
⎢⎢⎣sup

k≥1

⎛
⎝ k∑

j=1

uqj

⎞
⎠

1
q ( ∞∑

i=k

(a(n)i,k )
p′
v−p′
i

) 1
p′

⎤
⎥⎥⎦

q ∑
s∈N

⎛
⎝ ms+3∑

j=ms+1

|fivi|p
⎞
⎠

q
p

≤

⎡
⎢⎢⎣sup

k≥1

⎛
⎝ k∑

j=1

(dn,nk,j )
quqj

⎞
⎠

1
q ( ∞∑

i=k

(a(n)i,k )
p′
v−p′
i

) 1
p′

⎤
⎥⎥⎦

q⎛
⎝∑

s∈N

ms+3∑
i=ms+1

|fivi|p
⎞
⎠

q
p

� Aq
n||f ||qp,v.

(31)

We introduce the sequence {
j}∞j=1 defined by 
j = (dγ ,n
ms+3,ms+1 )

q
ms+1∑

j=ms+1
uqj , j = ms+3 and


j = 0, j �= ms+3 , s ∊ N. Hence, we can rewrite Ig, g = 0,..., n - 1 in the following form:

Iγ =
∑
s∈N

⎛
⎝ ∞∑

i=ms+3

a(γ )i,ms+3
fi

⎞
⎠

q

(dγ ,n
ms+3,ms+1

)q
ms+1∑

i=ms+1

uqi

=
∞∑
j=1

⎛
⎝ ∞∑

i=j

a(γ )i,j fi

⎞
⎠

q


j.

(32)

By the assumptions on a(γ )i,j , γ = 0, . . . ,n − 1, i ≥ j ≥ 1,we have the validity of (25).

Therefore,

Iγ � Ãq
γ ||f ||qp, γ = 0, . . . ,n − 1, (33)

where

Ãγ = max
0≤l≤γ

sup
k≥1

⎛
⎝ k∑

j=1

(dl,γk,j )
q

j

⎞
⎠
1
q

( ∞∑
i=k

(
a(l)i,k

)p′

v−p′
i

) 1
p′

. (34)

Using (14) and taking into account that dl,ni,j is non-decreasing in i and non-increasing

in j, we find that

k∑
j=1

(dl,γk,j )
q

j =

∑
ms+3≤k

(
dl,γk,ms+3

)q
(dγ ,n

ms+3,ms+1
)q

ms+1∑
j=ms+1

uqj

�
∑

ms+3≤k

ms+1∑
i=ms+1

(
dl,nk,i

)q
uqi ≤

k∑
i=1

(
dl,nk,i

)q
uqi .

(35)
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By combining (33), (34), and (35), we obtain that

Iγ � Aq
n||f ||qp,v. (36)

Thus, from (30), (31), and (36) it follows that

||A−
n f ||q,u � An||f ||p,v, f ≥ 0, (37)

i.e., inequality (3) is valid and by Lemma 4.1, we obtain that

C � An ≈ A+ ≈ A−. (38)

2. If N0 ≠ N, i.e., max N0 <∞ and N0 = {1, 2,..., s0}, s0 ≥1. Therefore, ms0 <∞ and

ms0+1 = ∞. We assume that
n∑
s=k

= 0, if k > n and
n∑
s=k

=
n∑
s=1

, if k ≤ 0.We have two possi-

ble cases: ns0+1 <∞ and ns0+1= ∞. We consider these cases separately:

1) If ns0+1 <∞, then from (28) it follows that

∥∥A−
n f

∥∥q
q,u =

∑
s∈N0

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j =

s0∑
s=1

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j

=
s0−3∑
s=1

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j +

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j +

∞∑
j=ms0+1

(A−
n f )

q
j u

q
j = J1 + J2 + J3.

(39)

If J1 ≠ 0 then for s0 >3, we estimate J1 using (29) and the previous proof for the case

N0 = N as in estimate Ig. Hence we get

J1 � Aq
n||f ||qp,v. (40)

If J2 ≠ 0 then by using (27) and applying Hölder’s and Jensen’s inequalities, we obtain

the following estimate

J2 =
s0−1∑
s=s0−2

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j <

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(h + 1)(−ns+1+1)quqj

= (h + 1)q
s0−1∑
s=s0−2

(h + 1)−ns+1q
ms+1∑

j=ms+1

uqj �
s0−1∑
s=s0−2

(A−
n f )

q
ms+1

ms+1∑
j=ms+1

uqj

=
s0−1∑
s=s0−2

⎛
⎝ ∞∑

i=ms+1

a(n)i,ms+1
fi

⎞
⎠

q
ms+1∑

J=ms+1

uqj

≤
s0−1∑
s=s0−2

⎡
⎢⎢⎣

⎛
⎝ ∞∑

i=ms+1

(a(n)i,ms+1
)
p′
v−p′
i

⎞
⎠

1
p′ ⎛⎝ ms+1∑

j=ms+1

uqj

⎞
⎠

1
q

⎤
⎥⎥⎦

q⎛
⎝ ∞∑

j=ms+1

|vifi|p
⎞
⎠

q
p

≤

⎡
⎢⎢⎣sup

k≥1

( ∞∑
i=k

(a(n)i,k )
p′
v−p′
i

) 1
p′

⎛
⎝ k∑

j=1

uqj

⎞
⎠

1
q

⎤
⎥⎥⎦

q⎛
⎝ s0−1∑

s=s0−2

∞∑
j=ms+1

|vifi|p
⎞
⎠

q
p

≤ 2Aq
n||f ||qp,v � Aq

n||f ||qp,v.

(41)
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Using (27) and applying Hölder’s inequality we estimate J3 in the following way.

J3 =
∞∑

j=ms0 +1

(A−
n f )

q
j u

q
j ≤ sup

t≥ms0+1

t∑
j=ms0 +1

(A−
n f )

q
j u

q
j

≤ (h + 1)q sup
t≥ms0+1

(h + 1)−qns0+1
t∑

j=ms0 +1

uqj

� sup
t≥ms0+1

(A−
n f )

q
t

t∑
j=ms0 +1

uqj = sup
t≥ms0+1

( ∞∑
i=t

a(n)i,t fi

)q t∑
j=ms0 +1

uqj

≤ sup
t≥ms0+1

⎡
⎢⎢⎣

( ∞∑
i=t

(a(n)i,t )
p′
v−p′
i

) 1
p′

⎛
⎝ t∑

j=ms0 +1

uqj

⎞
⎠

1
q

⎤
⎥⎥⎦

q

||f ||qp,v ≤ Aq
n||f ||qp,v.

(42)

By (39), (40), (41), and (42) we obtain (37) and, consequently (38).

2) If ns0+1= ∞, which means that kms0 +1
= ∞,then by the definition of ms0+1we have

Tj = ∅, if j ≥ ms0 + 1, i.e., (A−
n f )j = 0, if j ≥ ms0 + 1. and

Tj = ∅, if j ≥ ms0 + 1, i.e., (A−
n f )j = 0, if j ≥ ms0 + 1. By the assumption that (A−

n f )1 �= 0it

follows that s0 > 1. Therefore, m2 <∞ and s0 ≥ 2. Thus by (28) we have

||A−
n f ||qq,u =

∑
s∈N0

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j

=
s0−3∑
s=1

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j +

s0−1∑
s=s0−2

ms+1∑
j=ms+1

(A−
n f )

q
j u

q
j = J

′
1 + J′2.

(43)

By estimating J′1 and J′2 as J1 and J2, respectively, from (43) we obtain (37) and, con-

sequently (38). Therefore, we see that inequality (25) holds for m = n and the estimate

(24) is valid. This means that inequality (25) holds for all m ≥ 0 with the estimate (24),

which together with (23) gives C ≈ An. The proof is complete.

5 Compactness of the matrix operators
Theorem 5.1. Let 1 < p ≤ q <∞. Let the matrix (ai,j) of (1) belong to the class

O+
n ,n ≥ 0. Then the operator defined by (1) is compact from lp,v into lq,u if and only if

one of the following conditions holds

lim
k→∞

(B+
p,q)k = 0, (44)

lim
k→∞

(B−
p,q)k = 0. (45)

Theorem 5.2. Let 1 < p ≤ q <∞. Let the matrix (ai,j) of (2) belong to the class

O−
m ,m ≥ 0. Then the operator defined by (2) is compact from lp,v into lq,u if and only if

one of the following conditions holds

lim
k→∞

(A+
p,q)k = 0, (46)
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lim
k→∞

(A−
p,q)k = 0. (47)

Now we give the proof of compactness for the class O+
n ,n ≥ 0.

PROOF OF THEOREM 5.1. For the proof of Theorem 5.1, we need the following

equivalence

(B+
p,q)k ≈ (Bn)k ≡ max

0≤γ≤n
(Bγ ,n)k ≈ (B−

p,q)k, (48)

where

(Bγ ,n)k =

( ∞∑
i=k

(bn,γi,k )
q
uqi

) 1
q
⎛
⎝ k∑

j=1

(a(γ )k,j )
p′
v−p′
j

⎞
⎠

1
p′

.

The equivalence directly follows from (10).

Necessity. Suppose that the matrix of operator (1) belongs to the class O+
n ,n ≥ 0.Let

the operator (1) be compact from lp,v into lq,u.

For r ≥ 1, we introduce the following sequence:

ϕr = {ϕr,j}∞j=1 : ϕr,j =
fr,j

||fr||p,v ,

where fr = {fr,j}∞j=1 : fr,j =

{(
a(γ )r,j

)p′−1
v−p′
j , 1 ≤ j ≤ r,

0, j > r.

It is obvious that ϕrp,v = 1. Since the operator (1) is compact from lp,v into lq,u, the

set {uA+ϕ, ||ϕ||p,v = 1} is precompact in lq. Hence from criteria on precompactness of

the sets in lp (see Theorem B) we conclude that

lim
r→∞ sup

||ϕ||p,v=1

( ∞∑
i=r

uqi (A
+ϕ)qi

) 1
q

= 0. (49)

Moreover, by using (9) we have that

sup
||ϕ||p,v=1

( ∞∑
i=r

uqi (A
+ϕ)qi

) 1
q

≥
( ∞∑

i=r

uqi (A
+ϕr)

q
i

) 1
q

=

⎛
⎝ ∞∑

i=r

uqi

⎛
⎝ i∑

j=1

a(n)i,j

fr,j
||fr||p,v

⎞
⎠

q⎞
⎠

1
q

≥
⎛
⎝ ∞∑

i=r

uqi

⎛
⎝ r∑

j=1

a(n)i,j

fr,j
||fr||p,v

⎞
⎠

q⎞
⎠

1
q

=

⎛
⎝ ∞∑

i=r

uqi

⎛
⎝ r∑

j=1

a(n)i,j (a
(γ )
r,j )

p′−1
v−p′
j

⎞
⎠

q⎞
⎠

1
q
⎛
⎝ r∑

j=1

(a(γ )r,j )
p′
v−p′
j

⎞
⎠

−1
p

≥
( ∞∑

i=r

uqi (b
n,γ
i,r )

q

) 1
q
⎛
⎝ r∑

j=1

(a(γ )r,j )
p′
v−p′
j

⎞
⎠

1
p′

= (Bγ ,n)r .

(50)
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Since inequality (50) hold for all g = 0, 1,... n and from the validity of (49) we obtain

lim
r→∞ (Bn)r = 0

The proof of the necessity is complete.

Sufficiency. Let the matrix of operator (1) belong to the class O+
n ,n ≥ 0.Assume that

at least one of the conditions (44) and (45) is valid. Then, by Theorem 4.1, the opera-

tor (1) is bounded from lp,v into lq,u. Consequently, the set {uA+ f, || f ||p,v ≤ 1} is

bounded in lq. Let us show that this set is precompact in lq. By the criteria on precom-

pactness of the sets in lq (see Theorem B), the bounded set {uA+ f, || f ||p,v ≤ 1}is com-

pact in lq, if

lim
r→∞ sup

||f ||p,v≤1

( ∞∑
i=r

uqi |(A+f )i|q
) 1

q

= 0. (51)

For r > 1 we assume that ũ = {ũi}∞i=1 : ũi =
{
0, 1 ≤ i ≤ r − 1
ui, r ≤ i.

Then, by Theorem 4.1, we have that

sup
||f ||p,v≤1

( ∞∑
i=r

uqi |(A+f )i|q
) 1

q

= sup
||f ||p,v≤1

( ∞∑
i=1

ũqi |(A+f )i|q
) 1

q

� B̃n(r), (52)

where

B̃n(r) = sup
k≥1

max
0≤γ≤n

( ∞∑
i=k

(bn,γi,k )
q
ũqi

) 1
q
⎛
⎝ k∑

j=1

(a(γ )k,j )
p′
v−p′
j

⎞
⎠

1
p′

.

Since ũi = 0 when 1 ≤ i ≤ r -1 we have

B̃n(r) = sup
k≥r

max
0≤γ≤n

( ∞∑
i=k

(bn,γi,k )
q
uqi

) 1
q
⎛
⎝ k∑

j=1

(a(γ )kji
)
p′
v−p′
j

⎞
⎠

1
p′

= sup
k≥r

(Bn)k, (53)

By (44), (45), (48), and (53) we deduce

lim
r→∞ B̃n(r) = lim

r→∞ sup
k≥r

(Bn)k = lim
r→∞ (Bn)r = 0.

Hence, by using (52) we obtain (51) and the proof is complete.

Theorem 5.2 is proven in a similar way.

Now on the base of Theorems 4.1, 4.2, 5.1, and 5.2 we prove our main results.

6 Proof of Theorem 3.1

(i) If the matrix of (1) belong to O+
m,m ≥ 0. then the statement (i) of Theorem 3.1

directly follows from Theorem 4.1. Suppose that the matrix (ai,j) = (a(m)
i,j ) of (1)

belongs to O−
m ,m ≥ 0. It is known that the boundedness of operator (1) from lp,v into

lq,u is equivalent to the boundedness of conjugate operator from lq′ ,u−1 , into lp′
,v−1 ,

which coincides with operator (2). From the condition that 1 <p ≤ q < ∞ it follows

Oinarov and Taspaganbetova Journal of Inequalities and Applications 2012, 2012:53
http://www.journalofinequalitiesandapplications.com/content/2012/1/53

Page 16 of 18



that 1 < q’ ≤ p’ <∞. Then by Theorem 4.2 and the identities (A+
q′ ,p′)k = (B+

p,q)k and

(A−
q′ ,p′)k = (B−

p,q)k,the boundedness of the operator defined by (2) from lq′ ,u−1 into lp′
,v−1

is equivalent to the conditions of the statement (i) of Theorem 3.1. Hence the state-

ment (i) of Theorem 3.1 is also valid in the case when the matrix of (1) belongs to

O−
m ,m ≥ 0. The proof of the statement (i) of Theorem 3.1 is complete.

(ii) Let the matrix of (1) belong to O+
m,m ≥ 0.Then the statement (ii) of Theorem

3.1 follows from Theorem 5.1. If the matrix (ai,j) = (a(m)
i,j )of (1) belongs to

O−
m ,m ≥ 0,then as stated above based on Theorem 5.2 it follows the statement (ii) of

Theorem 3.1.

The proof of Theorem 3.1 is complete.

The proof of Theorem 3.2 can be carried out by the same method as in the proof of

Theorem 3.1.

REMARK 4. If we consider operator defined by (1) and operator of the following form

(�+g)i =
i∑

j=1

σi,jgj, i ≥ 1.

Then

(A+ ◦ �+)(g)i ≡ (A+(�+g))i =
i∑

j=1

ai,j

j∑
k=1

σj,kgk

=
i∑

k=1

⎛
⎝ i∑

j=k

ai,jσj,k

⎞
⎠gk =

i∑
k=1

wi,kgk.

Therefore if (ai,j) ∊ O+
n , (σj,k) ∈ O+

m, then according to Lemma 2.1 the matrix (wi,k) of

the operator A+ ◦ �+ belongs to the class O+
m+n+1.

In general case, if matrices (aki,j) of operators (A+
k f )j =

i∑
j=1

aki,jfj belong to the classes

O+
mk
, k = 1, . . . ,n, then the matrix of operator A+

n ≡ A+
1 ◦ A+

2 ◦ · · · ◦ A+
n belongs to the

class O+
m, where m =

n∑
k=1

mk + n − 1. So according to Theorem 3.1 we obtain criteria of

boundedness and compactness of the matrix operator A+
n from the weighted lp,v space

into the weighted lq,u space, 1 < p ≤ q <∞

Similarly, if matrices (aki,j) of operators (A−
k g)j =

∞∑
i=j

aki,jgi belong to the classes O−
mk
, k

= 1,..., n, then based on Lemma 2.2, Theorem 3.2 gives necessary and sufficient condi-

tions for boundedness and compactness of operator A−
n = A−

1 ◦ A−
2 ◦ · · · ◦ A−

n from lp,v

into lq,u, 1 < p ≤ q <∞.
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